
EQUILONG INVARIANTS. 341 

EQUILONG INVARIANTS AND CONVERGENCE 
PROOFS. 

BY PROFESSOR EDWARD KASNER. 

(Read before the American Mathematical Society April 24, 1915.) 

T H E writer has studied the invariants of a pair of analytic 
curves under the equilong group with the main object of throw­
ing light on the corresponding question in the more important 
conformai geometry.* The two theories present many anal­
ogies, but are not connected by a strict principle of duality. 
The number of invariants and their orders turn out to be the 
the same, though the results have to be calculated inde­
pendently. 

In some questions, however, the two theories differ essen­
tially, not only in the methods to be employed, but also in the 
results obtained. This is true, in particular, with regard to the 
convergence of the power series entering into the formal 
calculations. This question was left unsettled in the paper 
cited. 

The principal object of the present paper is to complete the 
equilong theory by showing that the series in question are 
always convergent. I t thus follows that the equality of the 
absolute invariants is a sufficient as well as a necessary con­
dition for the equivalence of two pairs of curves. The method 
used is to reduce the question to one in differential equationsf 
and then to apply certain existence theorems, for solutions 
at a singular point, due to Briot and Bouquet. 

1. Calculation of the Invariants. 

The equilong group of the plane consists of all contact 
transformations which convert straight lines into straight lines 
in such a way that the distance S between the points of con­
tact of any two curves on a common tangent remains in-

* See Conformai Geometry, Proceedings of the Fifth International 
Congress, Cambridge (1912), vol. 2, pp. 81-87. 

f Such a reduction is impossible in the conformai theory. We have 
instead a functional equation, and in some cases, as Dr. Pfeiffer has re­
cently shown, the formal solution is actually divergent. In the language 
of the paper cited above, invariant relations of infinite order are required 
in conformai equivalence, but not in equilong equivalence. 
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variant. If we use Hessian line coordinates u, v (where v is 
the perpendicular distance from the origin and u is the angle 
which the perpendicular makes with the initial line), the group 
may be written, in the notation of dual numbers, 

(1) U + jV = Function (u + jv), where j2 = 0, 

or, in separated form, 

(2) U = <p(u), V = V M + Mu), 
where <p and \[/ are arbitrary analytic functions.* If we change 
the sign of v, we obtain the improper equilong transformations 
which preserve the magnitude of S but reverse its sense. 

A single regular analytic curve has no invariants: it can 
always be reduced to the normal form v = 0, that is, the 
origin (considered as an envelope of lines). 

Let us now consider two curves having a common tangent; 
this tangent we may assume to be the line u — 0, v = 0. 
One of the curves we may assume reduced to v = 0. The 
other is defined say by v = f(u), where ƒ is any power series 
without a constant term. In the second plane let the two 
curves be written in the form V = 0, and V = F(U). 

We then have to consider the subgroup of (2) which converts 
the point v = 0 into itself, and the line u — 0, v = 0 into itself. 
This is 
(3) U = <p(u), V = v<p'(u), 

where <p(u) is any power series beginning with the first power 
of u. 

In terms of power series our problem is now as follows: 
When will the curves 

(4) v = a\U + a2u
2 + • • •, 

(5) F = A1U+A2U
2+ ••• 

be equivalent under a transformation of the form 

U = a\u + a2u
2 + a^u? + • • •• («1 + 0), 

(6) 
V = vfa + 2a2u + 3azu

2 + • • •)? 
The requisite condition is expressed by the identity 

* See Scheffers, Math. Annalen, 1905. The lines and curves considered 
are oriented. 
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(7) (aiu + a2u
2 + • • • ) (eii + 2a2u + 3a3^2 + • • • ) 

= A\{a\u + a2u
2 + • • •) + A2(a±u + CL2U2 + • • - ) 2 , • •• 

Equating coefficients, we find first a\a\ = a\A\. Since 
ct>i + 0, it follows that a± = Ai. Hence a\ is an absolute 
invariant. In fact a±, in the curve (4), is the distance from the 
origin along the tangent u = 0, v = 0 to the point of contact 
with the curve. This verifies the invariance of S, the tan­
gential distance of two curves. 

Equating coefficients of un in (7), we find an equation in­
volving ai, a2, • • •, an, the coefficient of an being 

nai — A\ = (n — l)a± (n > 1). 

Hence, if we assume a\ 4= 0> the equation can be solved for 
an. Hence no higher absolute invariants exist. 

THEOREM I. A pair of curves whose tangential distance ô 
is not equal to zero has no absolute invariant, under the equilong 
group, except S. 

To show that two pairs of curves having the same 5 are 
actually equivalent, it is of course necessary to show that the 
first of the series (6), whose coefficients an are calculated as 
described above, is convergent. This we shall do later. 

We consider next the case 5 = 0, that is, the case where the 
two curves form a horn angle.* Let the order of contact of 
the two curves be h — 1, where h may be 2, 3, • • •. In our 
reduced form one of the curves is the point v = 0, so the 
other must be of the form 

v = ahu
h + ah+iu^1 + • • • (ah 4= 0). 

This takes the place of (4). In the second plane the curve 
(5) must take the same form, since order of contact is obviously 
an arithmetic invariant. The transformation (6) remains the 
same. 

The first equation obtained from the identity (7) is now 

an = ai^Ah, 

which determines ai.f In the next equation the coefficient of 

* See the author's paper cited above. 
t If /i — 1 is even, and if an and Ah have opposite signs, the ai thus 

found will be imaginary. In this case we may apply a preliminary im­
proper equilong transformation, say U' = U, V' = — V, which will change 
the sign of Ah. Hence we can always take at to be real. The other 
coefficients a2, «3, • • • are found rationally, hence the transformation will 
be real. 
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a2 is (2 — h)ah', hence we can solve for a2 unless h = 2. In 
general, the nth equation determines an unless h — n. Hence 
for a given order of contact, that is, a given value of h (greater 
than unity), there is one and only one equation of the set 
which cannot be solved for one of the coefficients (the one with 
highest subscript) of the transformation. This particular 
equation, the hih in the list, together with the previous equa­
tions, will enable us to eliminate a\, a2, • • •, a^_i, thus giving 
a relation between the coefficients an, • • -, o>2h-i and Ah, • • •, 
Aïhr-i of the two curves. This relation can be separated in 
the form 

J2hr-l(<Xh, Oihr\-U ' ' 'f <%2h-l) = J2hr-l(Ahf Ah+1, * • *, ^4 2 f t_ i ) , 

where J is a certain rational function of its arguments. Hence 
we have an absolute invariant of order 2h — 1. 

THEOREM I I . Any horn angle, that is, a pair of curves 
touching each other, has one and only one equilong invariant. 
If the order of contact is h -— 1, the order of the absolute invariant 
J2h~i is 2h — 1. 

If we allow h to take the value unity, the curves will not 
be in contact (we may call this contact of order zero), and the 
invariant J\ is merely S, the tangential distance. I t is thus 
easy to restate Theorem II so as to include Theorem I. 

In the case of simple contact, h = 2, the invariant J 3 is of 
third order and has the following geometric meaning (not 
restricted to the canonical form in which one of the curves is 
reduced to a point) 

dr± dr2 dr\ dr2 

_ 1dsi 2 ds2 _ ddi dd2 
8 " (n — r2)

2 " (n — r2)2 " 

Here r\ and r2 denote the radii of curvature of the two curves 
of the horn angle; ds\ and ds2 denote the elements of arc; 
ddi and dd2 denote the changes in the inclination of the tangent. 
The radii and their rates of change are of course taken at the 
vertex of the angle.* 

* The analogous conformai invariant of a horn angle is (see first citation) 

j _ ds\ ds2 

(Ti — 72) 2 ' 
where y denotes curvature. 
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2. Convergence Proofs. 

If two pairs of curves have the same absolute invariant, then 
it is possible at least formally to find a power series for an 
equilong transformation converting the one pair into the other. 
To show that the series thus obtained is always convergent, 
we restate our equivalence problem (again in its canonical 
form) in terms of differential equations. 

If v = f{u) and V — F(U) are to be equivalent under the 
transformation U = <p(u), V = v<p'(u), then 

Here <p is the unknown function. I t will be convenient to 
replace u by x, and <p by y. Thus our differential equation is 

(8) in = IM = Aiy + A*y* + ' " 
dx f(x) CL\X + a2x

2 + • • • " 
The curves will be equivalent if, and only if, this differential 
equation admits an analytic solution of the form 

(9) y = aix + a2x
2 + • • • («i 4= 0). 

The formal conditions are obtained from an identity 
which is obviously the same as (7) with u replaced by x. 
Hence we have a single condition on the coefficients in (8), 
namely, J (a) = J (A). The series (9) then formally exists, in 
fact there will always be <x>1 such series, one of the coefficients 
(namely an) being arbitrary. 

To show that the series obtained are convergent (that is, 
that the radius of convergence is greater than zero) we might 
use directly Cauchy's method of majorants; but this is un­
necessary, since we can appeal to the following result due to 
Briot and Bouquet:* If an equation of the form 

* Goursat, Cours d'Analyse, vol. 2 (second edition), pp. 503, 504. It 
is there shown that if the coefficient aoi, or b in Goursat's notation, is 
not a positive integer, there is one solution; if b is a positive integer, there 
will be either 0 or <*>x solutions. But divergent series never arise. 

This is of course not true for differential equations of all forms. For 
example, 

dy = y - x 
dx x2 

is satisfied formally by y — x + #2 + 2!#3 + 3!#4 + • • •> which is divergent 
for all values of x other than zero. 
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new ty-— aiQX ~*~ aQiy ~*~ a™x2 ~*~ ailXy ~*~ a°2y2 + ' " {W) dx~ x 

can be solved formally by a power series 

y = cix + c2x
2+ • • -, 

this series will necessarily be convergent. 
We discuss first the case where the tangential distance 5 

is not zero. Then <xi — A\ 4= 0, so we may write (8) in the 
form 

ni) dy = C îs/ + • • 0(^i + <*2% + • •O""1
 = y + R{xy y) 

iXiJb JU JU 

where R is a power series beginning with terms of the second 
degree in x and y. This equation is of the form (10). Hence 
convergence is assured. 

We take next the case 5 = 0. If the order of contact is 
h — 1, the differential equation (8) becomes 

dy Ahy
h+Ah+1y

h+1-\ 
(12) ^ = ^ + ^ ^ + q — T : ^ («* + o , ^ + o,A>i) . 
To reduce this to the Briot and Bouquet form, we make a 
change in the dependent variable, using the substitution 

(13) y = (z + \)z, where X*"1 = ^ . 

The transformed equation is found to be 

/14Ï È. = (̂  — l)g + #fe *) 
CLX Jo 

where the power series R starts with terms of the second 
degree. This is of the form (10), the coefficient b or a0i 
being the integer h — 1. Hence z will be a convergent power 
series. By (13), the same will then be true of y. 

THEOREM III. The convergence of the series defining the 
equilong transformation is thus guaranteed in every case. 

In our discussion we have assumed one of the curves of the 
pair in each plane to be reduced to a point, the origin. We 
may pass directly from this canonical form to the general 
form, and state our final result as follows: 
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THEOREM IV. If one pair of curves 

v = a\u + (X2U2 + • • • f 

v = Piu + /32u
2+ •••, 

is to be equivalent, under the equilong group, to a second pair of 
curves 

V= A1U+A2U
2+ ••., 

V= £1£7+£2£72 + ..-, 

the necessary and sufficient condition is the equality of a single 
absolute invariant J, that is, 

J (a, /?) = J (A, B). 

If the order of contact of the curves of each pair (this is obviously 
an arithmetic invariant) is h — 1, the invariant J is of order 
2h- 1. 

If h = 1 (curves not touching), J is the tangential distance ô. 
If h = 2 (simple contact), J is a combination of the radii of 
curvature and their rates of variation, as given above. 

COLUMBIA UNIVERSITY, 
NEW YORK. 

THE INVERSION OF AN ANALYTIC FUNCTION. 

BY DR. SAMUEL BEATTY. 

(Read before the American Mathematical Society, April 28, 1917.) 

T H E demonstration of the existence of the inverse of an 
analytic function is made to depend in the Weierstrass theory 
upon the power series representation of the function and in 
the Cauchy theory upon the Jacobian of the real and imaginary 
parts of the function with reference to the real and imaginary 
parts of the variable. The proof presented in the following 
pages finds its source in the Goursat conception of an analytic 
function and is related as to method to the theory of sets of 
points. 

Suppose the function w — f(z) exists and has a finite de­
rivative at each point of a simply connected domain D. 


