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A NOTE ON THE THEORY OF SUMMABLE 
INTEGRALS. 

BY MR. S. CHAPMAN. 

(Read before the American Mathematical Society, December 28, 1910.) 

§ 1. Introduction. 
OF recent years increasing use has been made of infinite 

series which do not converge; but whereas the mathematicians 
before the time of Abel and Cauchy used such series without 
proper examination of the validity of their use, modern mathe­
maticians in general employ them only when the legitimacy of 
the work can be clearly demonstrated. The need so arising 
for theories to justify the application of ordinary methods and 
transformations to non-convergent series just as if they did 
converge has been fully recognized, and to meet it there have 
been published many well-known memoirs by Cesàro, Borel, 
Poincaré, LeRoy, and others. The theory is still being rapidly 
extended, and new important applications are constantly ap­
pearing. Among recent recent workers on the subject may be 
mentioned Bohr, Bromwich, Fejer, Hardy, C. N. Moore, and 
Riesz. 

Parallel with the theory for infinite series there is a theory 
for infinite integrals, but the latter has not yet been developed 
so much as the former. Mr. Hardy* seems to have been the first 
to define a "summable" integral, and his paper was closely 
followed by one due to Dr. C. N. Moore,f in which some 
properties of summable integrals were proved. Subsequently 
Dr. Bromwich $ wrote on the same subject, and more recently 
still the theory has been generalized by Mr. Hardy§ and 

* Quar. Jour, of Mathematics, vol. 35, p. 54. 
t " O n the introduction of convergence factors into summable series 

and summable integrals," Trans. Amer. Math. Society, vol. 8, p. 299. 
% " On the limits of certain infinite series and integrals," Math. Annalen, 

vol. 65, p. 350. 
§G. H. Hardy, "Notes on some points in the integral calculus," 

Messenger of Mathematics, vol. 40. " Theorems connected with MaclaurhVs 
test for the convergence of series," Proc. Lond. Math. Soc. G. H. Hardy 
and S. Chapman, "A general view of the theory of summability of series 
and integrals," Quar. Jour, of Mathematics, 1911. 
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myself.* In particular I have applied methods of " summation" 
to series and integrals which converge, with the object, not, of 
course, of finding their sum, but of gaining an insight into the 
nature of their convergence. 

§ 2. Summable Integrals. 
Mr. Hardy's original definition of the summability of an 

integral was quite analogous to Cesàro's definition of the sum­
mability of a series by a first mean. Thus, if f(x) is a function 
which is integrable in every finite interval lying in the interval 
a = x, then the integral 

I f(x)dx 

is said to be summable (Ci)f if the limit 

lim l f rffldpda 

exists; and the value of the limit is called the "sum" or "value" 
of the integral. 

The extension of this definition is obvious, viz., 

The integral I f(x)dx is summable (Cr) if the limit 

r\ cx cai ra2 rar 

l im— I I I ••• I f(0)dddardar-i'• *dai 
x —•> oo X %ja Ja Ja da 

exists; and as before the value of the limit defines the "sum" 
or "value" of the integral. 

For many purposes, however, in the development of the 
general theory, the above multiple integral is more convenient 
when it is transformed into the expression 

which is easily deduced by the theory of multiple integrals. 
*S. Chapman, "On non-integral orders of summability of series and 

integrals," Proc. Lond. Math. Soc, 1911. 
t The convenient notation of which this is a particular case was intro­

duced by Mr. Hardy in a paper published in the Proc. Lond. Math. Soc, 
series 2, vol. 4, p. 257. 
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In particular the latter form is valuable because it shows the 
analogy of the above method of summation with that intro­
duced (for the case of series) by Dr. M. Riesz.* 

Further, it suggests the idea of non-integral orders of sum-
mability, and is an eminently suitable form for proving 
theorems on summability in full generality and with extreme 
simplicity. 

Dr. C. N. Moore, in the paper already quoted, proved that 
if an integral is convergent, it is summable (C )̂ and its "sum" 
is the same as the ordinary value. This is a particular case of 
the more general theorem which I have established,! to the 
effect that i ( if an integral is summable (Cr), then it is summable 
(Cr)y with the same sum, provided r' > r, where r and r' may 
be any positive or negative numbers (including zero), greater 
than — 1." This may be called the general condition of con­
sistency. 

In this paper, however, I shall restrict myself to integrals 
which are summable (Cr), where r is zero or a positive integer 
only. I propose to discuss the behaviour of f(x) as x -» <x>, in 
such integrals. The main result is an extension (with a certain 
redundant condition removed) of a theorem by Dr. C. N. Moore 
in his paper on convergence factors. J 

§ 3. The Limit of the Integrand of a Summable Integral. 

In the case of an infinite series, it is a necessary but insufficient 
condition for convergence that Km an = 0. More generally, 

for a series £#n to be summable (Cr), it is necessary 
(though insufficient) that lim (ajnr) = 0; this has long been 

known to hold when r is a positive integer, § and I have proved 
that it holds generally for any value of r > — 1. 

We should not expect the same result to hold in the case 

* Comptes Rendus, July, 1909. Dr. Riesz's definition of the sum of a 
non-convergent series is 

n—l , v r 

lim X) Uv f1"-) t 

and evidently n may be integral or not. 
t "On non-integral orders . . . , " Proc. Lond. Math. Soc, 1911. 
% The method also is an extension of the one there used, but the ques­

tion itself was presented to me otherwise, by the corresponding theorem 
for series. 

§ See, for instance, Bromwich, The Theory of Infinite Series, Ch. XI. 
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of integrals,* for even in the case of convergent integrals (when 
r = 0) we know that f(x) need not approach 0, and in fact may 
have no finite upper limit. An example of this will be given 
almost immediately. 

It is well-known, however, that if J0 f{x)dx converges, then 
the condition of uniform continuity of ƒ(#), for x^k, where k 
is any constant, is sufficient to ensure that fix) -» 0 as x —» oo, 

Simple continuity of itself implies uniform continuity over 
any finite closed range of the variable, but this is evidently not 
the case over an infinite range. 

Dr. Moore, who considered only integrals summable (Ci), 
proved that if ƒ (x) is uniformly continuous f or x = k > 0, and 

0 f(x)dx is summable (Ci), then 

lim f(x)fx = 0. 

This is a particular case of the more general theorem which 
I proceed to establish; but first it must be mentioned that the 
restriction upon f(x) of uniform continuity is unnecessarily 
stringent. It is sufficient that f(x)/x should be uniformly con­
tinuous for x = k > 0. As Dr. Moore himself proved in the 
memoir referred to, if f(x) is uniformly continuous f or x = k > 0, 
then so also is f(x)/xr, for any r > 0; but the converse does not 
hold. 

For example, consider the function ƒ(#) defined thus: f(x) = 
Ofor 

n + 1/n2 â x ^ (n + 1) - l/(n + l)2; 

* It may be interesting to point out that the method analogous to that 
which is successful in the case of series here fails completely. In proving 
the theorem for series, we use a formula for an in terms of Sn

r, viz., 

to r or n-j-1 terms according as r is or is not a positive integer. 
The integral analogue of this expression is easily seen to be 

£(z - z)~(r+ X/WG» - ty dtdz, 
which is equal to 

fifw ft(z - tnx - *fCr+2> dz = £M-tdt j V ( i - <>rir+n de. 
The second integral converges for no value of r, and therefore the method 
is useless. 
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and ƒ [n =fc (1 - 0)/n2) = 6 s/n for 0 < 6 < 1. f™f(x)dx is con­
vergent but f(n) = \/n, so that f(x) does not -» 0 as a; —» oo, 
nor has it even a finite upper limit, /(a:) is continuous but 

A » » 

not uniformly so, for a: = A: > 0. But since J0f(x)dx is 
summable (Co), by the general condition of consistency it is 
summable (d) ; also f(x)/x -» 0, which however is not deducible 
from Dr. Moore's theorem, since f(x) is not uniformly contin­
uous. On the other hand, f(x)/x is uniformly continuous, and 
hence f(x) \x -» 0 does follow from the theorem as we shall prove 
it, with the unnecessary restriction removed. 

§4. 
THEOREM. If f(x)/xr is uniformly continuous for x = k > 0, 

and J0 f(x)dx is summable (Cr), then 

Urn f(x)/xr = 0. 

I restrict myself to the case when r is a positive integer. 
There seems little doubt, however, that the theorem holds for 
all values of n > — 1. 

Let Lr(x) = ƒƒ(«) (l - ^Xda. 

By hypothesis, if L is the ' ' sum' ' of the integral, 

Lr{x) -»Las x—> oo. 

Then, r being integral, we have 

i dr+i r i 
(i) W = Ti^lxrL^\> 
which is immediately deducible from either form of Lr(x). 
Since f(x)/xr is uniformly continuous for x = k > 0, we can 
find a positive number 6, when any arbitrarily small positive 
constant e is assigned, so that for x = &, 

™ 1/(« +fe) iML 

provided 0 < \h\ < (r + 1)5. 
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But by the general mean value theorem of the differential 
calculus and equation (1) we have 

So \ m J (3) JL ( - l)m ( 1 Ux + r + 1- m$)rLr(x + r + 1 - mô) 

dr+l 

= S*1 fo^K* + OtyLrfr + OB)] 

= rlô'+yix + 08)x (0 < 6 < r + 1). 

We now expand the expression (3) in the form of an integral 
polynomial in x. We get 

xr S ( - l)w ( T I {Lr(x + r + l-mô) - Lr(x + r - m8)} m=o \m J 
+ x'^S, 

where S contains only a finite number of terms (a number fixed 
when r is fixed) and, since Lr(x) -» L, has a finite upper limit 
K for all values of x and for all values of 8 < 1, say. Further, 
we can find a constant xo, depending on e and 8, such that for 
X ^ X = #0j 

\Lr(x') - Z,(s)| < d*-1. 

Hence for x = #o, we have 

r! 5r+1/0 + 08) < 2r-tfr-€-5r+1 + of^S, 
or 

f(x + OÔ) 2' K 
<r,* + xr r\ >rlèr+1x' 

Hence if x0 > l/8r+1e, 

(a + M)' ^ ' 

where K' is independent of a; and 8. Now 0 is a function of #, 
and hence x + 08 does not necessarily assume all values along 
the real axis. But by equation (2) it follows that for all values 
oîx^x0> l/ôr+1€ 

^ < K»e, 
xr 
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where K" is a positive constant, and consequently f(x)/xr —> 0 
as x -» oo, which was what we desired to prove. 

In conclusion, we may remark that the theorem may be 
stated as one of pure integral calculus, without reference to the 
theory of summability of integrals. Putting f(x) = <t>(x)xr, the 
theorem thus becomes: 

If <t>(x) is uniformly continuous over the infinite interval x = k 
> 0, then the convergence to a limit, as x —> GO, of the integral 

j[W(i-i)# 
requires that <l>(x) shall —> 0 as x -» oo. 

CAMBRIDGE, 
ENGLAND. 

IRREDUCIBLE HOMOGENEOUS LINEAR GROUPS OF 
ORDER p - AND DEGREE p OR f. 

BY PROFESSOR W. B. FITE. 

(Read before the American Mathematical Society, February 25, 1911.) 

No group all of whose non-invariant commutators give 
invariant commutators besides identity can be simply iso­
morphic with irreducible groups of different degrees. This 
category includes all groups of order pm (p a prime) and classes 
one, two, and three. Moreover no group of order pm can be 
simply isomorphic with irreducible groups of just two different 
degrees.* 

A consideration of these facts gives rise to the query as to 
whether any group of order pm can be simply isomorphic with 
irreducible groups of different degrees, and it is the purpose of 
this note to answer this question for certain special cases. 

In the first place, if G is an irreducible group of order pm 

and degree p, it cannot be simply isomorphic with an irreducible 
group of any other degree, since it contains an abelian subgroup 
of index f p, and since a group of order pm with an abelian sub-

* BULLETIN, vol. 14 (1908), pp. 328, 329. 
t Transactions Amer. Math. Society, vol. 7 (1906), p. 68. We shall 

have occasion to make use of the fact, established here, that in an irre­
ducible group of order pm and degree y, the substitutions commutative 
with a substitution that gives an invariant commutator besides identity 
form an abelian subgroup. 


