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Transposing the term Xn to the left-hand side and extracting 
the nth root of the two members of the resulting inequality, 
we find 

A = 21Jn — 1 * 

The roots of largest absolute value X are restricted by the double 
inequality 

where a denotes the largest of the quantities 

\(h\, Kl l y 2 , ••• , |a»| l y n . 
The inequality X ^ a was noted by R. D. Carmichael and 

T. E. Mason,* who observed also that the lower limit is 
reached if the equation is 

(x + a)n = 0. 

It is also evident that the upper limit found above is reached 
if the equation is 

2xn — (x + a)n = 0. 
HARVARD UNIVERSITY, 

April 23, 1915. 

CERTAIN NON-ENUMERABLE SETS OF INFINITE 
PERMUTATIONS. 

BY PROFESSOR A. B. FRIZELL. 

(Read before the American Mathematical Society April 10 and December 
28, 1914.) 

1. THE simplest element of a permutation is the pairing of 
one of the objects permuted with a number indicating its 
place in the permutation. Such a pairing may be called a 
primitive element and denoted by (i, n), where nis the object 
and i the number of the place assigned to it. In this paper 
the objects will all be numbers, finite or transfinite. 

2. Permutations of finite sets are simply collocations of 
primitive elements. They are conveniently denoted by ex-

* BULLETIN, vol. 21 (1914), pp. 14-22; in particular p. 20. 
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pressions of the form (i\, rti) O (it, n%)0 • • • O (ik, rik) (i\ < H 
< • • • < ik) and may be said to form polynomial elements. 
The number of the place will be called the index of a term (or 
monomial element) and the number placed there its digit. 
Index and digit may be transfinite and the terms may form 
an infinite series instead of a finite polynomial. 

3. If in an infinite well ordered set only a finite number of 
objects are permuted, the pairing of these objects with their 
new places may be called a finite permutation. It is easy to 
see that any set of finite permutations can be well ordered. 
If, e.g., in the series 1, 2, • • • we bring the numbers 2, 3, 
successively to thç first place, leaving the rest unchanged, 
and in each resulting series do likewise for the second place, 
then similarly for the third, and so on, the whole set is well 
ordered by the process of formation. 

4. By an infinite permutation is to be understood here a 
pairing whereby infinitely many objects change their places. 
Thus, for example 

(1 ,2)0(2 ,1)0(3 ,4)0(4 ,3)0 ••• 

is an infinite permutation of the series 1, 2, • • • yielding the 
new series 2, 1, 4, 3, 6, 5, • • •. Another example is obtained 
by interchanging the powers of 2 with the corresponding powers 
of 3, giving the series 1, 3, 2, 9, 5, 6, 7, 27, 4, 10, 11, 

5. The polynomial elements that can be made with an 
co-series of digits and an co-series of indices form an enumerable 
set, since they are in one-to-one correspondence with the set 
of algebraic polynomials in which all coefficients are natural 
numbers. Let us order these polynomials according to the 
rules 
(1) (i, m) < (i, n) if m < n; 

(2) (ii, m) < 0*2, n) if i\ < i2; 

(3) p < q if p has fewer terms than q; 

(4) p < q if they have the same number of terms but the 
first term of p that is not in q is lower than the first 
term of q which is not contained in p. 

It is not difficult to show inductively that in this way the 
set is well ordered. Its type of order is the same as that 
which results from arranging the natural numbers according 
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to their prime factors—first simple primes, then products of 
two primes, of three primes, and so on. This observation 
also proves at once that the set is countable. 

6. The polynomial elements 2(i, n) are now to be used in 
forming infinite permutations. In the series 1, 2, • • • let the 
monomial (i, n) interchange an co-series of products of n 
primes with a similar series of products of i primes, and let 
the polynomial S(i, n) effect simultaneously the exchanges 
indicated by its several terms. Thus the first primitive (1,1) 
is an identical transformation, leaving the series unchanged; 
the second monomial (1, 2) is to interchange the simple 
primes with some co-series of products of two primes; let it be 
the first one, 2pi9 and we get the permutation 1, 4, 6, 2, 10, 3, 
14, 8, 9, 5, 22, 12, 26, 7, 15,# 16, 34, 18, 38, 20, • • -. The 
transformation numbered co is (2, 1); let it exchange the 
simple primes and the series Zpi. The next transformation is 
(2, 2); let it interchange the series 2p* and 3p,-, yielding the 
series 1, 2, 3, 9, 5, 15, 7, 8, 4, 21, 11, 12, 13, 33, 6, 16, 17, 18, 
19, 20, 10, • • •. We have, then, an enumerably infinite set of 
infinite permutations, since to every polynomial has been 
assigned a finite set of transpositions as just described. 
Whether these transpositions are all used does not interest us. 

7. It is now easy to obtain non-denumerable sets by re­
peating the above process. To illustrate, let (1, 2) operate 
on the series of primes in the result of the transformation 
(2, 2); it produces the series 1, 2, 7, 9, 13, 15, 3, 8, 4, 21, 29, 
12, 5, 33, 6, 16, 43, 18, 19, 20, 10, 39, • • •. Let p^ denote 
a polynomial and P/ 0 ) the result of applying it as in § 6, 
where i is the ordinal symbol assigned to p;(0) by the rules of 
§ 5, and let the co-series used in § 6 be numbered likewise* 
Then P(1) ~ (i, n) shall be the permutation obtained by 
applying p,(0) as a transformation to the series whose ordinal 
symbol is n. The new symbols (i, n) are to be combined into 
new polynomials p(1) as in § 2 and ordered by the rules of § 5. 
The new set of permutations P(1) cannot be put into one-to-one 
correspondence with set [P(0)]. For on this assumption there 
still exists a P(1) which differs from Pi(1) in the transformation 
pw performed on its first co-series, differs at the same time 
from P2

(1) in the transformation performed on its second 
co-series, and from Pn

(1) in that performed on its nth co-series 
(where n runs through the values 1, 2, • • • co, • • •, co2, • « •), 
and is therefore not contained in the assumed list, which is a 
contradiction. Hence [P(1)] is not enumerable. 
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8. I t is worth while to study the preceding types of order 
in a different way, following Cantor; they are all compre­
hended under the concept of a " Belegung." In forming the 
primitive elements of the p ( 0 \ two places are covered with an 
co-series of numbers; this covering is denoted by co2. For the 
binomials, four places i\, n\, i2, n2 are covered with an co-series, 
indicated by co4. The polynomials of N terms have 2N places 
to cover, giving the ordinal symbol œ2N, whence the whole set 
[p(0)] is of ordinal type cow. And this is the same as the type 
of the set of co-series of prime factors in the system of natural 
numbers, for the products of two primes exhibit a single 
co-series of co-series, 2pif 3p4, 5pi, • • • ; in the products of three 
primes pn • p*2 • pi the successive co-series are obtained by 
covering two places ii and i2 with an co-series, with four factors 
three places are covered, and so on. The same type again 
is exhibited in each P ( 0 ) (cf. § 5) and therefore in forming the 
P ( 1 ) we have likewise a covering. In the P ( 1 ) each co-series 
may be re-arranged as an cow-series and this process admits an 
co-series of repetitions, but no more; beyond this point it 
yields nothing new. 

There is a bit of formalism in the preceding which perhaps 
calls for closer scrutiny. The set of products of N primes is 
in the strict sense a covering of N factors with an co-series of 
values. Think of a row of N boxes or spaces into each of which 
a compositor throws a prime. The totality of different ways 
in which he might set up this line is precisely what is meant 
by the symbol co .̂ The symbol co", then, would mean, by 
analogy, that to every one of an co-series of spaces is assigned 
arbitrarily a prime number. But if an co-series of places is 
covered in this way with the series of primes we certain y do 
not get the set of natural numbers. And the covering of an 
co-series with an co-series is not a " limit " of the coverings 
co ,̂ because the set [p(0)] lies between them.. The use of cow 

for this set is merely a convenient symbolism not capable of 
supporting any logical deductions. 

9. The process by which the permutations P ( 1 ) were obtained 
from the P ( 0 ) , however, being carried out by finite arithmetical 
steps, is not liable to inconsistency and, moreover, can be 
repeated. Thus we get a new set [P(2)], the digit n running 
through the series of all ordinal values lower than the ordinal 
type of the set of series in P ( 1 ) . Suppose that to every P ( 2 ) 

has been assigned a P ( 1 ) . There exists a P ( 2 ) from which 
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every P„(2) differs in its *>th transformation (iv, nv) for values 
of v forming a series of type > co. Hence the terms in the 
corresponding polynomial p(2) are a set whose type is > co. 
But there are no such polynomials. Therefore the P(2) 

cannot be put into one-to-one correspondence with the P(1). 
The same reasoning holds for the P(1), so we have two proofs 
that this set is non-enumerable. 

10. The process of § 7 applied to the permutations P(2) 

yields a new set [P(3)] and the reasoning of § 9 shows that this 
set is not equivalent to [P(2)]. Therefore by strict induction 
from N to N + 1 we infer the existence of an co-series of sets 
of infinite permutations no one of which can be put into 
one-to-one correspondence with its predecessor. Ordinally 
[p(W)] > [pW] for iV = 0, 1, 2 ? / •.. In Cantor's termi­
nology, the set of infinite permutations of a simple infinity of 
objects presents an ordinal type higher than any finite aleph. 

MCPHERSON, KANSAS. 

GEORGE WILLIAM HILL, 1838-1914.* 

GEORGE WILLIAM HILL was the son of John William Hill 
and Catherine Smith, and was born in New York City on 
March 3, 1838. Both his father and grandfather were artists 
and he himself was of English and Huguenot descent. His 
early education like that of most of the men of his time in 
America gave him few advantages. In 1846, when his father 
moved from New York to the farm at West Nyack, the 
country was too busy with material development to produce 
many teachers who could give any but the most elementary 
instruction, and the country school which he attended must 
have been inferior in this respect to those of the larger cities. 
Even at Rutgers College in New Jersey, to which Hill was 
sent owing to the exhibition of unusual capacity and from which 
he took his degree in 1859, the course probably went but little 
beyond that now found in secondary schools. There, however, 
he came under the influence of a man whose ideas on educa­
tion were unusual. Dr. Strong, according to Hill's evidence, 
believed only in the classic treatises; but little published after 

* Reprinted, by permission, from the Proceedings of the Royal Society 
May 3, 1915. 


