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a quadratic equation having integral coefficients. Carmichael 
has given a different and more exhaustive treatment of these 
numbers in the Annals of Mathematics, 1913. In the present 
paper Mr. Pierce obtains somewhat similar results for numbers 

n 

given by the forms I I (1 db a»TO), where the ai denote algebraic 

integers defined as the roots of an nth degree equation. The 
TO 

forms of the factors of I I (1 — a/11) are determined by use of 

algebraic number theory, and this perhaps constitutes the 
most novel result of the work. 

6. Lucas has developed the theory of the prime divisors of 
the functions Un = (an - bn)/(a - b) and Vn = an + bn, 
where a and b are the roots of a quadratic equation (American 
Journal of Mathematics, volume 1, page 184). Connected 
with these functions are certain binary forms of degree equal 
to one half the totient of n, the divisors of which Professor 
Lehmer has shown to be of the form 2nx ± 1. Combining 
this result with certain results of Mr. Pierce, Professor Lehmer 
has also obtained a series of numbers the prime factors of 
which must belong to two such forms, thus restricting notably 
the character of their divisors. 

7. Professor Haskell shows that the condition that a rational 
fraction whose denominator is the nth power of a quadratic 
should be rationally integrable, is that the numerator shall 
be of degree 2(n — 1) and that it shall be apolar to the 
(n — l)st power of the quadratic factor of the denominator. 

THOMAS BUCK, 
Secretary of the Section. 

TRANSFORMATION THEOREMS IN THE THEORY 
OF THE LINEAR VECTOR FUNCTION. 

BY DR. VINCENT C, POOR. 

(Read before the American Mathematical Society, December 31, 1915.) 

SINCE the memorable work of Grassmann (1844), the study 
of the linear transformation has taken various forms, among 
which are the quaternions of Hamilton, the matrices of Cayley, 
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the dyadics of Gibbs, and the homography as treated by Burali-
Forti and Marcolongo. The notation here followed is that 
of the book on " Transformations Linéaires " by the last 
mentioned authors. Reference to the French (1912) edition 
of this work will be briefly made by the letters B. M. with the 
section and number following. 

The homography is defined by Burali-Forti and Marcolongo* 
as any linear operator which transforms vectors into vectors. 
One of the simplest examples of a homography is « A , the 
axial homography, t which transforms all vectors into vectors 
perpendicular to the vector u. 

Another concept of fundamental importance in advanced 
vector analysis is the Grassmann point derivative. If M 
and P are any two points of space, then M — P is the vector 
represented by the line segment directed from P to M.{ If 
we use u for the difference between any two points of space, 
and if ƒ(P) is a function depending on the point P, the differ­
ential of ƒ, written df, ôf, etc., may be defined briefly by the 
equation 

From this it follows that 
dP= u 

or dP is any arbitrary vector. The definition of the point 
derivative df/dP, following the Leibnitz notation, may now 
be expressed by the equation 

i. e., df/dP is an operator on any arbitrary vector 8P which 
transforms that vector into ôf. I t may be shown that df/dP 
is a linear operator. In no sense is df/dP to be regarded as a 
quotient. When the operator df/dP transforms the operand, 
a vector, into a vector, the point derivative furnishes another 
example of a homography. 

_ _ _ _ _ 

t The cross X and the inverted V (A, read "vec"), standing between 
two vectors, indicate the scalar and vector products, respectively. 

JThe vector appears as a particular case of the Grassmann "first 
formation." 

§ B. M„ p. 60, 5. 
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If u and v are two arbitrary vectors, then the vector of a 
homography a, designated by Va, may be defined as a vector 
such that 

2Va XuAv=vXau-uX av.* 

I t is easy to show that 

d{au) du f da \ 

where ce is a homography and u and x are vectors. Trans­
posing the first term of the right member, we have 

(da \ \ d(au) dul 
\dPx)u = [-dF-adp\x-

For the brackets in the right member, SP(a, u) will be written. 
This binary operator is evidently a homography. 

The rotational of a homography (written " Rot a "), may 
be briefly defined as a homography such that 

(2) (Rot a ) a = 2VS(a, a ) . 

The theorems of the present paper are linear transformation 
theorems which involve the homography, in general, as a 
function of two points of space. The letter P will be used 
throughout as the point of integration. I t will be understood 
that the surface a bounds the region r and that n is a unit 
normal at a point P of the surface cr with its positive sense 
towards the interior of or. 

THEOREM 1. If a is a homography symmetric in P and M, 
such that 

da da 

dM= ~dP' 

and if u is independent of M, then 

>/r^*-J\.A«* + *JV(<,g)*. 
For, taking x as a function of M alone, and applying (1) 

and the hypotheses of the theorem, we find tha t 

d(au) ( da \ ( d{au) du \ 

* B. M„ 8 [2]. 
tB.M.,36[l]. 
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Remembering the definition of S this result may be written 

d(au) 
~dM=- SÀa> u ) 

or by using (2), the definition for the rotational of a homo­
graphy, we have 

2V^M = " 2V8Àa> u ) = " ( R o t ^ ) " -

By substituting this result in the known transformation 
formula 

I (Rotp a)udr = — I nAaudc — 2 J Vl a~Tf> jdr,* 

the theorem will be obtained. This theorem may be put into 
a slightly different form if we introduce the definition for the 
rotationalf of a vector, written " rot," which is expressed by 
the equation 

rdu 
d?' rotpii = 2 7 -

The theorem will then read 

I rotMaudr = I nAauda + 2 I V ( a -75 1 dr. 

In expressing the next theorem we will need the conjugate 
of a homography Ka, the first invariant of a homography 
lia, and the gradient of a homography grad a, of which the 
gradient of a scalar is a special case. The Maxwell divergence 
of a vector, which arises, is to be found in any book on the 
elements of vector analysis. The conjugate of a homography 
may be defined by the equation 

Ka = a - 2VaA, 

which is again a homography. The first invariant of a homo­
graphy a: is a scalar, which, for any three arbitrary vectors 
u, v, w, satisfies the following relation: 

uAv X w - ha = vAw X au + wAu X av + uAv X aw. 

* B. M., 56 [3], second. 
t The rotational of a vector is identical with the Maxwell curl, or the 

Gibbs V X. 
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The gradient of a homography a, function of the point P , is a 
vector such that, for any arbitrary vector u, 

gradp a X u = IiSP(Ka, u).* 

THEOREM 2. If a is a homography function of P and M, 
such that 

da da 
dM^ ~~dP' 

and if u is a function independent of M, then 

I divMaudr = I n X audcr + I Iiijpa Jdr. 

The proof of this theorem follows easily from the following 
known theorems, namely: 

{aim)A dwMau = u X gmdMKa + h [oij^ ) ,f 

which reduces, since u is independent of M, to 

divM au = — u X gradP i^ce, 
and 

I gradp a X urfr = — I u X ancZo" — I I i ( -jp Ka ) drX 

which may be written 

u X gradp Kadr = — l uX Kanda — I Iii-jpa jdr. 

The substitution of — divM u for its equal in the left member 
of the last equation and the application of the commutation 
theorem 

n X au = u X Kan 

lead to the theorem as stated. 
The dyad H(u, v), another binary operator, is defined by 

the equation 
H(u, v)x = u X x • v. 

The dyad is thus seen to be a homography. We may now 
express 

* B. M., 8 and 37 [3]. 
t B. M., 41 [3], second. 
î B. M., 56 [2], first. 
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THEOREM 3. If a is a homography, symmetric in P and M, 
such that 

da da 
d~M= ~~dP' 

and if u is independent of M, then 

j<twdT = J H{n'au)da + ƒ a dJdT-
To demonstrate this theorem we may first observe that 

I (divp v) • udr = — I v X n • uda — I jp vdr.* 

Replacing v by x and u by the vector au, this formula will 
become 

I (diVp JC) • ceuar = — I n X x « auacr — I ~Tp~ d?*-

Under the assumption that x is independent of P this readily 
reduces to 

I /SP(ûj, u)dr = — I i ï (n , au)da — I a jf* dr. 

With the same restriction on the JC we have 

d(au) 
dM X \dMX)U = "~ Sp(a' U^X' 

From these considerations the theorem will be evident. 
When the surface integral is identically zero, we have the 
useful corollary 

Cd(au) r du 

J -dM-dT=JadPdT-
This situation could well happen in the case of an infinite 
region. 

THEOREM 4. If a is a homography function of P and M and 
if u is independent of M, and x independent of P, then 

/
d I a ~7p I r / rJ \ /7 

dM
 xdT=J \dèx)d7dT-

* B. M., 56 [3], first. 
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This theorem is demonstrated as soon as the integrands 
are shown to be equal. Introducing the vector y, a function 
of M alone, then the expression 

iaipy) 
dM * 

may be written in two different forms,* namely 

d 

d 
a 

and 

(du \ 
\dPy) , (da_ \du 

\dMx)dP-
a~lW~x + 

du dy 
d{a%) 

dPdM" ' dM " 

But by the hypotheses of the theorem, the first terms of these 
expressions may be seen to be equal. The last two are then 
equal and the theorem follows. 

THEOREM 5. If a is a homography symmetric in P and M 
and if u is a function independent of M, then 

fAM'(aa)dT = - ƒ { ( g n) u - ( < * g ) n } da 

+ j a(AP'u)dr. 

The new symbols involved in this theorem may be defined as 
follows : 

A P ' u= grad^p, 

) d(au) du\ . ,du 
(APa)u = grad j -jp- - 2a^p j + a grad jp. 

L these definitions it follows at once that 

AP(au) = (APa)u — a(APu) + 2 gradP f a jp J . 

* Apply equation (1). 
t B. M., 50 [3]. The parentheses may be omitted, since A operates on 

homographies only, while A' operates only on vectors. 
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Applying our hypotheses to this equation we have 

A'M{au) = (APa)u. 

This theorem, then, becomes the direct consequence of the 
formula 

+ fa(A'u)dr* 
Another form of this theorem is 

fA'M(au)dr = ƒ (APa)udr, 

which holds even if the subscript P be replaced by M provided, 
of course, that u is restricted by the conditions of the theorem. 

THEOREM 6. If a • dp = d/3 • a, then 

j a gfad f3dr = — J afinda — J 13 grad adr. 

This theorem is easily proved by using the addition theorem 
for grad a/3 and by applying the " gradient theorem "f 

ƒ grad adr = — j anda. 

As a special consequence of this one finds, upon replacing /3 
by the scalar m, that 

J a grad mdr = — ƒ manda — J m grad adr. 

The following associated theorem may be proved in a manner 
similar to that just suggested: 

THEOREM 7. If a - d/3 = d/3 - a then 

ƒ (Rot a)pdr = - ƒ n AotfSAr - ƒ (Rot j8)adr. 

The purpose of the first five theorems is to transfer the 
derivative operator from the formal product au to the homo-
graphy a or to the vector u alone. The need for such trans­
formations arises naturally in certain studies in applied 
mathematics. 

THE UNIVERSITY OF MICHIGAN, 
October 6, 1915. 

* B. M., 56 [3], third, 
t B. M., 55 [3]. 


