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and p2flgl is divisible by p\ where £ = 2 + 2 s - - 2 / o > « + l . 
We choose px(x) so that the degree of fx(x) shall be less than the 
degree of f0(x) ; then by (20) the degree of gx(x) will be less 
than the degree of gQ(x). 

Similarly, if in accord with (18) we set 

F ^ - (ƒ„ +pfl)(gQ + m) =P°+\L> - F.+i), 

the congruence 

Fi> + » m {fg + p f i + p2Â)i£fo + m +fg2) ( m o d pS^ 

is satisfied if we take 

f2 = ps-p(bL2-p2f0), g2=ps-p(aL2 + p2g0) ( m o d ^ 1 ) . 

The general step in the proof may now be made as in § 2. 

HENSEL 'S T H E O R Y O F ALGEBRAIC NUMBERS. 

Theorie der Algebraischen Zahlen. Von K U R T H E N S E L . 

Erster Band. Leipzig and Berlin, Teubner, 1908. xi + 
346 pp. 
I N the theory of functions one may investigate an analytic 

function in the neighborhood of a point z = a by means of a 
power series in z — a. In arithmetic one usually employs only 
developments according to the fixed base 10. The author un­
dertakes in the present work to introduce a corresponding mo­
bility into arithmetic and algebra by employing expansions of 
numbers into power series in an arbitrary prime number p . 

A positive integer D can be expressed in one and but one 
way in the form 

D = d0 + dxp + . . . + dkp
k, 

in which each d. is one of the integers 0, 1, •• • , p — 1. This 
equation will be said to define the representation of D as a p-
adic number, for which the following symbol will be employed : 

D = d0, dxd2 ...dh (p). 
For example, 

14 = 2 + 3 + 3 2 = 2 , l l (3), 216 = 2 . 3 3 + 2 . 3 4 = 0,0022 (3). 

The sum of two such p-adic numbers is readily expressed as 
a j>adic number. For example, 

0,0022 + 0,1021 = 0,10111 (3). 
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When A = B, the difference A •— B is expressible as a p-adic 
number. Thus, if A = 216, 5 = 138, p = 3, we have 

0,0022 - 0,1021 = 0,222 (3). 

But if J. < B a similar rule for subtraction (proceeding from 
left to right and borrowing when necessary unity from a later 
digit) would lead to an infinite sequence of digits. For example, 
if we take p = 3 and attempt to subtract, in this manner, 
0,0022 from 0,1021, we obtain 0,10022 . . . , in which the 
digit 2 is to be repeated indefinitely. I t would be useless to 
define this symbol involving an infinitude of digits to be the 
infinite series 

3 + 2-34 + 2-35 + | -2 .3 n + . . . , 

which is divergent and not equal to 138-216. On the con­
trary we shall attach no numerical significance to such a sym­
bol. Our procedure will be analogous to that employed in bas­
ing a theory of positive fractions upon the theory of positive 
integers by introducing symbols (a, 6) involving a pair of inte­
gers. We here introduce symbols called p-adic numbers and 
define equality and the four rational operations. We shall 
prove that our set of p-adic numbers is closed under these 
operations and hence forms a field or domain. A certain sub­
set of these p-adic numbers can be put into one-to-one corre­
spondence with the rational numbers such that the sum, differ­
ence, product, or quotient of two p-adic numbers corresponds to 
the sum, etc., of the corresponding rational numbers. We 
shall then have a representation of each rational number as a 
p-adic number. 

We note that, for p = 3, the quotient of 1 + 2 .3 + 32 by 3 
is 3" 1 + 2 + 3, which is conveniently denoted by the symbol 
12,1 (3). 

Accordingly we introduce the symbols, called p-adic num­
bers, 

D = d_p d_p+1. . .d_! d0, d1 d2... O ) , 

in which there is a finite number of coefficients d. preceding the 
comma and a finite number or an infinitude of coefficients fol­
lowing the comma, while each d. is a rational number in whose 
expression as a fraction in its lowest terms the denominator is 
not divisible by p. Such a fraction a/6 is called integral mod­
ulo p since it plays the same rôle modulo p as the unique inte-
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gral root of the congruence bx = a (mod p). A reduced p-adic 
number is one all of whose coefficients are integers of the set 
0 , 1 , . . . , J > - 1 . 

For k = — ft the rational number 

i)k = d_pp-r + ... + d^p-1 + d0 + dlP + . . . + ay 

is called the convergent Dh of rank k of the />-adic number D. 
For i < — p , w e ' s e t JD A =0. Thus if D = 1 2 , l (3), 
D_1 = 3 - 1 , D 0 = : 3 - 1 + 2. 

Two rational numbers will be called congruent modulo pm if 
their difference equals the product of pm by a number which is 
integral modulo p. Here m may be zero or any positive or 
negative integer. For example, 

4 .5" 2 = f. 5"2 (mod 5"1), 9.5~2 a f. 5~2 (mod 5°), 

since 

é.ö^-f .ö-^f .ö- 1 , 9.5-2-f.5-2 = i, 
while § and J are integral modulo 5. 

Two p-adiG numbers D and D' are said to be equal when for 
every integer k their convergents Dk and Z^ of rank k are 
congruent modulo ph+1. Note that i ^ == Dh (mod ^7<J+1) im­
plies Dt = D'z (mod pl+1) for every ? < k. For example, 

D =p, p — lp — lp — 1 • • •, D ' = 0 

are equal since 

In particular, two reduced p-adic numbers are equal if and 
only if their corresponding coefficients are identical. Every 
p-adio number equals a reduced |)-adic number. The proof 
follows from the fact that any rational number which is inte­
gral modulo p can be expressed in the form i + lp, where i is 
one of the integers 0, 1, • • •, p — 1, and I is integral modulo p. 
For example, 

I f ,0 = 14,1313 • • • (5) 

with the repetend 13, since 

f = 4 + ( - f ) 5 , - ! - l + ( _ $ ) 5 , - £ = 3 + ( - f ) 5 . 

If we prefix one or more zeros before a^>-adic number D, we 
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obtain a ^>-adic number equal to D. Given any two j>-adic 
numbers JD and D', we may prefix enough zeros before one so 
that we obtain two numbers with the same number p of coeffi­
cients to the left of the comma. Then the sum of D and D' 
is defined to be the j>adie number 

D + D' = d-p + d-p • • • d_x + d'_x dQ + d'0) dx + d[ . . . (p). 

For example, 10,12 + 0,211 = 10,012 (3). If D = Dx and 
B' = D'v then D + D' equals Dx + D'v 

The unique ^>-adic number X for which X + D' = D is 
called the difference D — D'. Hence 

D — D' = d_p — <T_p • . . cLj — cT_! d0 — ̂  ^i "*" d[ • • • (f>). 

For example, employing a bar to denote a repetend, we have 

0,12"— 0,210== 0,201002 (3). 

The product P of two p-adic numbers D and D' is defined 
to be the p-adic number whose coefficients are those in the 
series obtained by the formal multiplication of the series 

d_pp-p 4- • • • + d_xp~l + d0 + dxp+ • .., 

di^p-' + • • • + d'^p-1 + d'0 + d[p + . ... 
In particular, if D and D' are integral p-adic numbers, 

D = d0, dxd2 . . . , D' = d!(;, d ^ • • • O ) , 

their product is 

P == d0e^, d0c^ + dxd'0 d0d'2 + d ^ + d2d'0 . . . ( jp). 

In general, P = c_7c_y+1 . . . , where 7 = p + p' and 

c_v = d_pdlp,, c_Y+1 = d.pdlp,+1 + d_p+ldipf, . . . . 

I f the c's and ef s are given numbers integral modulo p and 
dp is not a multiple of p, the preceding equations uniquely 
determine each d' as a number integral modulo />, so that the 
quotient PjD is uniquely determined as a j>adic number 
J)' ss dp_y . . . . In particular, if D is a reduced ^>-adic number 
other than zero, PjD equals a p-adie number. For example, 

3,12 ~ 4,21 = 2,4220 (5). 

I f D = Dx and D == Uv then DD'^D^ and D/D'=VJD[. 
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For addition and multiplication as defined above the com­
mutative, associative and distributive laws are seen to hold. 
The totality of p-adic numbers forms a field or Körper üT(p), 
being closed under the above defined operations addition, sub­
traction, multiplication, and division (the divisor not being equal 
to zero). 

Any rational number 4= 0 may be given the form 

a 

where n is zero or a positive or negative integer, while a and b 
are integers not divisible by p. To r we make correspond the 
monomial ^-adic number all but one of whose coefficients are 
zero, that one being ajb and occupying the n-th place to the 
right of the comma if n is positive, and the (1 — n)-th place to 
the left of the comma if n is zero or negative. To the rational 
number zero we make correspond the^-adic number zero. The 
product or quotient of two rational numbers r and r' obviously 
corresponds to the product or quotient of the corresponding 
monomial p-adic numbers. A like result is seen to hold for 
the sum or difference, if we make use of the fact that the mono­
mial ^>-adic number with the coefficient pkd in the n-th place 
equals a monomial with the coefficient d in the (k+n)-th place. 
These monomial p-adic numbers when expressed as reduced p-
adic numbers are periodic, and conversely any periodic p adic 
number equals a monomial (Hensel, page 38). Hence the set 
of all periodic reduced p-adic numbers is simply isomorphic 
with the domain of all rational numbers. The ^>-adic number, 
whether reduced or not, which corresponds to the rational 
number r will be designated [ r ] . 

Any ^>-adic number E = e0 exe2..., in which e0 is not a 
multiple of p, is called a unit for the domain JT(p). Hence 
any_p-adic number J) can be expressed as a product \_pn~\E. 
The exponent n is zero or a positive or negative integer and is 
called the order of D. The product or quotient of two units 
is a unit. The order of a product is the sum of the orders of 
the factors. A ^-adic number D = [pn~\ E is called integral if 
its order n is positive or zero, and fractional if n is negative. 

Consider an integral function of a variable x 

f{x) = A0x
n + Axx

n~l + • • • + An 
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with p-adic coefficients A.. If A*® is the convergent of rank 
h of Av the function with rational coefficients 

ƒ W(») = Afxn + ...+A<® 

is called the convergent of rank h of ƒ (as). Two integral func­
tions f(x) and g(x) with p-adic coefficients are called equal if, 
for every integer k, their convergents ƒ (&)(cc) and g{h\x) are con­
gruent modulo ph+1

} namely, if the coefficients of like powers of 
x are congruent. 

An integral function is called reducible or irreducible in the 
domain K(p) according as it is or is not equal to the product 
of two integral functions, each of degree = 1, with ^-adic 
coefficients. 

Any integral function f (x) can be expressed as a product of 
a p-adic number and a primary function 

F(x) = [p«]xn + Bxx
n-1 + . . . + Bn 

whose coefficients are integral p-adic numbers not all divisible 
by p, that of the highest power of x corresponding to a power 
of p. The product of two primary functions is primary. I t 
is readily seen that ƒ (a?) is reducible if and only if its primary 
component F(x) is the product of two primary functions. 

In case the discriminant D(F) of F(x) is zero, F(x) and 
its derivative F\x) have a common factor which can be deter­
mined by Euclid's process. We may therefore restrict our 
attention to a primary function F(x) whose discriminant is 
not zero and hence is of the form [^)5]jEr, where 8 S 0. Then 
(Hensel, page 68) F(x) is reducible if and only if its conver­
gent FiS)(x) is reducible modulo p8+1. A similar argument 
(page 71) shows that if 

F(x) =f(x)g(x) (modpr+l) 

and r + 1 > 2p, where p is the order of the p-&dic number de­
fined by the resultant of f(x) and g(x), then F(x) is reducible 
in F(p). An important special case is the following. If 

F(x) mf(x)g(x) (modp), 

where ƒ and g have no common factor modulo p, then F(x) is 
reducible in F~(p). Since 

ap-i — 1 = («5 — l)(x — 2 ) . . .(a? — p — 1) (mod p)} 
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we conclude that xp~l — 1 has p —- 1 linear factors in K(p), so 
that there exist p — 1 p-adic numbers which are (p —- l)-th 
roots of unity. They are all powers of a primitive (p — l)-th 
root of unity, designated by œ. For example, 

© « 2 , 2 2 . . . (3), a> = 3 , 4 6 . . . (7). 

Any p-adic number can be expressed in the form 

B = ppcù^e, 

where e is a principal unit 1, axa2- • • (p). I f /x is not divisible 
by p, B is the /^-th power of a p-adic number if and only if p 
is divisible by \x and /3 is divisible by the greatest common 
divisor d of /u a n d p — 1 (page 87). In particular i(p is odd, 
\/B is a p-adic number only when p and /3 are both even. 
For example, -j/2 is not a 3-adic number, since 2 = coe ; while 
j / 2 is a 7-adic number, since 2 = Û>2€. For p an odd prime, 
B is the p-th power of a p*adic number if and only if p is 
divisible by p and e is of the form 1, 0e2e3» • • (p). 

A number /3 is called algebraic if it is the root of at least one 
equation 

(1) «~ + B^-1 + . . . + Bm = 0 

with rational coefficients. I f Bv. • •, J?m are integers, the root 
/3 is called an integral algebraic number. If Bl} • • •, J9m are 
rational numbers which are integral modulo p, /3 is called an 
algebraic number integral modulo p. I f j3 and 7 are algebraic 
numbers integral modulo p then yS + 7, /3 — 7 and £7 are alge­
braic numbers integral modulo p. The roots of an equation 

Xr + fi^l + . . . + pr = 0, 

whose coefficients are algebraic numbers integral modulo p , 
are algebraic numbers integral modulo p. 

If in (1) each B. = b./pp where b. is integral modulo p, then 
7 = pp/3 is a root of 

Hence every algebraic number /3 can be given the form y/pp 

where 7 is an algebraic number integral modulo p, and p is 
an integer ^ 0. 
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Let a be an algebraic number and let 

(2) F(x) = xk + alx
x~l+ . . . + aK = 0 

be the equation irreducible in the domain of rational numbers 
which has the root a. The totality of the rational functions of 
a with rational coefficients forms a field K{a) of degree X. As 
shown in the theory of algebraic numbers, there exist X integral 
algebraic numbers yv • •-, yK of K(a) such that every algebraic 
number y of K(a) can be expressed in one and but one way in 
the form 
(3) 7 = u{ix + u2y2 + h uKyx, 

where each u. is a rational number, while every integral alge­
braic number is of the form (3), where now each u. is an inte­
ger. The numbers yv • • -, 7A are said to form a fundamental 
system for IT(a). Since fi + 7 and fiy are algebraic numbers 
integral modulo p when /3 and 7 are, it follows that 

(4) vxyx + • • • + vkyk 

is an algebraic number integral modulo p if vv • • •, vk are 
rational numbers integral modulo p. Conversely (Hensel, page 
121), any algebraic number integral modulo p̂ can be given the 
form (4). 

An algebraic number /3 is said to be divisible by pp if 
/3 = pf>y, where 7 is integral modulo p. If /3 = 6171 + • • • y 
the conditions are b. == 0 (mod jp?), for i = 1, • • . , X. 

Two algebraic numbers are called congruent modulo pp if 
/3 — /3' is divisible by pp. The conditions are b. s b\ (mod j)9) 
for i = 1, . . . , X. 

If /3 is integral modulo p, so that each b. is a rational num­
ber integral modulo p, we can determine integers e. of the set 
0, 1, •. -, p —- 1 such that b. = e. +pcv where c. is integral 
modulo p. Hence 13 = e + py, where 

e = «M + • • • + <vyA> 7 = <yyi + • • • + CA7A-

A number of the type e is called a reduced number of K(a). 
Hence any algebraic number integral modulo p is congruent 
modulo p to a reduced number. 

Just as we introduced a field K(p) of all jp-adic numbers 
containing a sub-field simply isomorphic with the field of all 
rational numbers, so we shall now introduce a field containing 
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a sub-field simply isomorphic with K(a). To this end we 
employ the symbols 

called jp-adic algebraic numbers, in which each 8. is an algebraic 
number of K{a) integral modulo p. When each 8. is a reduced 
number e^ 8 is called a reduced p-adic algebraic number. By 
the convergent of rank fi of 8 is meant 

gdo = s_pP-p + . . . + 8_lP~l + 80+8lP + ... +8^, 

which is a number of the domain K(a). Two p-adic algebraic 
numbers 8 and 7 are called equal if, for every integer fi, their 
convergents of rank p are congruent modulo p*+1. In partic­
ular, if 8 and 7 are reduced, they are equal only when corre­
sponding coefficients 8. and y. are identical. In view of the 
preceding paragraph, any />-adic algebraic number /3 equals a 
reduced jt?-adic algebraic number. 

Addition and multiplication of jp-adic algebraic numbers is 
defined as for p-adic numbers. The totality of p-adio algebraic 
numbers based upon K(a) is seen to form a field K(p, a). 

Any number y3 4= 0 of K(a) can be expressed in one and but 
one way in the form /3 = ypn, where 7 is a number of K(a) 
integral modulo p and not divisible by p, while n is zero or a 
positive or negative integer. To /3 we make correspond the 
monomial jp-adic algebraic number all but one of whose coef­
ficients are zero, that one being 7 and occupying the nth place 
to the right of the comma if n is positive, and the (1 — n)-th 
place to the left if n is zero or negative. When this monomial 
is expressed as a reduced jo-adic algebraic number its coefficients 
€n, ew+1, . . . , form a periodic series. This follows from the fact 
that in (3) each u. is rational and hence is represented by a 
periodic p-adic number. Hence K(a) is simply isomorphic to 
the sub-field of K{py a) composed of the periodic reduced jp-adic 
algebraic numbers. The ^9-adic algebraic number, whether 
reduced or not, which corresponds to the number /3 of K(a) 
will be designated [/3]. 

In the ^>-adic algebraic number 8, each coefficient 8. is a linear 
function of yv • • -, 7A. Hence the convergent 8(fl) equals 
^IM)7I + • • • + ^AM)7A>

 m which u^ is the convergent of order p 
of a p-adic number u.. Hence 

(5) 8 = " i [ 7 j + • • • + " A [ 7 A ] . 
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Let the function (2) with the root a be expressed as a 
product 
(6) F {x)^ F^x) F2{x)... Ft{x) (p) 

in which F/x) has ^9-adic coefficients, is irreducible in K(p) 
and is of degree X.. Let ax = [al, a2, . . . , aXl be the roots of 
Ffa) = 0. 

Since the number y. of K{a) equals a rational function of a 
with rational coefficients, it follows from (5) that 

where cf> is a rational function with ^?-adic coefficients. Thus 

are the roots of the equation 

(7) gl(y) = w(y - «,) = y* + èy*-1 + . . . + &A = o {P\ 
with ^-adic coefficients. I f gx(y) has a factor ƒ (y) irreducible 
in K(p) which vanishes for y = S1? then ƒ [</>(#)] = 0 has one 
root ax in common with the equation F^x) = 0 irreducible in 
K(p) and hence has all the roots of the latter, so that f (y) 
vanishes for each S.. Hence the various irreducible factors of 
g^y) have the same roots and are therefore identical. Thus 
gx(y) is either irreducible or a power of an irreducible function. 
Multiplying gx{y) by a suitable power of p, we obtain 

(7') Qfy) = B0y* + BlV^ + • • • + BKl = 0 (p), 

where the B{ are integral jp-adic numbers not all divisible by 
p. I t follows (Hensel, pages 74, 75) that B0 and BM are not 
both divisible by p. Hence either 8 or 1/S satisfies an equa­
tion with integral jp-adic coefficients. A root of such an equa­
tion is said to be algebraically integral. A ^-adic algebraic 
number e is called an algebraic unit if both e and 1/e are alge­
braically integral. 

The product 8X • • • SAl is called the partial norm nx(8) of 
S = 8X with respect to the factor FL(x). Since 

n l (8) = (_l)MBA i / I? 0 

is an integral ^-adic number only when B0 is not divisible by 
p, we conclude that 8 is algebraically integral if and only if 
n^B) is an integral p-adic number. In particular, e is an alge­
braic unit if and only if ^(e) and its reciprocal are integral 
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jp-adic numbers, namely, if n^e) is a p-adio unit E. The 
product or quotient of two algebraic units is therefore a unit. 

I f 8 and ft are ^-adic algebraic numbers, such that B/ft is 
algebraically integral, S is said to be divisible by ft. The con­
dition is that w1(S)/n1(^8) shall be an integral p-&dic number and 
hence that the order of nx(S) shall be equal to or greater than 
the order of n^ft). In case these orders are equal, B/ft is an 
algebraic unit e and 8 and ft are said to be equivalent. 

The norms n^B) of all algebraically integral numbers 8 not 
units, are of the form pdE, where d > 0. Let fx be the least 
integer d, and 7rx a number for which 

(8) nfa) =p*E. 
If TT is another number whose norm has the order fv then 
TT = 77̂ 6 so that TT and irx are equivalent. Every algebraically 
integral number 8 not a unit is divisible by TT1 since d =fv 

In particular, irx has no divisor other than itself and the units 
€. If the product of two algebraically integral numbers is 
divisible by irv one of the factors is divisible by 7rx. For, if 
neither 8 nor 8' is divisible by irv each is a unit and hence BB' 
is a unit and not divisible by TTV Hence irx has the character­
istic properties of a prime number, and all the primes in 
K(p, a) are equivalent. Since nx{p) = ph, irl is a divisor of p. 

If ft is any number of K(p, a), nx(ft) = pbE. Set 

6 - P i / i + / o > 0-fo<fv 
Then ft' = /3/TTÇ1 has the norm pb~p^E' =pfoE\ Hence f0 = 0, 
so that ft' is a unit €. Hence every number /3 of J5T(JÖ, a) is 
of the form ft = 67TJ1. Here px is called the order of ft ; it is 
the quotient of the order of %(/3) by fv In particular, 
p = €7rp, where et = \ / j ^ . 

Two numbers ft and /3' of iT(^ , a) are called congruent 
modulo ir\ if /3 —- /3' is divisible by TT̂ . Hence if ft is integral 
there is a reduced number e(0) such that 

ft = €<°> (mod TT,), ft = é® + Wi&n. 

Similarly, ftW = & + 7rxft
2\ etc. Hence 

ft = €(o) + e d ) ^ + ^ r j + . . . + ^Vf> (mod TT**1). 

Any number 8 of K(p> a) is of the form Tr^e. Taking ft = €, 
we obtain the congruence 

(9) 8 s ê TTfi + rfw+1>7rp+1 + . . . + 4 % f (mod Tif1). 
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We have TTJ1 = pe where e is a unit of K{p, a). Thus 

where ex = e1/61 is an algebraic unit not belonging in general to 
I£{p, a). Extending our definition of equivalence, we write 

(10) irx~pll«. 

I f we replace at by another root a.ofF^x) = 0, irx is replaced 
by a prime equivalent to jp1/ei and hence to 7rr Hence in view 
of (9) we obtain symbolical developments of the conjugate 
numbers 8(OL) in power series in pilei. These are analogous to the 
power series in (z —• a)1/ei for the roots of an algebraic equation 
in the neighborhood of a branch point % = a of order e r 

For another factor F.(x) in (6) we have primes 

where e. is a divisor of the degree \ of F.. In order to avoid 
speaking of different, but equivalent, prime numbers, we asso­
ciate with the factor F.(x) a unique prime divisor p. and say 
that a ^-adic algebraic number S is divisible by p^ and by no 
higher power of ^ i f S = en?1, so that the development, analo­
gous to (9), begins with TT{\ Thus p has the distinct prime 
divisors plf • • •, pt. Every number 7 of I£(a) is therefore 
divisible by definite powers of these prime divisors. Then 77' 
and 7/7 ' are divisible by exactly the powers p. + p\ and p. — p. 
of p.. A number 7 is algebraically integral if and only if it 
contains no one of the prime divisors p. to a negative power. 

I f xv • • •, xKi are the roots of F.(x) = 0, then 

8,-*(»y) ( i = i > ••-,*«) 
are the roots of ^(y) == 0, an equation analogous to (7). Thus 

9{y) = ffiOf) • • • &(y) 

is a function whose constant term en differs at most in sign from 
the complete norm n(8) which equals the product n^S) . . . nt(8) 
of the partial norms of 8. Let now S be an integral number 
of üT(a). Then the coefficients of g(y) are rational integers 
since its roots are <£(/3) where /3 ranges over all the roots of (2). 
The highest power of p dividing n(S) is pd, where d = pltft 

+ • * * + Ptfe But a n integer cn has only a finite number of 
prime factors. Hence an integral algebraic number 7 has only 
a finite number of prime divisors. 
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In terms of these prime divisors, Hensel obtains (pages 214-
237) an expression for the discriminant of K{a), that is, the dis­
criminant of any fundamental system. Further he determines 
(pages 261-280) the conditions under which the discriminants 
of the various numbers of K(a) have a common unessential 
divisor. Hensel here makes an important advance in the 
theory of algebraic numbers. For other important results the 
reader is referred to the text itself. 

In a book of the original character of the present one, some 
minor defects may be expected and excused. On page 16, 
A/B need not be, as stated, one of the integral ^>-adic numbers 
c0, ov •••. At the middle of page 34 occurs an equation, 
although equality of two fractional ^-adic numbers has not yet 
been defined. If A, B, O are integral or fractional ^>-adic 
numbers such that A = BC, and if Aw Bw Ch are their con­
vergents of rank k, it is stated on page 36 that 

*>'CkmAt (mod/* 1 ) -

While this is true for integral ^>-adic numbers, it is in general 
false for fractional ^-adic numbers. For if B is of negative 
order — 6, and C of order — c, and b ~ c, we must employ the 
convergent of rank h + b of G in order to reach all the terms 
of the convergent of rank h of A. The above congruence holds 
for the modulus ph+1~h. On page 69, fourth line below (7), 
greater than pp should be equal to or greater than pp; the proof 
is however valid. On page 96, before (2), read among all 
equations with rational coefficients. On page 121, fifth line 
from bottom, vi — ^0) should have the denominator p. On 
page 123, the context shows the meaning of the term alge­
braically divisible ; in the paragraph following (2), ganze 
should be preceded by modulus py while ü. = p8ü. contains a 
misprint. In the eleventh line on page 124, the final letter/* 
should be 7(A). In the fifth line on page 135, BK should be B0. 
In the theorem on page 161, the term Bereich occurs in two 
senses ; in the first instance it should be K(p, a), in the second, 
K(p). On page 326, negative powers of p may occur in the 
^?-adic development of B. 

In the above exposition of the elements of HensePs theory, 
I have avoided HensePs notation 27=_pct.p* for a jp-adic number, 
and have not identified the rational numbers with their corre­
sponding jp-adic representations. The terms greater than and 
less than as applied to ^>-adic numbers (Hensel, page 19) are not 
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in accord with the usage for real numbers, so that if the 
rational numbers a, b correspond to the £)-adic numbers [ a ] , 
[6] , we may have a > 6, [a] < [6] . In setting up this cor­
respondence, I have introduced the term monomial jp-adic 
number. On page 130, Hensel assumes that the equation for 
a is irreducible in K{p). Although not stated explicitly, this 
assumption underlies §§ 3—7 of the same chapter. In the pres­
ent account I have therefore avoided this assumption and pro­
ceeded at once with the general case ; see (6) above. 

In addition to the intrinsic interest attached to the new 
fields or domains introduced by Hensel, his theory has proved 
to be of such importance in the difficult problems relating to 
discriminants that it must be granted a permanent footing in 
the theory of algebraic numbers. 

L. E. DICKSON. 
U N I V E R S I T Y OF CHICAGO, 

May 9, 1910. 

SHORTER NOTICES. 

Factor Table for the First Ten Millions. By D. N. LEHMER. 
Washington, D. C , Carnegie Institution of Washington, 
1909. xiv + 476 pp. 
T H E publication of Lehmer's factor table marks an event of 

the greatest importance in the science of higher arithmetic. 
The chief factor tables published hitherto are the following : 
For the first, second and third millions, Burckhardt (Paris, 
1817, 1814, 1816); fourth, fifth and sixth millions, Glaisher 
(London, 1879, 1880, 1883); seventh, eighth and ninth 
millions, Dase and Rosenberg (Hamburg, 1862, 1863, 1865). 
Rosenberg's manuscript for the tenth million was presented by 
his widow to the Berlin Academy of Sciences, but has disap­
peared. Crelle's manuscript for the third, fourth, and fifth 
millions was turned over to the Berlin Academy but was found 
to be too inaccurate for publication. Kulik's manuscripts, 
placed in charge of the Vienna Royal Academy in 1867 (see 
Encyklopadie der Mathematischen Wissenschaften, volume I , 
page 951 ; Wiener Berichte, volume 53, page 460) purport to 
give the smallest factor of all numbers up to one hundred 
million which are not divisible by 2, 3, or 5. In Kulik's manu­
script each prime not exceeding 163 is represented by a 


