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Give to 32 any value a^ in #2, and <p will be analytic in zi 
alone. This holds for every choice of the fixed values assigned 
to Z2, • • •, zn> In a similar manner we find <p analytic in each 
remaining variable alone. 

Now apply the theorem of Hartogs* which states that if a 
function of n complex variables is analytic in each one sepa­
rately, it is analytic in all n variables taken together. Hence 
<p is analytic throughout (Si, • • •, Sn). 

HARVARD UNIVERSITY, 
May, 1914. 

CONCERNING A CERTAIN TOTALLY DISCON­
TINUOUS FUNCTION. 

BY PROFESSOR K. P. WILLIAMS. 

(Read before the American Mathematical Society, October 31, 1914.) 

ONE of the most important properties of a continuous 
function is that it actually assumes every value between any two 
of its values. It is well known that a function can, however, 
possess this property without being continuous. An actual 
example to illustrate this seems to have been first given by 
Darboux in 1875. A f unction that is sometimes cited in this con­
nection is due to Mansion.f The function that the latter gives 
actually takes all values between any two, but is discontinuous 
at the single point x = 0. Functions of this sort can be 
easily constructed by arbitrarily assigning the values at certain 
points, according to the function concept of Dirichlet. More 
interest would therefore attach to such a function if it is given 
by one and the same expression throughout its region of 
definition. The function given by Mansion does not, however, 
possess this property; for it contains the function E(x), 
defined, as in number theory, as the integer equal to, or next 
smaller than x. 

The purpose of this note is to give a function that takes 
every value between 0 and 1 inclusive, when x varies over the 
closed interval (0, 1), but which is discontinuous at every 
point. This function will, furthermore, be represented by 
one and the same analytical expression throughout its whole 
region of definition. 

* Math. Ann., vol. 62 (1905), p. 1. 
t " Continuité au sens analytique et continuité au sens vulgaire," in 

Mathesis, 1899. 



118 A CERTAIN TOTALLY DISCONTINUOUS FUNCTION. [ D e c , 

Let f(x) be equal to zero at the rational points of the interval 
(0, 1), and equal to 1 at the irrational points. We first 
obtain for this function an expression which is a modification 
of the one given by Hankel in his celebrated memoir on 
oscillating and discontinuous functions.* 

Let 
4 ^ sin (2n + 1)TTX 

* ( a°" ï£ 2n+l ; 

then, as is well known, 

<p(x) = 1, for 0 < x < 1, 

<p(x) = - 1, for - 1 < x < 0, 
while 

*(0) = <p(± 1) = 0. 

This gives us for f(x) the following expression: 
CO 

ƒ(#) = I I {^(sinnTraO}2. 

The expression which Hankel gives for ƒ(#) defines it, in reality, 
only for the irrational points; so that its values at the rational 
points must be assigned.f 

We next define the function Fi(x) by the relation 

FM = x + (1 - 2x)f(x). 

* Math. Annalen, vol. 20, pp. 63-112. 
t Hankel puts 

where ju > 1, and 
M>~(X~)H' 

g(x) = S l/n**[p(sinn7ra;)]2. 

He says that at the rational points gix) becomes infinite; thus making 
f(x) equal to zero at those points. While it is true that at the rational 
points the denominators of some of the terms in g(x) become zero, those 
terms do not behave in any sense as a function does at a pole. The terms 
abruptly take the form 1/0, and as this symbol is undefined, we cannot 
regard the series as defining g(x) at the rational points. Other writers 
have given the function as Hankel gave it. 

As Pringsheim has shown, we also have 

f(x) = 1 — lim [lim (cos mWx)211]. 
m=oo w=oo 
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Consequently we have 

F\(x) = 1 — x, f or x irrational and 0 ^ x ^ 1, 

F\(x) = x, for x rational and 0 ^ x ^ 1. 

The function Fi(x) accordingly takes all values between 0 
and 1 inclusive when # Varies over the closed interval (0, 1). 
It is, in addition, discontinuous at every point, save the point 
x " h We next modify the function so that x = - | is also 
a point of discontinuity. 

Let 
<p(x) = <p(2x); 

then, from the above values of <p(x), and the fact that it is 
periodic, we obtain 

5(0) = 5(e) = 5(D = 0; 
~<p(x) = 1, for 0 < x < | ; !p(x) = — 1, for J < x < 1. 

Consider now the function 

F2(x) = ( 1 " g ^ 4 * [1 - v\x)] cos 2irx, 

where 4X denotes the arithmetic root. 
From the above table of values of <p(x) we have at once 

^2(0) = h F2(x) = 0, 0 < x < h F2(i) = - h 

F2(x) = 0, J < x ^ 1. 

We construct finally the function 

F{x) = Fx(x) + F2(x). 

It is apparent that F(x) is obtained from Fi(x) by merely 
interchanging the values at the two points x = 0 and x = J. 
From the properties of JFI(#) it then follows that JF(#) takes 
all values between 0 and 1 inclusive, and is, furthermore, dis­
continuous at every point. We see, finally, that F(x) can be 
represented by a single analytical expression throughout the 
interval (0, 1); for we have expressions for all the functions 
contained in it. We consequently have in F(x) a function 
which possesses all the properties desired. 
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We shall note a few additional properties of the function 
we have obtained. 

In addition to being single valued, F(x) assumes a given 
value but once. We can thus regard it as giving a one-to-one 
transformation of the interval (0, 1) into itself, which is 
everywhere discontinuous. At every point save x = i the 
function has no limit; that is, every point, except x = §, is a 
point of discontinuity of the second kind. It is also apparent 
that both the greatest and least values approached at a point 
are continuous functions. 

INDIANA UNIVEBSITY, 
May, 1914. 

PROOF OF THE CONVERGENCE OF POISSON'S 
INTEGRAL FOR NON-ABSOLUTELY 

INTEGRABLE FUNCTIONS. 

BY DR. W. W. KÜSTERMANN. 

IN the following pages I propose to give a proof of the 
THEOEEM: If f(x) is a real, periodic function, of period 2w, 

which in the interval (0, 2ir) has a proper or improper integral 
in the sense of Lebesgue, Harnack-Riemann, or Harnack-
Lebesgue-Hobson,* then 

1 r " 1 — r2 

lim -pr I f M z—;—Ö Ö -, r da 
r->i2Trj„n

JK J 1 + r2 — 2rcos (a — x) 
= lim M/(* + 0+ƒ(*-*)] 

at every point x where the limit on the right hand side exists. 
This theorem! includes in particular the case where f(x) 

remains finite—disposed of by Schwarz,f and the case where 
f{x) becomes infinite at an infinite number of points, but has 
an absolutely convergent improper integral—discussed by 
Hobson and others.^ Moreover, it goes farther, in that it 

* For these definitions see Hobson, Theory of Functions of a Real 
Variable, Cambridge, 1907. 

t Schwarz, Math. Abhd., vol. 2, pp. 144 and 175. 
% Most completely by Hobson, Theory of Functions of a Real Variable, 

p. 719; cf. also Bôcher, Ann. of Math.x 2d ser., vol. 7, p. 81; Fatou, 
Acta Math., vol. 30, p. 335; Picard, Traité d'Analyse, 2d éd., vol. 1, p. 
268; Forsyth, Theory of Functions*., 2d éd., p. 450. 


