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SINGULAR POINTS OF TRANSFORMATIONS AND 
TWO-PARAMETER FAMILIES OF CURVES. 

BY DR. W. V. LOVITT. 

1. Introduction. 

I N the Transactions for October, 1915, I discussed some 
singularities of a point transformation in three variables 

(1) x = 0(w, v, w)y y = \p{uy v, w), z = x(u> v> w)-

Let a particular one of the singular points in question be 
denoted by P , and let S denote the surface through P in the 
ww-space defined by setting the jacobian of the transforma­
tion equal to zero. The point P and the surface S are trans­
formed by (1) into a point P± and surface Si in the xyz-space. 

In the present paper there is found on the surface Si(x, y, z) 
a curve (di) which is the envelope of a one-parameter family 
of curves properly chosen from the two-parameter family (1). 
We find in the ^w-space that plane of directions which trans­
forms into the direction of the curve (di) in the xyz-space. 

2. Initial Assumptions. 

Let us consider a real point transformation of three-space 

(1) x = <j>(u, v, w), y = \[/(Uj v, w), z = x(u> v> w) 

with determinant 
4>u 0v <j>w 

J(u, v, w) ypu $v ypu 

Xu Xv Xu 

The functions 0, \[/, x &re not necessarily analytic but it will 
be presupposed that 

(a) the functions <f>, \(/, x are of class C ; / /* in a neighborhood 
of the origin (u, v, w) = (0, 0, 0) ; 

* We shall say that a single-valued function ƒ of u, v, w is of class C" 
if f(u, v} w\ and its partial derivatives of orders one, two, and three are 
continuous in a region in which ƒ is defined. 
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(b) the following initial conditions are satisfied : 

0(0, 0, 0) = *(0, 0, 0) = X(0, 0, 0) = 0; 

(c) J ( 0 , 0 , 0 ) = _ 0 ; 
(d) at the origin (u, v, w) — (0, 0, 0) at least one of the 

determinants of the matrix 

\ *J u *J v *J w 

(2) 
<f>u 4>v <t>w 

$u $v ^w 

! Xu Xv Xu 
is different from zero. 

There is no loss of generality in assuming, as indicated in 
the conditions, that the singular point P is at the origin in the 
WTO-space, and that the transform of P by (1) is the origin 
Pi in the xyz-space. Neither will generality be lost if we 
assume for convenience that the determinant 

(3) ffi = 

*J u *J v *J u 

*pu \f/v ^u 

Xu Xv Xu 

is that one of the matrix (2) which does not vanish at the 
origin. 

By our assumptions (b) and (c) the equations 

(4) J(u, v, w) = 0, y = \f/(u, v, w), z = x(u, v, w) 

have the initial solution (u, v, w, y, z) = (0, 0, 0, 0, 0). The 
hypothesis (d) justifies the assumption that the determinant 
(3) is different from zero, as we have seen. Hence by the 
usual theorems of implicit functions there exists a neighbor­
hood (0, 0, 0, 0, 0)€* in which no two solutions (u, v, w, y, z) 
of equations (4) have the same projection (y, z), and a neigh­
borhood (0, 0)5 of the point {y, z) = (0, 0) in which equations 
(4) determine u, v, w as functions of class C" of y and z, 

(5) u = u(y, z), v = v(y, z), w = w(y, z) 

* For these theorems see Bliss, Princeton Colloquium Lectures, pp. £-9. 
By the notation (0, 0, 0, 0, 0)€ is meant a neighborhood 

1 U | < €, | V I < €, 

of the point (0, 0; 0, 0, 0). 
I w | < e, i y | < €, < € 
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defining values (u, v, w, y, z) in the neighborhood (0, 0, 0, 0,0)e. 
By substituting these results in the third of equations (1), 
a surface 

(Si) x = X(y, z) 

is found, which is the transform by (1) of the surface S. 

3. The Envelope Curve d\. 

We now interpret equations (1) as a two-parameter family 
of curves with the parameters v, w. Under the assumption 
(d), the surface Si is the envelope of the curves (1).* If a 
one-parameter family of curves be chosen from the set (1), 
this family will not in general have an enveloping carve. 
The condition that a curve 

(di) x = x(a) = X[y(a), z(a)], y = y (a), z = z(a) 

on the surface Si shall be an envelope may be derived as 
follows.+ 

If we substitute y(a), z(a) in the functions v(y, z), w{y, z) 
defined by equations (5) two functions v(a), w(a) are deter­
mined and a one-parameter family of curves is defined when 
v{a), w(a) are substituted in (1). These curves are tangent to 
the curve (di) if y and z are determined as functions of a 
so that 

x a = 4>yVa + <t> z%a = rncj>u> y a = m ^ „ , za = mxu, 

u, v, and w being thought of as functions of y and z. The 
three determinants of the matrix 

II <t>vVa + 0 A ya za I 

II <t>u ypu Xu\[ 

must therefore be zero, i. e., the three equations 

(0ti ~ <t>V^u)ya — *K0*2a = 0 

Xu<f>Vya ~~ (<t>u — Xu<t>z)Za = 0 , 

Xuya — ^U%a = 0, 

* W. V. Lovitt, "A type of singular points for a transformation of three 
variables," Transactions, vol. 16 (1915), p. 377. 

+ Mason-Bliss, "The properties of curves in space which minimize a 
definite integral," Transactions, vol. 9 (1908), pp. 440-466. 
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must be satisfied. The coefficients of ya, za in these equations 
cannot all vanish since at least one ot the derivatives </>u, if/u, 
Xu is different from zero at the point Pi. That any two of the 
equations are a consequence of the third may be shown by 
expanding the determinant of any pair of the equations and 
using the relation 

<t>U ~ Xy\f/U — XzXu = 0 . 

The determination of a one-parameter family of curves 
having an enveloping curve (di) is therefore to be effected by 
solving one of the above equations. I t has the form 

A(y,z)ya+ B(y,z)za = 0, 

when u, v, and w are replaced by their values in terms of y and 
z from equations (5). Since this differential equation is of 
the first order there exists one and only one integral curve 

V = y(cc), * = z(a) 

in the yz-plsme, passing through the point y = z = 0 for 
a = 0. The equations of the family of curves tangent to 
(di) are found by substituting y (a), z(a) in the expressions for 
v and w in terms of y and z from equations (5) and then putting 
the resulting functions v(a), w(a) in equations (1). A family 
of extremals 

x = <j>(u, a), y — \p(u, a), z = x(u> a) 

is thus found, which are tangent to (di) when u = u(a). The 
equation of the envelope (di) will then be 

x = 4>[u(a), a], y = ^[u(a)9 a], z = xN<*), <*]• 

We have then the following theorem: 
THEOREM 1 : Given a family of curves 

x = <j)(u, v, w), y = \p(u, v, w), z = X(UJ v> w)> 

if on a particular curve C\ the determinant J vanishes at the 
point Pi and one at least of the determinants of the matrix (2) 
is different from zero at Pi, then the family of curves has an 
enveloping surface Si which touches C\ at Pi and for which Pi is 
not a singular point. On the surface Si there exists a unique 
curve (di) without singular points, which passes through the 
point Pi and envelopes a one-parameter family of curves, con-
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taining the curve C\, which are the transforms by (1) of the lines, 
in the uvw-space, parallel to the u-axis. 

4. The Plane of Directions which Transforms into the 
Direction of d±. 

Urner* has shown that the necessary and sufficient condition 
that two non-tangent curves through P which have their 
directions distinct from the critical direction be rendered 
tangent by the transformation, is that the plane of their 
tangents at the point contain the line having the critical 
direction. Furthermore each plane of directions through the 
critical direction is compressed into a single direction. We 
ask, what is the plane of directions which is compressed into 
the direction of the envelope (di) at Pi? 

This plane must contain the line of critical direction 

CO y ~~ T ~~ T • 
i l i2 i3 

It must contain the line 
(C) v = w = 0. 

Thus the plane is completely determined, unless these direc­
tions coincide; but this cannot, in general, happen. 

Designate by X the plane determined by C and I. Every 
direction in X except I goes into the same direction ii in the 
xyz-sp&ce. In particular the direction T which is the inter­
section of X with the tangent plane to the surface S at P goes 
into the direction I±. To the curve (di) on the surface 8\ 
there corresponds a unique curve (d) on the surface S and from 

* S. E. Urner, "Certain singularities of point transformations in space 
of three dimensions," Transactions, vol. 13 (1912), pp. 232-264. 
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what we have just shown the curve (d) must be tangent to the 
plane X at the point P. 

We determine the differential equation for the curve (d) as 
follows: obtain the equation of the plane X. It is 

I3V — I2w = 0. 

The line T is the intersection of this plane with the tangent 
plane to the surface S at the point P. The projection of its 
direction on the mo-plane is 

hdw — Izdv = 0. 

The integral curve of this equation which passes through the 
point P is the projection of the curve (d) upon the vw-plsme. 
This integral together with the surface S completely deter­
mines the curve (d). 

We have then the following theorem : 
THEOREM 2. The plane of directions in the uvw-space deter­

mined by the critical direction I (Zi : h : 73) and the line 
v = w = 0 and containing the tangent line T to the curve (d) 
transforms into a single direction Ii in the xyz-space. The 
direction I\ is the direction of the tangent to the curve (di), which 
curve is the transform of the curve (d) by means of equations (1). 

5. Illustration. 
The transformation 

x = u2, y = u-\- v, z = v + w 

has for its jacobian J = 2u. Thus the jacobian surface 8 is 
the surface u = 0. Substitution in equation (3) gives us 
Hi = 24= 0. The critical direction is given by 1 : 1 : 1. The 
line (d) on 8 and through P (0, v0, w0) which transforms into 
(di) on Si is the line 

(d) v + w = Vo + wo, u = 0. 

The transform of (d) is the line 

(di) z = v0+ Wo, x == 0. 

The surface Si is given by x = 0. The lines 

V = Ci, W = C2, U = t, 
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which are parallel to the -w-axis, are transformed into 

x = (y — Ci)2, z = ci + c2, 

which are seen to be tangent to the surface Si. It is evident 
from the last equations that those one-parameter families of 
parabolas which lie in the planes parallel to the xy-jA&ne have 
envelopes, and that no others have. These envelopes are the 
curves (di). 

PURDUE UNIVERSITY. 

AN ELEMENTARY BOUNDARY VALUE PROBLEM. 

BY PROFESSOR DUNHAM JACKSON. 

(Read before the American Mathematical Society, April 29, 1916.) 

IT is intuitively obvious that if a simple continuous curve is 
given in the (x, 2/)-plane, and a continuous distribution of 
values along the curve, there will exist functions of x and y 
which are continuous in both variables together, and which 
take on the prescribed values along the curve. It is the pur­
pose of the present note to give an analytic proof of this fact, 
by elementary means, and, in particular, without reference to 
potential theory.* The problem will be treated first for the 
case of a rectifiable curve, then for an arbitrary Jordan curve. 

Let the equations 

* = ƒ(*), V = *>(*), (0 ^ s ^ I), 

define a simple closed rectifiable curve C, the variable s 
standing for the length of arc, and I for the total length of the 
curve. It is assumed that the functions ƒ0) and <p(s) are con­
tinuous throughout their interval of definition, and that 
/(0) = ƒ©> <p(0) = <p(l)> but that with this exception no one 
pair of values (x, y) is given by two distinct values of s. Let 
F(s) be an arbitrary continuous function defined throughout 
the same interval, subject to the condition that F(0) = F (I). 

* I understand that Mr. R. E. Gleason has had occasion to deal with a 
similar problem in connection with a paper recently presented to the 
Society; see BULLETIN, vol. 22 (1916), pp. 278-279. 


