ON A GENERALIZATION OF A THEOREM OF DINI ON SEQUENCES OF CONTINUOUS FUNCTIONS.

BY DR. T. H. HILDEBRANDT.

(Read before the American Mathematical Society at Chicago, April 10,

WE propose in this note to give a generalization of the following theorem of Dini*: "If a monotonic sequence of functions continuous on a closed interval converges to a continuous function, the convergence is uniform."

The double sequence analogue of this theorem proves to be of importance in our generalization. We embody it in the following

If a double sequence a_{mn} is monotonic non-decreasing LEMMA. in m for every n, and if $L_m L_n a_{mn} = L_n L_m a_{mn}$, all the limits being supposed to exist, then $L_{m}a_{mn}$ and $L_{n}a_{mn}$ converge uniformly and the double limit $L_{mn}a_{mn}$ exists and is equal to the iterated limits.

The proof of the uniformity of convergence of $L_m a_{mn}$ is part of Theorem I of the paper by the author in the Annals of Mathematics, series 2, volume 14, page 81. This uniformity has as a direct consequence the existence of the double limit equal to the iterated limits, which in turn implies the uniformity of $L_n a_{mn}$.

For the purposes of generalization, consider a class $\mathfrak O$ of elements unconditioned excepting for the existence within the class of some definition of limit, i. e., some means of determining whether a sequence of elements has a limit and what this limit is.† Then it is possible to define the concepts limiting element, closed and compact relative to subclasses \Re of $\mathfrak{D}.\ddagger$ Also if μ is a real-valued function on R, we can define the notion of continuity, as well as equal continuity, as applied to a set of functions. In such a situation we are able to state the following

If \Re is a closed and compact subclass of \Im , and μ_{nr} is a monotonic sequence of functions continuous on \Re and

^{*} Cf. Dini-Lüroth-Schepp: Theorie der Funktionen, p. 148.
† Cf. Amer. Journ. of Mathematics, vol. 34, p. 241.
† Cf. Fréchet: "Sur quelques points du calcul fonctionnel," Rendiconti del Circolo Matematico di Palermo, vol. 22 (1906), pp. 6, 7, 11.

converging to the continuous function μ_r , then the convergence is uniform and the functions μ_{nr} are equally continuous.

We prove the uniformity of convergence of μ_{nr} . $L_n\mu_{nr}=\mu_r$ for every r of the class \Re , we have: for every positive e there exists an n_{er} such that if $n \ge n_{er}$ we have $|\mu_{nr} - \mu_r| \leq e$. Suppose that we have selected for each e and r the smallest possible value as n_{er} . Then we wish to show that for each e, n_{er} is bounded on the class \Re . Suppose, if possible, this were not so for some particular e. Then for every n, there would exist an r_n , such that $n_{er_n} > n$, i. e., $|\mu_{nr_n} - \mu_{r_n}| > e$. On account of the convergence of μ_{nr} to μ_r for every r, no element can recur infinitely often in the set r_n . Then since the class R is compact and closed, there will exist a subsequence $r_{n_m} = r'_m$ of r_n , and an r, such that $L_m r'_m = r$. Consider the double sequence $\mu_{nr'_m}$. It is monotonic nondecreasing in n for every m. Moreover on account of the continuity of μ_{nr} and μ_r , we have $L_m L_n \mu_{nr'_m} = L_n L_m \mu_{nr'_m}$. It therefore fulfils the conditions of our lemma, and it follows that $L_n\mu_{nr'_m}$ converges uniformly; i. e., for every positive ethere will exist an n_e , independent of m, such that $|\mu_{nr'_m}|$ $|\mu_{r'_m}| \leq e$. By taking the e as the one presupposed above, and $n > n_m$, we obtain a contradiction.

The equal continuity of the functions μ_{nr} is a direct consequence of their uniformity of convergence and continuity.

To obtain a further generalization we presuppose another general class \mathfrak{P} . In \mathfrak{P} we shall suppose that there is defined an order relation between triplets of elements: $B_{p_1p_2p_8}$, comparable to $p_1 \leq p_2 \leq p_3$. We shall suppose that there exists in the class also the concept of limit, subject to the condition that, if $L_n p_n = p$, then there exists a subsequence having the same limit, such that $B_{p_{n_m}p_{n_{m+1}}p}$ for every m, or $B_{pp_{n_{m+1}}p_{n_m}}$ for every m. If μ is a real valued function on \mathfrak{S} , a subclass of \mathfrak{P} , then μ is said to be monotonic non-decreasing on \mathfrak{S} if for every triplet s_1 , s_2 , s_3 , of \mathfrak{S} such that $B_{s_1 s_2 s_3}$ we have $\mu_{s_1} \leq \mu_{s_2}$ $\leq \mu_{s_{8}}$. Finally in the composite class \mathfrak{PD} , we obtain a double limit, viz., $L_{mn}p_mq_n = pq$ is equivalent to $L_mp_m = p$ and $L_nq_n=q$. This enables us to define a continuity of functions on a composite range, similar to that of continuity of functions of two variables, viz., μ is continuous on $\mathfrak{S}\mathfrak{R}$ if $L_{mn}s_mr_n=sr$ implies $L_{mn}\mu_{s_mr_n} = \mu_{sr}$. Then we have the following

^{*} Cf. Moore: Introduction to General Analysis, p. 90.

THEOREM. If $\mathfrak S$ and $\mathfrak R$ are closed and compact subclasses of $\mathfrak B$ and $\mathfrak D$, respectively, if further $\mu_{\mathfrak sr}$ is continuous on $\mathfrak S$ for every r and on $\mathfrak R$ for every s, and if moreover $\mu_{\mathfrak sr}$ is monotonic non-decreasing on $\mathfrak S$ for every r, then $\mu_{\mathfrak sr}$, considered as a set of functions on $\mathfrak R$, are equally continuous, as well as $\mu_{\mathfrak sr}$ considered as a set of functions on $\mathfrak S$, and $\mu_{\mathfrak sr}$ is continuous on $\mathfrak S\mathfrak R$.

The proof that μ_{sr} , considered as a set of functions on \Re , are equally continuous is an indirect one. The assumption that μ_{sr} is not equally continuous on \Re is shown to be untenable by a use of the property of limit in terms of B, the monotoneity and continuity of μ_{sr} , and the preceding theorem. The details are easily supplied. The equal continuity of the set μ_{sr} on \mathfrak{S} , and the continuity on $\mathfrak{S}\mathfrak{R}$ follow at once from the equal continuity on \mathfrak{R} .

By specializing the classes \mathfrak{P} and \mathfrak{D} , we get some interesting theorems in special fields. If we take $\mathfrak{P}=1, 2, 3, \dots, \infty$, with $B_{p_1p_2p_3}$ defined as $p_1 \leq p_2 \leq p_3$, and \mathfrak{D} as the interval $0 \leq x \leq 1$, and note that equal continuity on $1, 2, 3, \dots, \infty$ is uniform convergence, we get the Dini theorem stated at the outset. If \mathfrak{P} is the linear interval $0 \leq x \leq 1$, and $B_{p_1p_2p_3}$ is the same as $p_1 \leq p_2 \leq p_3$, and \mathfrak{D} is the set $1, 2, 3, \dots, \infty$, we have:

If a sequence of monotonic non-decreasing functions continuous on a closed interval converges to a continuous function, the convergence is uniform, and the set of functions are equally continuous.*

If \mathfrak{P} is the linear interval $0 \leq x \leq 1$, with $B_{p_1p_2p_3}$ equivalent to $p_1 \leq p_2 \leq p_3$ and \mathfrak{D} is the linear interval $0 \leq y \leq 1$, we have:

If f(x, y), defined for $0 \le x \le 1$, $0 \le y \le 1$, is continuous in x for every y, and in y for every x, and is also monotonic non-decreasing in x for every y, then f(x, y) is continuous in x and y simultaneously.

^{*} Cf. Buchanan and Hildebrandt: Annals of Mathematics, ser. 2, vol. 9, p. 123. It is interesting to observe that this theorem and the Dini theorem are special cases of the same theorem.