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If, on the other hand,
lAn"'An+P[ < Sn

(An+ Anpr+ -+ + Augp) — Apdpyr - Angyp

= [An"An+ll+[An—An+2[+ vt | Adn = Ao |

<8+ 8ut -+ 8a

< Sq.
In the limit when p increases indefinitely

M=+ Anpr+ -++) — dpdpyr- -+ < S

The left member is a sequence decreasing with n and it must
have the limit O for S, has the limit 0. Consequently the
sequence 4, has a limit according to Borel.
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Introduction.

Tue following paper is the result of an investigation of a
problem connected with the representation of the algebraic
numbers in the form rwPe.*

Throughout the discussion I shall use the following notation.
By p I mean a rational prime and by p any prime divisor of p.
f is the degree of p, i. e., N(p) = p’ and p” is the highest
power of p contained in p. By 7 I mean a prime number of
the domain k(y, o), where « is an arbitrary algebraic number.
The numbers of k(p, a) are then of the form a,rP+a,1m" 14

A number in which p = 0 and a, is relatively prime to p
is called a unit and in particular if a, = 1it is called a principal
unit.

* Hensel, Crelle’s Journal, vol. 145.
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The Equation " — E = 0(p).

For the present we shall let E be any unit of k(p, «).
From the general theory of algebraic numbers* we know that
there exists a certain rational integer u such that the equation

1) a?” — E = 0(p)
has a solution in k(p, o) if the congruence
2) a?" — E = 0 mod p*+!

has a solution in this domain. The present section is devoted
to the computation of the value of u.

This determination of u can be accomplished by making
use of a known theorem.f}

Since E is a unit, it follows that any solution E; of (2) is
also relatively prime to p. Therefore if we put F(z)=a?"—E
and denote its 7th derivative by F®(z) we see that the order of

Fo@E)i =@ T Do @ it D

E 110"—1}

is the same as the order of C® = prl/i!(p® — 7).

The order of m! in k(p) is (m — Sn)/(p — 1)1 where S,, is
the sum of the coefficients in the reduced p-adic representation
of m. Hence since S,» = 1 we know that in k(p) the order
of C9 is

p"—1 1—=8 p"—1—=8us SitSpm.—1

p—1 p—1 p—1 N p—1 :
Let us denote the order of 7+ by p and suppose that in its
reduced p-adic representation ¢ = a,p° 4+ @, p" 1+ ...
+ a,—1p™ . Since ¢ < p™ the representation cannot have a
term containing a higher power of p than p™, excepting in
the case where ¢ = p™ and then the order of C® is zero.

The number p” can be written in the form p - p°* 4+ (p — 1)prtt
4+ ...+ (p — 1)p" !, and hence

P"— 1= (p— a)p"+ (P — @y — VP +
‘e + (p - Op—1 — l)Pn_l:

* Hensel, Theorie der algebraischen Zahlen, Kap. 4,§ 4. (The method
there used by Professor Hensel can be extended to any domain.)

1 Ibid., Kap. 4, § 4, pp. 72-74.

1 Ibid., p. 111.
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which as is easily seen is also in the reduced form. Hence
S’l:= ap+ap+l+ .. +an—l
and
Spi=p—a,+p—auu—1+ ... +p—0p1—1
and
S;+ 8pi=(—p)p— (n—p—1),
whence we have
Si+ Sps — D/(p—1) =n— p.

Since p° is the highest power of p in p we see now that
p®, the order of C® in k(y, o), is equal to o(n — p).

If we now form the expression (ip’ — p@)/(7 — 1)* we see
that this is equal to

an——z-—iglf_p)=a(n+i—i 1)

since p’ = no. The value of p sought is the largest integer
which is less than or equal to

p
1—1

maxa(n-l— >f0ri=2,3,...,p”.

Since n and o are independent of i, it is evident that this
maximum occurs when p/(¢ — 1) is maximum and we shall
therefore determine the value of 4 for which such is the case.

If we first consider the values of 4 of a given order p it is
clear that p/(z — 1) is maximum when 7 is minimum and hence
when ¢ = p* and the maximum value of p/(p® — 1) as p varies
over the numbers 1, 2, ... n is therefore the same as the
maximum value of p/(z — 1) as ¢ varies over the numbers
2,3, ... p*. We note here that for 1 <7< p,p =0 and
p/(t — 1) = 0.

Let us now turn our attention to the expression

¥(p) = p/(p* — 1).
Differentiating, we have

1p,()=10"—1—pp'°10gp=p"(1 —plogp —1
P (p* — 1)° (pp — 1)

* Hensel, Theorie der algebraischen Zahlen, Kap. 4, § 4.
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If p > 2,log p > 1 and hence, since p = 1,¢/(p) < 0. The
function ¢(p) is therefore a decreasing function for p =1
and the maximum value in the required interval therefore
occurs when p = 1. This maximum value is 1/(p — 1) > 0
and since for 1 < 2 < p, p/(z — 1) = 0, 1/(p — 1) is the maxi-
mum value of p/(z — 1). If p =2 < e <4, since 2 < 2 we
have 3 < log 2 < 1 and hence for p 2> 2 we have p log2 > 1
and as before ¢¥/(p) < 0. Therefore for p = 2, ¢(p) is de-
creasing and must be maximum, in the given interval, when
p = 2. Hence when p takes the values 1, 2, ..., n, ¥(p)
must be maximum either at p = 1 or p = 2.

1
For p = 1, ¥(p) =5_—7= 1L

2
Forp = 2,¢(p) = y—7 =3
and hence, as in the preceding case, the maximum value occurs
when p = 1 and again the maximum is 1/(p — 1). Therefore

ip’—-p“’)_ 1
max(————i_l =0 n—}—p—-_

and if we put & = [o/(p — 1)] we have
uw = no+ k.

A Certain Residue Group in k(p, o).

We shall suppose that the domain k(p, @) contains all the
p"th roots of unity while no primitive p"'th root of unity is
contained in it. We shall in this discussion need the number
u of the preceding section for the special case whenn = r + 1
and shall therefore put p =10+ 0o+ £% 21+ k.

Every principal unit E of our domain is, modulo p**, con-
gruent to one and only one of the p*/ units 1 + aim + asr?+
-++ + a,m™ where the a; vary independently over the p’
numbers of a complete residual system modulo p. Since
the product and quotient of two principal units are principal
units it is evident that these residues and hence the E’s them-
selves form an abelian group of order p*/ with respect to the
modulus p***. This group we shall denote by G. Since @
is an abelian group we know that it is the product of cyclic
groups. These cyclic groups we shall denote by Cy, Cs, -« - Cy,
and the order of C; we shall denote by p™. (The order must
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be a power of p since it is a divisor of p*/.) We shall more-
over assume that ry 271 213 2 +-+ 213

Let m be that one of the numbers 1,2, ---, h such that
T > T 2 Tmyy or if 7, > 7, h = m. We shall ﬁrst see that
r cannot be greater than r;. G cannot contain an element of
period greater than p™ and hence if R is a primitive p"th root
of unity, it is an element of @ and therefore R*” = 1 mod p*t*
and hence also modulo p**!, since u > %+ 1. But since
R =1 mod p*™* it is an exponential unit* and we can
therefore write R = ¢7(p). By raising both members of
this equation to the power p™* we have " = 1(p) and
hence yp"™ = 0 (p) and v = 0 (p). But then R"™ = ¢ = 1(p)
and since R is a primitive p"th root of unity this is im-
possible unless r < r,.

In the same way it follows that for ¢ < r, R? = 1 mod p*+!
and hence R and its powers form a cyclic subgroup of G, of
order pT.

If » = ry it is evident, from the proof of the theorem, that
every abelian group can be written as the product of cyclic
subgroups,t that we can put Cy = C where C is the cyclic
group generated by R. If however m > 1 we shall next see
that no power of R excepting R?" is modulo p*** congruent to
a number in the product Ci-Cs- - - Cyp.

Let us denote by E; any generator of the cyclic group C;
and let us suppose that

A A Am A
(3) Emr 1_E2ﬂ217 2. B, = Rrr" mod p“-H,

where we assume that n, ny, ng, -+, n, are rational integers
relatively prime topand 0 SAX < rand0 SN <7 (e= 1,2,

- m). By raising both members of (3) to the power p™™
we have

ALFr—A Ag+r—A Amtr—A
4) Emo™ . By’ R = 1 mod p*H!

and from the fact that G is an abelian group and Cy, Cs, - - -, Cy
the base we know that this is possible when and only when the
exponent of each E; is divisible by p". Hence N\i + r — \
= r; and since for 2 < m, r; > 7, we haveN; 2 r;— r+ N> \.
If we now let I = min (A, Ay, + -+ Ap) and put

E = El’nlp)‘l—'l. Eznzpkz—l' . Emnmp'\m—l

* Hensel, Crelle’s Journal, vol. 145, pp. 94-95.
TWeber, Algebra, vol. II, pp. 3, 38-45.
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we can write (3) in the form
EP = R™ mod pett,

Since N\; > \ it follows that I > .

If we now put ¢ = minimum ([, » + 1) and use the result
of the first part of this paper we can from the last congruence
conclude that the equation

(5) a?* = R™" (p)

has a solution in k(p, ). Let us denote this solution by .
Then A**" ™ = 1(p). Since R is a primitive p"th root of
unity and n is relatively prime to p, R™ is also a primitive p"th
root of unity and hence

QIPHT—A—I — (Rn)?r_l + 1(p)

A is therefore a primitive p***~*th root of unity which is
contained in k(p, o).

But we have seen that I > \ and have assumed that A < r
and hence r + 1 > \ and consequently ¢ = min (r 4+ 1,1) > A
and {4 r— N> r. But this contradicts our assumption
that k(p, o) contains no primitive p™th root of unity.

Hence (3) is impossible when A < r and hence no power
of R excepting R?" = R° or power of R?" can be congruent,
modulo p**! to the left hand member of (3).

From this it now follows that in the construction of the
base of G we can put Cp1 = C and hence have

G = 01-Cy+Ch-C-Chyar - Ch.

It we put Gi= C1-C2-+-Cpy Crpyar - - Ch, this is also an
abelian group and

(6) G’ = Gl' O.

The result may now be summed up in the following

TuaroreM: If the domain k(h, o) contains a primative pTth
root of unity but mo primative p"t th root of unity, and if we
denote by u the number ro + o + k where o is the exponent
of the prime divisor p in p and k = [o/(p — 1)], then the
abelian group consisting of the principal units of k(p, &) moduio
p“*1 is the product of an abelian group Gy and the cyclic group
C whose elements are the pth roots of unity.
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