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infinity as well as at one or more finite points. Under restric­
tions similar to those usually imposed, a function f(x, y) may 
be developed in a series of solutions with Fourier coefficients. 

33. Following out methods previously used by Professor 
W. A. Hurwitz in discussing mixed linear integral equations 
in one dimension, Dr. Rosenbaum in this paper establishes 
similar results for the case of two dimensions. The unknown 
function appears under integral signs operating over a plane 
region and over curves, and the values of the unknown func­
tion at special points also appear in the equation. The 
adjoint system of equations now involves as unknowns one 
function of two variables, several functions of one variable, 
and several constants. The notions of resolvent system, 
orthogonalization of principal solutions, and pseudo-resolvent 
system, receive similar generalizations. 

34. The Riemann definition of the definite integral of a 
bounded function involves the values of the function at arbi­
trary points of the sub-intervals of a scheme of subdivision, 
while the Cauchy definition involves the values only at ends 
of sub-intervals. It is obvious that if the Riemann integral 
exists the Cauchy integral will exist; it is not immediately 
evident whether the converse is true or false. Professor 
Gillespie proves in this note that the two definitions are 
equivalent. 

F. N. COLE, 
Secretary. 

INFINITE REGIONS IN GEOMETRY. 

BY PROFESSOR EDWIN BIDWELL WILSON. 

(Read before the American Mathematical Society, February 28, 1914.) 

THE recent contribution by Professor Bôcher on "The 
infinite regions of various geometries"* puts me in mind of 
some ideas which I have long held on this subject and which 
I desire to offer to readers of his article. 

The points which he most desires to make are: 
1°, that when we are dealing with other geometries than 
* This BULLETIN, vol. 20, pp. 185-200, January, 1914. 
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the projective we should replace the infinite line of plane 
projective geometry and the infinite plane of projective 
geometry in three dimensions by such other infinite region as 
may be most appropriate to the geometry we are considering, 
and 

2°, that in particular when we introduce transformations 
which throw points to infinity we have not put our work in 
satisfactory form until we have made clear what infinite 
region we assume. 

With the second of these points I am entirely in accord, and 
with the first, also, if it is properly understood; but I am 
inclined to think that Professor Bôcher has not put the 
matter of infinity in geometry in the best way* and that a 
literal adherence to his position would be unfortunate. 

Just as he protests against the use of infinity in a carefree 
manner in different geometries, I wish on my part to protest 
against its careless use in any particular geometry. According 
to the view which I believe to be in fullest consonance with 
modern scientific attitudes toward geometry, there are no 
infinite (or ideal) points in the projective plane, no line at 
infinity in projective geometry, no infinite point in real in-
versive geometry, nor any pair of lines at infinity in complex 
inversive geometry. 

To substantiate this point of view and to show at the same 
time the relation of my view to Professor Bocher's I must 
give some definitions, in particular some definition of geometry. 
And as my predecessor gave no definition of what he meant by 
a geometry (except by implication), I shall begin by formu­
lating a definition which seems to me to express his point of 
view. 

Definition 1.—A geometry is the ensemble of those proper­
ties of configurations in the euclidean plane (and in its ideal 
extensions) which are invariant under the transformations of 
an r-parametered groupf 

* There ean be no doubt that Professor Bôcher is familiar with the 
views which I shall expound and that he had reasons which seemed best 
to him for sticking close to the exposition he chose. There is still a 
different presentation, more elementary than either of ours, which I have 
heard Professor F. S. Woods offer at a semi-çublie gathering and which I 
hope he may offer to the BULLETIN; for in a subject like infinity in 
geometry^ I believe that the maximum satisfaction comes only with a 
multiplicity of views. 

t It is only for ease that we restrict the definition to the plane and omit 
from the statement such groups as that of the Bewegungen und Umlegungen 
(motions and orthogonal reflections). 
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X' = X'(X, Y; ci, *, • • -, cr), Y' = Y'(X, Y; c,, c2, • • -, * ) . 

Definition 2.—For any particular choice of the parameters 
such points (X, Y) as render X' or Y' or both infinite are said 
to be thrown to infinity, and the infinite region of the geometry 
is of the type of the locus of such points (X, Y) for general 
values of the parameters. 

Except for the unusual precision relative to infinity and a 
phraseology introduced by Lie, this definition is old. Applied 
to the characterization of projective geometry it represents 
the point of view early in the science of projective geometry— 
Poncelet, Steiner, Chasles, Salmon, Fiedler, and Cayley might 
reasonably be associated with it. It is still of vital pedagogic 
importance when we desire to lead the student for the first 
time from his known euclidean geometry to the new pro­
jective. For the recapitulation theory seems here to apply; 
the natural entogeny is an accelerated phylogeny. 

Beginning, however, with von Staudt and continuing 
through a long succession which we may at present terminate 
with Veblen and Young,* there has been a tendency to place 
projective geometry on its own feet, to define it in terms not 
extraneous to itself. Although such a development has not 
yet reached many other geometries we are, I think, sufficiently 
advanced in our point of view to regard the proper definition 
of a geometry as something like this:f 

Definition 8.—Given a system containing a set of undefined 
symbols (one or more classes of elements, one or more rela­
tions) and a set of primitive propositions connecting them; the 
geometry of this system is constituted of the body of propo­
sitions logically deduced from the primitive propositions. 

* "A set of assumptions for projective geometry," Amer. J own. of 
Mathematics, vol. 30, pp. 347-380 (1908). 

t See E. V. Huntington's definition of abstract geometry on page 526 
of his article "A set of postulates for abstract geometry, expressed in 
terms of the simple relation of inclusion," Math. Annalen, vol. 73, pp. 
522-559 (1913). He restricts his definition to cover only the particular 
geometry he is expounding, but states that such a definition is applicable 
in other geometries also. It is entirely possible that the definition which 
we formulate should not be applied in general to a system as yet unformed, 
but should be applied anew in each particular instance after the system 
has been formed and then only if the person who forms the system 
desires to call it a geometry; for in no other way does it seem possible to 
include all systems which have been or may be called geometries without 
also including pretty much every deductive system. For restrictions see 
definitions by B. Russell, Principles of Mathematics, p. 372, and A. N, 
Whitehead, The Axioms of Projective Geometry, p. 5. 
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(If we desire to define a geometry as distinguished from a class 
of geometries, we should insist that the system be categorical.) 

Definition 4*—Any class of elements selected from that 
class, or from one of those classes,* which enters into the defini­
tion of a geometry may be called a region of the geometry. 
The infinite region of the geometry would be, if it existed, a 
certain special region. The specialization would have to be 
effected by means of some property which belonged to the 
geometry and to which the concepts finite and infinite (in 
some of their many senses) were alternatively applicable, f 

Why, upon the basis of Definitions 3 and 4, has the pro­
jective plane or projective geometry no infinite region? 
Simply because if we take any purely projective definition of 
projective geometry, there are no special regions whatsoever 
which are singled out from the rest of the plane; a fortiori 
there can be no infinite region. One of the things which we 
should be most careful to impress upon the student of pro­
jective geometry is that the projective plane is entirely homo­
geneous. 

For a similar reason real euclidean geometry has no infinite 
region; it has no special points or lines in it. We may refer 
to Huntington's paper previously cited. The non-euclidean 
geometry developed in detail by Lewis and myself for the 
representation of the principle of relativity is also without 
an infinite region. J 

As to inversive geometry it may well be that as yet there is 
no exact formulation in postulates, but the possibility of such 
formulation is so evident that it is safe to say that inversive 
geometry has no infinite element or infinite region; the in­
versive plane is homogeneous. We might as well maintain 
that the surface of a sphere or spherical geometry, when de­
fined by a system of postulates appropriate to the geometry,§ 

* We could define mixed regions by collecting elements from different 
classes. 

t We formulate no precise definition of infinite elements or infinite 
region because in most of the geometries which have been handled in the 
modern logical manner there is no infinite region. 

t Wilson and Lewis, "The space-time manifold of relativity," Pro­
ceedings of the American Academy[, vol. 48, pp. 389-507. There are singular 
loci in the geometry, but no special points. If we consider as fundamental 
the right line and angle, we could regard the singular lines as infinite 
elements; but the advantage of such procedure is problematical. 

§ For a definition which is not proved to be either complete or categorical 
see E. B. Wilson, "Seven lectures on spherical geometry," Amer. Math. 
Monthlyy serially in 1904. In those lectures I made use of the idea of a 



1914.] INFINITE REGIONS IN GEOMETRY. 77 

possessed a special element (such as a north pole) as that 
the inversive plane had a special element such as the infinite 
point.* 

As now, speaking from the geometric and logical view­
points, we have abolished the infinite regions in some, and 
could abolish them in all, of the geometries of which Professor 
Bôcher speaks, it is necessary to answer the question: What 
and where are the infinite regions of which he speaks? They 
are ideal, they are perhaps nowhere. They arise algebraically 
through the becoming infinite of some function; this is acci­
dental to our choice of coordinates.! They originate geo­
metrically from the breaking down of a correspondence 
between the planes of two different geometries ;% this latter is 
the really essential geometric fact. 

group of transformations in formulating the axioms, just as Lewis and I 
later adopted that point of view in our geometry of relativity, loc. cit. 
In view of the importance of the group concept in modern geometry it 
might be desirable that some of our eminent specialists in postulates should 
construct systems in which that concept was emphasized. It is unfor­
tunate in some respects that groups have been tied so closely to analytical 
representations as far as their geometric uses go. 

* Professor Bôcher in a footnote calls attention to the fact that in Study's 
long treatment of Das Apollonische Problem, Math. Annalen, vol. 49, 
pp. 497-542, there is not a word said concerning the nature of the infinite 
region. According to our reading of Study's work the reason that no 
mention of the infinite region occurs may well be that for him, as for us, 
there is no such region in the geometry of inversion. We may be reading 
our own ideas into Study's text (which would be a heinous offence on our 
part toward so illustrious a geometer), but we believe that he makes his 
point of view quite clear. He does not set up a categorical system of 
postulates for inversive geometry, but he does point out very precisely 
that one of the chief differences between his geometry and Mascheroni's 
is that the latter uses the center of a circle whereas he makes no use of it. 
As one of Study's fundamental constructions is to find the inverse of any 
point with respect to any circle, the center could be found if the point at 
infinity were in the system, and then there would be but little gain in 
banishing the use of the center. Furthermore Study makes very strong 
the point of view which actuates him in this article, as in other of his work, 
namely, the desire to remain completely within his geometry. 

f It is interesting to observe that we cannot represent the points on a 
simple closed curve by a continuously varying parameter so that the cor­
respondence shall be one-to-one. What we do is to use a parameter t 
subject to £0 = £ = k, which assigns to the same point the values t0 and k 
(to drop U or k from the interval would be to render the correspondence 
discontinuous). Or we write — <*> < t < oo and identify oo and — oo, 
and thus introduce the singularity oo. This is no singularity of the curve. 
It is merely an unhappy lack of correspondence between arithmetic and 
geometric types of order. H. B. Phillips and C. L. E. Moore in their 
"Algebra of plane projective geometry," Proceedings of the American 
Academy, vol. 47, pp. 737-790, probably would have been glad to avoid 
infinity; but with a non-homogeneous algebra that was out of the question. 

J One of these being euclidean in the cases Professor Bôcher discusses. 
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If we start with non-homogeneous (rectangular cartesian) 
coordinates and write down the equations of a general linear 
transformation, we get introduced to infinity through the 
vanishing of the denominator which is common to the two 
fractions. However, this means merely that from the point 
of view of projective geometry and the projective plane, we 
have made a very injudicious start—howsoever judicious the 
start may have been for a modulation of a pedagogical nature 
from metric to projective geometry for the student first 
approaching the latter. Had we selected a triangle with a 
unit point, introduced trilinear coordinates based on a pro­
jective number system, and used the homogeneous form of the 
transformation, such as is almost invariably used in invariant 
theory, we should never have met any infinity. 

We believe in the pedagogic modulation, but we believe also 
that particular stress should be laid on the fact that the ideal 
elements which are introduced are ideal elements of the 
extended euclidean plane and of extended euclidean geometry 
rather than of projective geometry, and that they are intro­
duced in or, better, adjoined to the euclidean plane for the 
purpose of bringing about a correspondence (one out of 
infinitely many) between the euclidean and projective planes, 
not only for pedagogic purposes, but rather especially for the 
sake of carrying across theorems from either geometry into 
the other. The process of throwing some line, a perfectly 
normal line of the projective plane (we cannot say a finite line 
because there is no distinction of finite and infinite), into the 
ideal region of the euclidean plane is of great use in saving a 
new demonstration of certain theorems. 

When we turn to circle geometry a similar state of affairs 
is found. We are able to set up a correspondence between the 
euclidean and circular planes which is one-to-one, points 
corresponding to points and circles to circles (with proper 
qualifications), except that there is an extra point in the 
circular plane for real geometry and two extra imaginary lines 
intersecting in a real point in the case of the complex circular 
geometry. We promptly adjoin these as ideal elements in 
the euclidean plane for the sake of perfecting the corre­
spondence—the reasons being as before partly pedagogic, 
partly lexicographic* 

* It would indeed be an interesting study in euclidean geometry to take 
the general solution of the Apollonian problem as developed in inversive 
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It is somewhat doubtful whether we should regard the ideal 
regions thus adjoined to the euclidean plane as lying in that 
plane; it may be better to regard them as lying nowhere at all. 
Two reasons for this occur to anybody at once. First, the 
postulates upon which euclidean geometry has been built 
up are in many cases no longer true for the extended euclidean 
plane. The introduction of the ideal elements into the 
euclidean plane has simplified certain statements, namely, 
such as are essentially projective or inversive (as the case 
may be), but it has greatly complicated others, which are 
essentially euclidean. Second, the two cases we have con­
sidered show that different ideal regions have to be adjoined 
in different cases, and that these different ideal regions are 
mutually incompatible so that they cannot coexist. 

The problem of correspondence between the projective and 
the euclidean planes or between the inversive and euclidean 
planes is simple by virtue of the fact that the planes do not 
really clash, in each case we have merely to remedy a defect 
in the euclidean plane. A vital reason, too, for the natural­
ness of the correspondence lies in the fact that the euclidean 
group 

p> q> yp - xq 

is a subgroup of the projective group 

v> q> yp - zq> yp + xq> XP + yq> XP - m> 
x2p + xyq, xyp + y% 

and of the inversive group 

p, q> yp - xq, xp + yq, 

2xyp + (y2 — x2)q, (x2 — y2)p + 2xyq. 

When we try to establish a correspondence between two 
geometries which are not related in such a manner that one 
is a subgroup of the other, the matter is not so simple. How 
could we set about mapping the projective plane on the in­
versive plane or vice versa? It is futile to content ourselves 
with trying to map the points of one upon the points of the 
other; we must be able to carry over certain configurations or 

geometry and see how many special cases we might get by selecting different 
points of the figure for relegation to infinity, and the Apollonian problem 
for euclidean geometry is not solved until all possibilities have been 
enumerated. 
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relations. But projective geometry deals with lines, conies, 
and so on, whereas inversive geometry deals with circles, 
cyclides, and so forth. As a problem in abstract geometry, in 
logic, it appears somewhat difficult to set up a satisfactory 
and useful relationship between the planes.* 

We may overcome the difficulty very readily by coming 
down to the common subgroup, to euclidean geometry,! 
and make the transfer between projective and inversive geo­
metry by the intermediary of euclidean. We notice now, 
however, that the projective and inversive planes clash in 
their requirements for extensions of the euclidean plane and 
we shall be on more comfortable ground if we keep the inter­
mediary instead of attempting to cast it aside and obtain a 
direct correspondence. Projective geometry can be forced 
into the inversive mould, or inversive geometry into the 
projective mould only by cracking the mould or the geometry; 
but if we insist on making the correspondence direct, it would 
be difficult to say why we should locate the crack at infinity 
in either geometry. 

The definitions of geometry and of infinite region which we 
have attributed to Professor Bôcher (Definitions 1 and 2) 
suggest at once the methods of Sophus Lie, and it is an inter­
esting question to ask whether in plane geometry we are bound 
to introduce for different groups other regions at infinity than 
those which arise in the projective and inversive groups. Now 
Lie has tabulated the varieties of groups which occur in plane 
geometry in twenty-six entries. J We may integrate and 
determine the finite equations of the group. I have done this 
in a great many cases and have not found any other types of 
region. § In space || we have a considerable variety—a plane, 

* Abstractly a similar difficulty exists in the case of the projective (or 
inversive) plane and the euclidean plane; for the projective and euclidean 
lines are different, the inversive and euclidean circles are not the same— 
but the differences are not so serious, there are marked similarities as well 
as differences. 

t Indeed to what Klein calls the Hauptgruppe, p, q, yp — xq, xp + yq, 
which contains similitude transformations; but euclidean geometry is more 
familiar. 

t Continuierliche Gruppen, p. 360. 
§ This does not mean that in all similar groups, that is, in all reducible 

to a common type by a proper choice of variables^ the infinite region would 
be the same; it merely means that a choice of variables exists for which the 
infinite region becomes as indicated. 

|| Transformationsgruppen, vol. 3, pp. 122-178. 
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two planes intersecting in a line, three planes with a point in 
common, a quadric cone,* and perhaps other cases. 

We have only one or two more illustrations to give toward 
substantiating our point of view that the introduction of 
infinity as Professor Bôcher does is not entirely satisfactory 
from the geometric point of view, and indeed violates estab­
lished nomenclature. 

Suppose that we consider the group 

yp - xq, x2p + xyq - p, xyp + y2q - q. 

This is a projective subgroup which leaves the circle x2 + y2 

— 1 = 0 invariant, and is closely associated with Lobachev-
skian geometry.f According to ordinary nomenclature the 
fixed circle is the absolute and the absolute is at infinity. 
Not so, however, if we must determine the finite equations of 
the group and see what nature of locus is relegated to the 
bourne beyond the euclidean plane. J 

Suppose that we consider the group 

yp - xq, x2p + xyq + p, xyp + y2q + q. 

This is a projective subgroup§ which leaves x2 + y2 + 1 = 0 
invariant, and is closely associated with Biemannian geo­
metry. According to ordinary nomenclature lines in this 
geometry are closed and have a finite length (at least in the 
real plane) and there does not arise the question of infinity. 
Not so, however, if again we must determine the finite equa­
tions of the group and observe what manner of locus it is that 
yields infinite values for the transformed coordinates. 

The case of real Lobachevskian geometry is illuminating. 
When that geometry is defined by a set of postulates (see 
Coolidge, Non-Euclidean Geometry) there is no infinite 

* If we may call the minimum cone in inversive space geometry a 
quadric cone. Can we appropriately, except in euclidean geometry, call 
it a minimum cone? 

t See Klein-Frieke, Automorphe Funktionen. We can also, as Klein 
has pointed out, use a subgroup of inversive geometry; this is conformai 
but lines become circles orthogonal to a fundamental circle. 

t This line lies in what is called the transfinite or ultra-infinite (as 
contrasted with finite or infinite) region. See Coolidge, Non-Euclidean 
Geometry, p. 85. 

§ With an appropriate change of variable, the group may be made a 
subgroup of the inversive group, as suggested in the second footnote above. 
Indeed the groups which leave x2 + y2 ± 1 = 0 invariant are 

yp ~ xq, {x2 — y2)p + 2xyq + p, 2xyp + (y2 — x2)q db q. 
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region at all, and to modify the postulates so as to introduce 
any points at infinity would be an unpleasant complication 
resulting in no gain to the geometry. When, however, we 
desire to map the projective (or inversive) and Lobachevskian 
planes one upon the other, we find that the Lobachevskian 
plane lies entirely within a conic of the projective plane (and 
entirely upon one side of a circle in the inversive plane—there 
is here no distinction between inside and outside). To 
perfect the correspondence we adjoin to the Lobachevskian 
plane the conic (or circle) as an infinite region and the region 
outside the conic (or upon the other side of the circle) as an 
ultra-infinite region. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 
BOSTON, MASS., 

February, 1914. 

FAMOUS PROBLEMS OF GEOMETRY. 

"Squaring the Circle" A History of the Problem. By E. W. 
HOBSON. Cambridge, at the University Press, 1913. 
iii+57 pp. Price 3s. 
A FASCINATING and voluminous volume could be written 

on ancient problems of geometry, their influence on the 
progress of mathematics and the various developments in 
mathematics which contributed to their generalization or final 
settlement. 

There is the familiar problem,* to draw from a given point 
P a line such that the line segment cut off by two intersecting 
lines Zi, k shall be of given length. This problem is capable 
of solution with ruler and compasses in but one case, namely 
when P is on a bisector of an angle between h and h. 
Suppose this condition to obtain. The problem is not an easy 
one, in general, but Apollonius (about 225 B.C.), known to his 
contemporaries as the "great geometer," found an elegant solu­
tion, f The complete discussion for the case of h and k at right 

* Cf. my paper "Discussion and history of certain geometrical problems 
of Heraclitus and Apollonius," Proc. Edinb. Math. Soc, vol. 28 (1909-1910), 
pp. 152-178. 

t Although twice proposed in the American Math. Monthly (Feb., 1910, 
vol. 17, p. 48, cf, pp. 140-141: Feb., 1911, vol. 18, p. 44, cf. pp. 114-
115) no solution has been forthcoming. 


