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"l imit" may be defined for general systems of objects in an 
analogous manner, without excluding the possibility of special 
examples of the Cesàro type. 

10. The nodes and perihelia of the four inner planets, notably 
Venus and Mars, present certain unexplained motions in the 
Newtonian mechanics. The note of Professor James compares 
the secular changes in the elements of these planets produced 
by the uniform rotation of the empirical about the inertial 
system of reference with the corresponding changes brought 
about by the use of the Minkowskian law of attraction 
instead of the Newtonian. 

11. In this paper Dr. Frizell shows that a one-to-one 
relation exists between the continuum and a set of terms in 
the expansion of an infinite determinant whose elements are 
restricted to the principal diagonal and two adjacent diagonals. 

O. D. KELLOGG, 
Secretary of the Section. 

SERIES OF LAPLACE'S FUNCTIONS. 

BY PKOFESSOR B. H. CAMP. 

(Read before the American Mathematical Society, October 28, 1911.) 

T H E most important theorem on the validity of the expansion 
of an arbitrary function in a series of Laplace's functions has 
been proved by Jordan in his Cours d'Analyse, second edition, 
volume 2, page 252. The conditions there stated are that the 
given function be continuous on the surface of the sphere within 
some small circle about the point at which the expansion is 
made, and that it have limited variation along every great cir­
cle through this point. 

The object of the present paper is to correct an error in 
Jordan's theorem, and to furnish new conditions sufficient for 
the validity of these expansions. To the conditions announced 
by Jordan should be added the requirements that the values 
of the variations be all less than some fixed number, and that 
these variations be "uniform with respect to all great circles 
through the point." His error is discussed in a remark fol­
lowing Corollary 2. 
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In Theorem 1, I have corrected Jordan's theorem and ex­
tended it to the case where any or all of the conditions may 
fail on a null set of great circles through the point. Theorem 
2 is a new theorem, and replaces the conditions of continuity 
of the function and uniformity of the variations, in Theorem 1, 
by the different requirement that there exist a small circle 
about the point considered such that within it the given func­
tion is, along every great circle through the point, an indefinite 
integral of another function which has an absolutely con­
vergent double Lebesgue integral in its domain of definition. 
A null set of great circles may be neglected in this theorem also. 

All the integrals used are Z-integrals, i. e., integrals in 
the sense of Lebesgue. Limited variation may be under­
stood to refer either to the definition of Jordan or to that of 
Pierpont; the theorems are true for both definitions. 

Suppose the function f(p) to be defined and limited and 
to have a double Lebesgue integral on the surface of a unit 
sphere, p being a point of the surface, and suppose it to be 
required to develop this function in a series of Laplace's func­
tions which shall be valid at a fixed point p0. We learn from 
Jordan's work, subject to certain transformations which are 
permissible* in the present case, that the validity of the formal 
development depends on the convergence to $(XQ) of 

(1) Sn = ^ J d» J_ t *(*, n) [X'n+l (x) + X'n (x))dx, 

where $(x, fx) is the form assumed by f(p) when the coordi­
nates (x, JU) of p are chosen as stated below, and X[ is the 
derivative with respect to x of Xn, the function of Legendre. 
Here p0 is taken as the north pole of the sphere, x as the 
cosine of the colatitude of p, and M as the longitude of p with 
respect to some fixed meridian /x = 0. Evidently f(po) = 
<£(#o) = $(1)> and is independent of ju. Now since 

it follows that 

*(*o) = ^ J diij #(*o) (X'n+1 + X'Jdx. 

* Lebesgue, Annales VEcole Norm. Sup., ser. 3, vol. 27 (1910), pp. 447-50. 
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Subtracting this from (1), we have, placing \f/{x, /x) = $(.r, ju) 

and the validity of the expansion to be studied depends on 
the convergence of (2) to zero with 1/n. 

LEMMA 1. If f(x) has limited variation of value V in the 
interval (a, b), and <j>(x) is absolutely L-integrable in this interval, 

I ƒ0 < (V + max | ƒ | ) max I <j> , X in {a, b). 

This is readily deduced from a theorem of Lebesgue's 
{Annales de la Faculté de Toulouse, series 3, volume 1 (1909), 
page 37). 

THEOREM 1. (1°) Let $(x, /x) be defined and limited and have 
a double* L-integral in the rectangle R = (— l < a ; ^ l , 
0 < ju ̂  27r) ; (2°) fei it be, at x = 1, a function of x uniformly 
continuous with respect to ju; (3°) let it have limited variation in 
(—1,1), and let the value of this variation be limited with respect 
to JU. (4°) Let the variation of $ in (1 — x, 1) be, at x = 1, a 
function of x uniformly continuous with respect to IJL. Finally, 
any or all of these conditions may fail for a null of set ps. 

Then the development of f{p) in Laplace9s functions is valid 
at pQ. 

Proof. We will establish the theorem by showing that (2) 
converges to zero with 1/n. Let e be > 0 and arbitrary, and 
select h so that by 2° 

(3) max | xp | < e in (1 - h, 1) 

for all / /s uniformly, except perhaps a null set; and so that 
by 4°, for the function \j/, 

(4) 7 (1 - h, 1 ) < e 

for all u's uniformly, except perhaps a null set. We may 

* It is known that 

fR t{XUi+XÏÏ = fo
2wdtx f^ MXU+Xüdx. 

A slightly more general condition would suffice, but the difference is trivial. 
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write (2) in the form 

d„ J ̂  4,(X'n+1 + X'Jdx 
(5) 

By 3° and Lemma 1, 
I r1 i 

| I I | ss (7(1 - h, 1) + max | * | ) max ( J C + iQefa , 
A I Jk I 

X in (1 —• h, 1), for all ju's, except perhaps a null set. But 

I f \ x ' n + 1 + X'n)dx 
«'A 

= | 2 - Xn+1(X) - Z„(X) | < 4, 
'A 

and therefore 

(6) | I I | < 4(e + e), 

by (3) and (4), for all ps uniformly, except perhaps a null set. 
Similarly 

| 11 =s ( 7 ( - l , 1-h) + max | * | ) max f ( X + 1 + JQd*, 
A t / - l 

X in (— 1, 1 — h), for all /x's except perhaps a null set. The 
integral here equals Xn+i(X) + -X"W(X) — 0, and Jordan has 
shown (page 236) that this expression converges to zero with 
1/n uniformly with respect to X in (— 1, 1— h), provided 
only that 0 < h ^ 2. Since, by 1° and 3°, there exists an M 
such that V + max | \p \ < M, we have now shown that there 
exists an ne, independent of /x, so that 

(7) \I\<Me, n> ne, 

for all /i's uniformly except perhaps a null set. This with (6) 
and (5) shows that 

d» t (z;+1 + xn')dz <2ir(8e+ Me), n> n€; 

which proves the theorem. 
REMARK. In order that 4° may be fulfilled, it is sufficient 
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that 3> be, with respect to fx, uniformly continuous at x = 1, and 
that in (— 1, 1) it have limited variation which is "uniform 
with respect to JJ," (i. e., that limd==0 VD = V uniformly with re­
spect to ix, where V is the value of the variation in (— 1, 1), and 
VD the usual sum function for the arbitrary division D of 
norm d). 

COROLLARY 1. The same conclusion follows if, in place of 
3° and 4°, we have the condition that $ be a monotone increasing 
function of x. 

For 3° is then satisfied because V ^ max | ^ | in the rectangle 
R. Moreover, if d ^ 2, V — VD = 0, for all jit's, except per­
haps a null set. Therefore, by the Remark above, 4° is also 
satisfied. 

COROLLARY 2. If f{p) = f\(p) — fi(p), where fx and f2 both 
satisfy the conditions of Corollary 1, the same conclusion follows. 

I t is this last corollary that Jordan has actually proved, 
except that he may not neglect a null set of meridians, and 
that he should have stated that ƒ must be limited on the 
sphere as well as along each meridian. (Cf. page 230, " D'autre 
part ^(6 — 0) est fini. . . . " At the bottom of page 251 
he desires to have the convergence uniform with respect to 
[x, and therefore ^ "fini" uniformly with respect to fx.) 
Having proved this corollary, however, it is not permissible 
to conclude, as Jordan does, that the theorem will be true 
without the restrictions stated in 4° and in the last part of 3°. 
As he remarks in § 220, his theorems are proved for monotone 
functions, and stated for functions of limited variation. This 
is a proceeding which is often allowable, because of the well 
known fact that any function of limited variation is the dif­
ference of two monotone increasing functions, but it may lead 
to error unless the two monotone functions may be made to 
obey the restrictions imposed on the given function. As a 
matter of fact, in the case before us, it is not difficult to 
construct a limited, integrable function, which satisfies the 
conditions imposed by Jordan, but is not expressible as the 
difference of two monotone increasing functions each of 
which separately obeys the same conditions. In a remark 
appended to a fundamental convergence theorem (§ 222, page 
230) Jordan recognizes this difficulty, but he ignores his 
remark when he afterwards applies his theorem to Laplace's 
functions. He has actually found, then, the conditions which 
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certain components of the given function should satisfy, not 
those which are to be satisfied by the function itself. 

LEMMA 2. If of two functions, of one or of two variables, 
one is absolutely L-integrable in a limited field, and the other is 
limited, their product is absolutely L-integrable in the same 
field* 

LEMMA 3. Let A be any limited, measurable field in the x, y 
plane. In order that the integral 

fAf(p, y) *fo y\ n) 

may converge to zero with 1/n for all absolutely L-integrable 
functions ƒ defined in A, it is necessary and sufficient that there 
exist an M and an nMso that \ <j> | < M, n > nM, except perhaps 
at a null set of points, and that J<j> = 0 with 1/n for each 
rectangle r of sides parallel to the axes x, y. 

This may be proved in a manner analogous to the proof 
given by Lebesgue for the corresponding theorem in one 
dimension {Annales de la Faculté de Toulouse, loc. cit., page 52)f 
by the use of another theorem proved by him in Annales 
de VEcole Normale Supérieure, series 3, volume 27 (1910), page 
374. 

THEOREM 2. Using the notation of Theorem 1, (1°) let $(x, /*) 
be defined, limited, and have a double L-integral in R. (2°) In 
(1 — h,l), for some h > 0 and independent of /x, let $ be the 
indefinite integral, with respect to x, of another function 6(x, /x), 
which has an absolutely convergent, double L-integral in its field 
of definition. (3°) Let <ï> have limited variation in (— 1, 1) the 
value of which is limited with respect to IJL. Finally, any or all 
of these conditions may fail for a null set of fi's. 

Then the development of f{p) in Laplace's functions is valid 
at p0. 

Proof. As in Theorem 1, we may write (2) in the form 
(5), and, by virtue of 1° and 3° of our hypothesis, the first of 
these integrals, 

J
nfLir n>\—h I 

dix \ iKX+i + X'n)dx < 2wMe, n > n€. 
0 J-l I 

* Lebesgue, loc. cit., p. 374. 
t Cf. also Hobson, Proc. London Math. Soc, ser. 2, vol. 6 (1908), p. 355. 
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As for the second, by 2° and a theorem due to Lebesgue,* 

(9) f ^ ( X + l + X'n)dx = [^(Xn+1 + Xn)]\-k 
Jl-h 

- C (Xn+l+Xn)edx=-*a-h, M)-(Zn + 1( l-£)+Zn( l- /*)) 
Jl-h 

— I (Xn+i + Xn)ddx, since ^ (1 , /x) = 0. 
Ji-& 

We may now write the second integral of (5) in the form 

(io) f 'dn f IKX;+I+x;)dz = — f 'dM f *( i -* , M) 
Jo Ji-& Jo J i - / i 

• (Z .H. iCl -AJ+Z.a-A))^- ( " V f (Zn-x+ZOftte, 
Jo Jl-h 

provided two of these integrals exist. To show that they do 
exist let us write Rjb for the rectangle 1 — h < x < 1, 
0 < / X ^ 2 T T . Then, by 2° and Lemma 2, f (Z n + i + Xn)0 

«^ Rfo 

exists, and by a recent theorem of Hobsonf 

(il) f (Zn+x + xn)e= f "du P (Zn+1 + xn)edx. 
Jnh Jo J\ -h 

We knew before that the first integral of (10) exists. 
We now employ again that portion of Jordan's work used 

to derive (7) in Theorem 1, and learn that 

| X n + i ( l - h) + X»(l - h) | < e, if n > ne, 

and by 1° we know that | ^(1 — h, /*) | < M ; and these 
inequalities hold for all //s uniformly, except perhaps a null 
set. By virtue of these and (11), (10) shows us that 

(12)1 Cdp( t(X:+1+X'n)dx <27reM+| f (Xn+l+Xn)d\, 
I Jo Jl~h I I JRK I 

if n > ne. Comparing this with (8) we find that in order 
to establish the theorem it only remains to show that 

* Loc. cit., p. 46. 
t Proc. Lond. Math. Soc, ser. 2, vol. 8 (1910), p. 30. 
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(13) f (Xn+1+Xn)6±0 with lfn. 

To do this we use Lemma 3, 0 being an absolutely Z-integrable 
function by hypothesis, and | Xn+i + Xn | being < 2 for all 
values of n. 

Let r be an arbitrary rectangle in Rh whose sides are parallel 
to the ix, x axes. I t only remains to show that 

(14) ƒ Z w + 1 + X») = 0 with lfn. 

By two well known formulas,* if | k | < 1, 

«A 
and 

Y- //&\ __-nJcXn(k) — nXn-i(fc) 
w ~~ jfc2— 1 

Therefore 

Xn(x)dx 
k + 1 

< " T T i » s n i c e I Xn(k) | < 1. 

This integral does not depend on ^, and k depends only on 
r. (14) follows, and the theorem is proved. 

The necessary and sufficient conditions that a function 
be an indefinite integral are given by Lebesgue in the 
Rendiconti delV Accademia dei Lincei, volume 16 (1907), 1st 
semester. 

The following function satisfies all the conditions of Theorem 
2, but not 2° of Theorem 1 : 

$ = - ^ = ( 3 - 1) in 1 - ~ < s < l , if M * 0 

— — — elsewhere, if /x ^ 0 
o 

= 0, if fi = 0. 

WESLEYAN UNIVERSITY, 
Ocfo&er, 1911. 

* Cf., e. g., Byerly, Fourier's series and spherical harmonics, pp. 172, 
180. 


