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ON THE SADDLEPOINT IN THE THEORY OF 
MAXIMA AND MINIMA AND IN THE 

CALCULUS OF VARIATIONS. 
BY PROFESSOR R. G. D. RICHARDSON. 

(Read before the American Mathematical Society, April 30, 1910.) 

Introduction. 

LAGEANGE has shown that the problem of determining a 
function y(x) which satisfies the boundary conditions 

(1) y(0) = y( l ) = 0 

and the integral condition 

(2) I g(x, y, y)dx = 0 
Jo 

and which minimizes the integral 

(3) J f(x9 y, y)dx 

is equivalent, as far as the first variation is concerned, to the 
problem of minimizing the integral 

(4) f\f+\g)dx, 
Jo 

the function being subject to no isoperimetric condition. The 
two constants of integration and the isoperimetric constant X of 
the Lagrange differential equation 

which furnishes the solution are determined from the conditions 
(1) and (2). On the other hand it is possible to consider the 
problem of minimizing the integral (4) subject only to the 
boundary condition (1), in which case the minimum is obviously 
a function of the parameter X. The determination of that 
value of X which maximizes this minimum is a saddlepoint 
problem. The methods of this paper suffice to show that the 
first necessary condition for a solution y(x) of this problem is 
identical with that for a solution of the foregoing isoperimetric 
problem. 
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Of a similar nature is the problem of minimizing the integral 
(3) for those values of y(x) which satisfy the integral condition 

£ {ff(x> y y y') + KKx> y y y))dx = °-

The minimum is a function m(/e) of the parameter tc. The 
maximizing of m(/e), that is, the determination of y(x9 /e) in 
such a way that it furnishes a maximum of a minimum is again 
a saddlepoint problem. I t will be shown (§ 2) that the first 
necessary condition for a solution is identical with that for a 
solution of the problem of finding a minimum of (3) for those 
functions which satisfy the conditions 

i gdx = 0, i hdx = 0. 
c/0 Jo 

In the theory of maxima and minima there are also saddle-
point problems and related isoperimetric problems quite anal­
ogous to the foregoing and their treatment being naturally 
simpler is first considered in the discussion. In § 3 is given an 
application to an example which arises in the study of n self-
adjoint linear differential equations of the second order contain­
ing n parameters. 

The corresponding theory for the case of more general isoperi­
metric conditions is reserved for a later discussion. 

§ 1. An Extremum of an JExtremum in the Theory of 
Maxima and Minima. 

Any solution of the problem of minimizing a function 
f(xv • • •, xn) for those values of the variables which are sub­
ject to the relation g(xv • • -, xn) = 0 must satisfy the equations 

df da 

(5) Â+XÂ"° e*-1* •••>»)> 
(6) g(xv . . . , a j j = 0. 

In case a solution exists, the variables X, xv • • •, xn are deter­
mined from the n + 1 equations (5) and (6). 

Related to the preceding problem is the following : The 
minimum of the function f(xv • • •, ccj + ty(xv • • -, xn) is a 
function m(X) of the parameter X ; it is required to maximize 
this minimum considered as a function of X. In case a minimum 
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exists, the variables xv • • •, xn are determined from the equations 

df da 

To determine the maximum m(X) it is necessary to add to (7) 
the condition 

d , , J^ / df dx. da dx\ 

(8) ^(/+^)-g(^+X^)+^0. 
That the equations (7) and (8) are equivalent to (5) and (6) 
may be readily seen by multiplying the equations (7) by 
dxl/dX, • •-, dxn/dX respectively, and subtracting their sum 
from (8). 

This result may be stated as follows : The minimum of 
f(xv •. -, xn) + Xg(xv • • -, xn), (n> 1), for all values of xv . . -, xn 

is a function of the parameter X which when maximized gives the 
same constant as the minimum of f for those values of the variables 
which satisfy the relation g = 0. 

The minimum of the function f(xv • • •, xn) for those values 
of the variables which satisfy the relations g(xv • • •, xn) = 0, 
h(xv • • •, xn) = 0 is found by means of the equations 

df da dh 

X % % 

(10) g(xv • • -, xn) = 0, h(xv • • . , xn) = 0. 

The minimum of the function f(xv • • -, xn) for those values of 
the variables which satisfy the relation 

9(Xl> ' ' 't Xn) + Kh(XV "^Xn) = 0 

is a function of the parameter ic which when maximized must 
satisfy the equations 

df {da dh\ 

<U> dx+X{£+«dx) = 0> 
(12) g(xv • • ., xn) + teh(xv . . . , a5n) = 0, 

Proceeding now to show that the sets of equations (9), (10) and 
(11), (12), (13) are equivalent, we multiply the equations (11) 
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by dx1/d/c, • ••, dxn/d/c respectively, from the sum subtract 
(13), and obtain 

7^ \ dxi vie cxi die J \die die J 

Disregarding the case where X = 0,* this becomes 
dg dh 

^ ' die die 

On the other hand by differentiating (12) with regard to /c, it 
follows that 

dg dh 

and from (14), (15) and (12) that 

h(xv •. -, xn) = 0, g(xv • • -, xn) = 0. 

On setting \/c = fi the complete equivalence of the two sets of 
equations is established and the first necessary conditions for 
the two problems are seen to be identical. 

Since these methods of proof are perfectly general, the result 
may be enunciated as follows : The minimum of the function 
f(xv * ' *> x

n) for th°se values of the variables which satisfy the 
relation 

m 

9(XV •••>»*) + £ *MXV * * '>Xn) = 0 (m + 1< n) 
is a function of KV • • *, xm. The first necessary condition for a 
maximum of this function is identical with that for a minimum of 

f(xv • • •, xn) for those values of 
19 * * * 9 * 

t which satisfy the re­
lations g = 0, hx = 0, • • •, hm = 0. 

§ 2. An Extremum of an Extremum in the Calculus 
of Variations. 

The problem of determining a function y(x) which satisfies 
the boundary conditions 
(16) y(0) = y ( l ) = 0 
and the integral conditions f 

* I n case A = 0, the solution is determined from the equations df/dxi~0 
(^—1, • •., n). The minimum is then independent of n and the result we 
are seeking to establish is self-evident. 

t On setting g1 = g — c, the case of the more general integral condition 

l gdx = c is reduced to / gxdx=0. 
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(17) I g(x, y, y)dx = 0, I h(x} y, y)dx = 0 

and which minimizes the integral 

(18) J f(x,y,y')dx 
Jo 

leads to the Lagrange equation 

<19) Ix^y' + Xff»'+ ^ - & + Xffy+ M»> = °-

On the other hand the minimum of the integral (18) for those 
functions y(x) which satisfy the boundary conditions (16) and 
the integral condition 

(20) I {^(», y, ^ ) + /eA(», y, » / ) } < & = 0 

Jo 
is furnished by the equation 

^ {ƒ„' + Hff»> + ^ ) } - {f y + % , + *\)} = 0. 

The condition that this minimum be maximized as a function of 
the parameter K is identical with that of finding a maximum of 
the function 

<K€i) = I Ax> y + v?» y + *{n')dx 
Jo 

subject to the isoperimetric condition 

^(ei> e
2) = ! {9(®> y + eiV, y' + W) 

° 
+ (* + €2)%, y + elV, y + ey)}da? == 0, 

where y(x) and 1c are the values of the function and parameter 
which furnish the extremum of the extremum, rj an admissible 
variation arbitrarily chosen, and ev e2 infinitesimals. On differ­
entiating </> + Xyfr with regard to ev e2 respectively and equating 
the results to zero for €l = e2 = 0, one obtains the necessary 
conditions 

(21) f [{// + Hfy + *K>)}v'+ Uv + Hg„ + ^K)}vl^dx = o, 
Jo 

(22) f h(x, y, y)dx = 0. 
Jo 
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Since 77 is an arbitrary function vanishing at the points x = 0, 
x = 1, by applying the product integration usual in such cases, 
it is readily shown that on setting /JL = 7c\, equation (21) is equiv­
alent to (19). Since equations (20) and (22) are equivalent to 
(17), it follows that the first necessary condition which a solu­
tion of this saddlepoint problem must satisfy is identical with 
that in the ordinary isoperimetric problem with two integral 
conditions. 

The method here employed may be applied to the other prob­
lem proposed in the introduction ; it admits also of immediate 
generalization to functions of several variables subject to integral 
conditions involving several parameters. 

§ 3. Application to an Example. 

As an application of the theory of the preceding section let 
us consider the problem * of finding functions uY(x), u2(x) which 
satisfy the boundary conditions 

(23) ux(0) = ^ (1 ) = 0, u2(0) = u2{\) = 0 

and the integral condition 

(24) I ^ K W + h(x)ul(x) ~ 1 

+ fc {r^ulix) + r2{x)u\(x)}~\dx — 0, 

and which minimize the integral 

D{uv u2) = J {pjxy^x) + p2(x)u2\x) 

— q^uKx) - q2(x)u2
2(x)}dx, 

where p{ > 0, qi = 0, lv r., (i = 1, 2), are analytic functions of 
x in the interval (0, 1). In order that a minimum f exist for 

* Other aspects of this problem are considered by the author in a paper 
to be published in the Mathematische Annalen. 

t That a minimum exists for all values of /c and is equal to the smallest 
(say \) of the positive characteristic numbers (Eigenwerte) /t1} /i2> ' * ' > 
^i, ^2, • • • of the Lagrange equations 

(A) (pp'i)' + qiui + *(li + Kri)»i = 0 (* = M ) 
may be proved as follows : Consider the identities 

,4 . ; ,-vï-Mi l+«r1) .;-( î^)'+^(;)" 

yi 
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various values of the parameter K, it is necessary to exclude the 
case that both of the functions lv l2 are positive throughout 
the whole interval and also the case that both the functions 
rv r2 are positive or both negative throughout the interval. 
(For convenience of notation in the following discussion it is 
assumed that rx takes both signs in the interval.) 

If then it is possible to show that the minimum m(/e) of 
D(uv u2) considered as a function of tc possesses a maximum, it 
follows from the preceding theory that the functions u^x), 
u2(x) which furnish this maximum of a minimum, furnish also 
a minimum for the integral JD(uv u2) subject to the boundary 
conditions (23) and the integral conditions 

{lx(x)u\ + l2(x)u\}dx = 1 , I {rY(x)u\ + r2(x)u2
2}dx = 0. 

In order to show that this maximum exists, we note that 
D(uv u2) can be zero only if ux ==0, u2 == 0. Since these 
values will not satisfy (24), a constant c > 0 may be chosen 
such that for values of k within a restricted interval m{k) > c. 
Since m is a continuous analytic function of /c it follows that a 
maximum exists if it can be shown that m(oo) = 0, w(— oo) = 0. 
With this in view let us consider the function pair ul{x) = ul{x), 
u2(x) = 0. The condition (24) may then be written 

where u^x), u2(x) are any two functions which vanish at the end points x = 0, 
x = l. If \ < ^i, we must show that D(ux, u2) > \ for all functions u^x), 
ut(x) which satisfy (24). The functions ^i(»), y2{

x) are chosen to be solu­
tions of the differential equations 

(PiVi)' +V&t+\(h + *ri)Vi = 0 (* = l, 2 ) 

which vanish neither within the interval nor at the end points. (This is 
possible since \ is smaller than either of the characteristic numbers \ t M 
corresponding to those solutions of the differential equations (A) which 
vanish at the end points. See proof by author, Mathematische Annalen, 
vol. 68, No. 2,1910.) On setting Ù=X0 in the identities, integrating and 
adding, we have 

Since px{x) and p2(x) are positive, this may be written D(uu u2) — \ ^ > 0 > 
That D(uv w2) takes the value \ may be seen by setting A = \ in the first 
identity and integrating. For u2\x) = 0 this gives D(%, u2) — X1 = 0 (since 
y-L can be chosen equal to ux). I t may be noted that in case the character­
istic numbers \ and M are not equal, in order to furnish a maximum, one 
of the functions u^x), u2(x) must be identically zero. In case however that 
\ — l[ the maximum can be furnished by the function pairs (1) ux(x) ^ 0, 
u2(x) s= 0, (2) ux{x) = 0, u2(x) s|3 0, or (3) u^x) 4= 0, u2(x) ^ 0-

X 



1 8 4 IDENTITIES CONNECTING INTEGKALS. [ J a n . , 

By taking K large enough it is possible to choose ux(x) (in an 
infinite number of ways) such that equation (25) is satisfied and 
I u\(x) 1 < €> | u[(x) | < €> where e is an arbitrarily small positive 
number. For this value of ux(x) (and u2(cc) == 0), D(uv u2) <GV, 
where Cis a constant such that C>Pi(x) — qx(x). The value 
of tc is then so chosen that m(/e) is less then Oe2. In a similar 
manner it may be shown that m(— oo) = 0. 

BROWN UNIVERSITY, PROVIDENCE, 
September J 1910. 

N O T E ON I D E N T I T I E S CONNECTING CERTAIN 
INTEGRALS. 

BY DR. LOUIS INGOLD. 

(Read before the American Mathematical Society, September 7, 1910.) 

BECAUSE of the general nature of the symbols and symbolic 
products used in the symbolic invariant theory, it is possible to 
apply the formulas of this theory in various special fields. In 
the present note the theory is employed to obtain relations con­
necting integrals of functions constructed out of a linearly inde­
pendent set. 

1. We shall be interested in functions of n parameters uv 
u2> ' ' '9 u

n
 an(^ functions of one or more real variables x, xv 

x2> ' ' '9 y> Vv V29 ' ' '9 e*c,> r e st rid;ed to a definite interval, say, 
0 < x < 1. In order to distinguish readily between those 
quantities which are constant or functions of the parameters 
uv • • -, un only, and those which are functions of one or more 
of the variables 00, 00-t , 00 n, * * * , etc., the latter will always be 
denoted by black faced letters; the others by letters in ordinary 
type ; thus a denotes a function of a variable x defined for 
values of x on the interval 0 • • • 1, while a denotes a function 
of the u. only or a constant. The partial derivatives da,/du., 
da/du., etc., will be denoted by a(i), a{i), etc. 

2. Consider now the total differential of any function f(x ; uv 

uv • • •, un) with respect to the u. 

(1) df = î{l)dux + f(2)du2 + • • • +f{n)dun. 

(25) 


