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ON T H E FACTORIZATION O F INTEGRAL 
FUNCTIONS W I T H p-ADIC 

C O E F F I C I E N T S . 

BY PROFESSOR L. E. DICKSON. 

(Read before the American Mathematical Society, September 6, 1910.) 

1. I F F(X) is an integral function of degree n with integral 
_p-adic coefficients, then for any integer k we have a congruence 

(1) F(x) m F™(x) = F0(x) + pF,{x) + p2F2(x) 

+ . . . +phFh(x) (mod^ + 1 ) , 

in which each F.(x) is an integral function of degree = n with 
coefficients belonging to the set 0, 1, •••,/>•— 1. The func­
tion Fw(x) is called the convergent of rank k of F(x). If 

(2) F(x)-f(x).g(x) (p), 

in which the factors are integral functions with integral p-adic 
coefficients, then for any integer k we obviously have 

(3) F(*\x) = ƒ<*>(») .gW(x) (mod ph+1). 

The following converse theorem plays a fundamental rôle in 
HensePs new theory of algebraic numbers :* If 

(4) F(x)mf9(x).g0(x) (mod^H-1) 

for f s + 1 > 2/), where p is the order of the resultant H of fQ(x) 
and g0(x)j then F(x) is the product (2) of two integral f unctions 
with integral p-adic coefficients whose convergents of rank s — p 
are f0(x) and g0(x): 

HensePs proof is in effect a process to construct the succes­
sive convergents of f(x) and g(x). Each step of the process 
requires the solution of a linear equation in two unknowns with 
p-adic coefficients. The object of this note is to furnish a 
decidedly simpler process, which dispenses with these linear 

* Hensel, Theorie der algebraischen Zahlen, Leipzig, Teubner, 1908, p. 
71. 

t This condition is satisfied if s = d, where ô is the order of the discrimi­
nant of F(x). Hence we obtain as a corollary the theorem of Hensel, page 
68. 
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equations, and requires only the solution of a single linear 
congruence. 

By the remark of Hensel, bottom of page 64, we may as­
sume that the leading coefficients in F(x), f0(x), and g0(x) are 
powers of p, so that F —f0g0 is of degree less than n. 

2. For the sake of simplicity, we first establish the theorem 
for the important case s = p = 0 : If F(x) = F0(x) + pFx(x) 
-f • • • , in which the coefficient of xn in F0 is unity and F.(i>0) 
is of degree less than n, and if 

(5) F0(x) = f0(x) >gQ(x) (mod p), 

in which f0 and g0 are integral functions of degrees /n and v re­
spectively', with integral coefficients, while f0 and g0 have no 
common factor modulo p, then integral functions f(x) of degrees 
O and g{(x) of degrees <y with integral coefficients can be so 
determined that 

ƒ = / o + Pfi +P%+--> 9 = 9o +P9i +P292 + • • -

have as their product F(x). I t is meant by the last statement 
that congruence (3) holds for every integer k. 

Since f0 and g0 have no common factor, integral functions a(x) 
and b{x) with integral coefficients can be determined (for ex­
ample, by Euclid's process) such that 

(6) af0 + bgQ==l (mod p). 

By (5), F0 —f0g0 is the product of p by an integral function 
with integral coefficients which may be designated Lx(x) — Fx{x), 

(?) F.-f^piL.-F,). 
By the remark at the end of § 1, Lx like Fx is of degree less 
than n. The congruence 

F0 + PFX s (ƒ„ + p/Mo + Pffù (™d f) 

is equivalent, in view of (7), to 

(8) A = / o # i + # o / i (modp). 

In view of (6), every set of solutions is given by 

(9) f = bLx -Plf, gx = aLx + Ptfo-

We choose p{(x) so that the degree of ƒ, shall be less than the 
degree fx of/0. Then the final term of (8) is of degree < ju + v, 
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so that the degree of gx i s < v. Hence the required functions 
fx and gx are given by (9). 

To make the general step by induction, suppose that, for 
i = 1 , . . • , k, functions^, of degrees < /JL and g. of degrees <z> 
have been determined so that (3) holds. Hence we may set 

(10) j?w =nw+Pk+XLk+1 - Fh+l), 

where Lk+1 is of degree less than n. Since 

F«+» = Fw + p^Fk+v ƒ<*+» - ƒ * ) + P4+1/ ,+1 , 

} 9{k+1) = ^ + Pk+19n+v 

the condition for the congruence 

2F(*+i) == ƒ (*+iy*+i) (m0(J ^+2\ 

becomes, upon applying (10), 

Lk+1 = / ( % + l + 9{k)f^ 1 3 /O^JH-I + #oA+l ( m 0 d i>)' 

The general set of solutions is 

We determine pJc+i so that the degree of fk+1 shall be less than 
the degree p of f0 ; then the degree of ^ + 1 will be less than the 
degree v of g0. Since the induction is complete, our theorem 
is proved. 

3. We readily deduce recursion formulas for the functions L.. 
We have proved that functions L. and p. can be determined so 
that 

(12) ft-bLt-pJ» gi=aLi + Pig0 ( t l = l ) 

give functions f. of degrees < p and g. of degrees < v for which 
congruence (3) holds for every h From (6), 

(13) af0+bg0 = l+p\(x). 

In (10) we replace F{k), f(k\ g{k) by the values obtained by re­
placing k by k — 1 in (11) and then replace F^-v by the value 
obtained by replacing k by h — 1 in (10). After deleting the 
factor ph

} we get 

Lh = W-» + & ƒ (*-1} + P%9k + i>i*+1 - A x -

In the terms / ^ + gh f0 we replace fh and p^ by their values 
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(12) and apply (13). After deleting the factor p we get 

(14) Llc+1 = Fk+l - XLk - ƒ . ! > ] _ , - & [ ƒ ] * _ , -Pk-lAff» 

in which we have employed the abbreviation 

(15) [>]. = ss, + pz2 +PX + ...+ f - \ , [»]„ = 0. 

If in (10) we set 

F«°>-F, + p\F-\v / w =/ 0 +p[ . / ] 4 , f = ^ + ? M , 

Y = (^Wo#o)M 
and then delete the factory, we get 

fMk+%ink+PhLk+l = 7 + iF^+^M-PW\u\.9\v 

By (12), (15), the sum of the first two terms equals 

Hence we obtain the formula 

(i6) [£]*+1=7+ m™-pW]>-pin>Wv 
I t is also easy to establish this formula by induction. 

4. To prove the more general theorem of § J, we apply the 
method of § 2 with congruence (6) replaced by 

(17) af0 + bgQ=pP (modps+1). 

Since the resultant of f0(x) and g0(x) is divisible by pp, but by 
no higher power of p, solutions a(x) and b(x) of (17) can be 
determined by the method given by Hensel on pages 62, 63. 
In view of (4), 

F^-f0g0^p^Lv 

where Lx is of degree less than n. Then the congruence 

(18) f+1)**(f„+PfM+m) (modp^) 

is satisfied if we take 

fx s p'-^bL, - Plf0), gx s p«-\aLx + Pl g0) (mod p*+l), 

since by (17) 

(20) ftiffl +fl9o= p'L, (mod p'+l), 
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and p2flgl is divisible by p\ where £ = 2 + 2 s - - 2 / o > « + l . 
We choose px(x) so that the degree of fx(x) shall be less than the 
degree of f0(x) ; then by (20) the degree of gx(x) will be less 
than the degree of gQ(x). 

Similarly, if in accord with (18) we set 

F ^ - (ƒ„ +pfl)(gQ + m) =P°+\L> - F.+i), 

the congruence 

Fi> + » m {fg + p f i + p2Â)i£fo + m +fg2) ( m o d pS^ 

is satisfied if we take 

f2 = ps-p(bL2-p2f0), g2=ps-p(aL2 + p2g0) ( m o d ^ 1 ) . 

The general step in the proof may now be made as in § 2. 

HENSEL 'S T H E O R Y O F ALGEBRAIC NUMBERS. 

Theorie der Algebraischen Zahlen. Von K U R T H E N S E L . 

Erster Band. Leipzig and Berlin, Teubner, 1908. xi + 
346 pp. 
I N the theory of functions one may investigate an analytic 

function in the neighborhood of a point z = a by means of a 
power series in z — a. In arithmetic one usually employs only 
developments according to the fixed base 10. The author un­
dertakes in the present work to introduce a corresponding mo­
bility into arithmetic and algebra by employing expansions of 
numbers into power series in an arbitrary prime number p . 

A positive integer D can be expressed in one and but one 
way in the form 

D = d0 + dxp + . . . + dkp
k, 

in which each d. is one of the integers 0, 1, •• • , p — 1. This 
equation will be said to define the representation of D as a p-
adic number, for which the following symbol will be employed : 

D = d0, dxd2 ...dh (p). 
For example, 

14 = 2 + 3 + 3 2 = 2 , l l (3), 216 = 2 . 3 3 + 2 . 3 4 = 0,0022 (3). 

The sum of two such p-adic numbers is readily expressed as 
a j>adic number. For example, 

0,0022 + 0,1021 = 0,10111 (3). 


