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GROUPS G E N E R A T E D BY TWO OPERATORS EACH 
O F W H I C H IS TRANSFORMED INTO A 

P O W E R O F I T S E L F BY T H E 
SQUARE O F T H E OTHER. 

BY PROFESSOR G. A. MILLER. 

(Read before the Chicago Section of the American Mathematical Society, 
January 1, 1910. ) 

§ 1. Introduction. 

Two special cases of the category of groups defined by the 
heading of this paper have been considered ; viz., when the 
square of each of the two generators transforms the other 
generator either into itself* or into its inverse.f I t was ob­
served that in the former of these two cases the orders of the 
two generators are not restricted, while in the latter each of 
these orders must divide 8. Each of these special cases led to 
a very elementary category of solvable groups. I t will be 
proved that the more general category defined by the heading 
of this paper is also composed entirely of solvable groups of 
simple structure. 

As an instance of how such generalizations may lead to very 
complex categories of groups we may give the theorem that 
every symmetric group can be generated by two operators whose 
squares are commutative. In fact, the symmetric group of 
degree n is evidently generated by the following two cyclic 
substitutions whose squares are commutative : 

tx = \xxx2xz • • • ®n-i), t2 = (a^œj. 

From the theorem that every symmetric group whose degree ex­
ceeds 8 can be generated by two substitutions of orders 2 and 3 
respectively J it results directly that all such groups are included 
in the category of groups defined by the condition that each of 
them can be generated by two operators which are transformed 
into themselves by the square and cube respectively of the 
other. 

* BULLETIN, vol. 16 (1910), p. 173. 
i Annals of Mathematics, vol. 9 (1907), p. 48. 
t BULLETIN, vol. 7 (1901), p. 426. 
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§ 2. General Considerations. 

The conditions imposed upon the two generators sv s2 of the 
group G, as expressed by the heading of this paper, give rise 
to the following equations : 

«TV?»*;, s-\si = s*. 

If at least one of the two numbers a, 0 is even, the correspond­
ing operator is of odd order and hence it must be generated by 
its square. In this case G is generated by a cyclic group and 
an operator transforming this cyclic group into itself. As 
many properties of these groups are well known, we shall con­
fine our attention, in what follows, to the consideration of cases 
in which both a and /3 are odd. The group H generated by 
s2

v si clearly belongs to the elementary category of groups 
which may be generated by two operators each of which trans* 
forms the other into a power of itself.* Hence the commutator 
subgroup of IT is cyclic and the order of H divides the quotient 
obtained by dividing the product of the orders of «J, si by the 
order of the commutator subgroup. 

It is easy to see that H is invariant under G, since a and # 
are odd and the following equations are satisfied : 

Sl 5 2 5 1 = = 5 2 S 2 8l 52*1 = = S 2 S 1 ~ 9 82~ S\82 === S l S 2 ~ a # 

From the fact that 
2 2«2 „2a~2Q -2 «-2/3 

ö 2 **1 ö 2 — ö 2 91 — sl 

it results that 
5 2 ( 3 - l ) 5 2 ( a - l ) ^ 1 # 

Hence the two operators «f̂ ""1^ sl(a^x) are invariant under G* 
To find multiples of the orders of sv s3 we may transform these 
invariant operators by sjs\ respectively, as follows : 

s-2s2(a-l)82 = s2aia-l) = ^ ( a - l ) ^ Q r 82(a-lj> = J # 

Hence the theorem : If two operators sv s2 satisfy the equations 
ST2s2sl == s2> s2"28i82 = 8 P their orders divide 2(ft — If and 
2(a — l)2 respectively} their squares generate a group which in­
volves a cyclic commutator subgroup and is invariant under the 

* Quar. Jour, of Math., vol. 37 (1906), p. 286. 
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group generated by sx and s2, and they satisfy the equation 
«2(0 - 1 ) _ «2(l-a) 

The quotient group of G with respect to H is dihedral, since 
it can be generated by two operators of order 2. As H is sol­
vable and this quotient group is solvable, G is always solvable. 
That is, if two operators are such that each is transformed into a 
power of itself by the square of the other, they generate a solvable 
group whose fourth derived is identity. As an instance of 
such a group, we may cite the symmetric group of order 24. 
This is generated by any two of its operators of order 4 which 
do not have a common square, and each of these two operators 
is transformed into its inverse by the square of the other. In 
this case the third derived is already identity. To obtain a 
group whose third derived is not identity we may consider the 
group of order 48 generated by two operators of order 8 each of 
which is transformed into its inverse by the square of the other.* 
This group of order 48 illustrates also that the orders of sv s2 

may be actually 2(/3 — l)2 , 2(oc •— l)2 respectively. 
The theorem stated above implies that the numbers a, /3 

always fix an upper limit for the orders of sv s2 except when at 
least one of these numbers is unity. When both of them are 
unity there results the special case noted in the introduction. 
I f only one of them (a) is unity the defining relations assume 
the form 

s-\sl = s2, s2\sl = s? (/3 + 1). 

Hence 2 = 2/3 + kn, n being the order of sl and k 4= 0. That 
is, if we assume a = 1, /3 4= 1, it results that the order of st is 
a divisor of 2(/3 — 1). These conditions do not fix an upper 
limit for the order of s2, as may be seen from the following 
special case. The two operators sv s2 may evidently be the 
generators of the dicyclic group of order 16, s2 generating the 
cyclic group of order 8 and )8 being 3. If s2 is multiplied by 
an operator of arbitrary order which is commutative with each 
of the operators slf s2, the product thus obtained and sx will 
again satisfy the given conditions. This proves that the order 
of s2 may be an arbitrary multiple of 8 when a = 1 and /3 = 3, 
but the order of sx must be 4. 

I t was observed above that the orders of sv s2 divide 2(/3 — l)2 , 
2(a — l)2 respectively and that the 2(/3 — l)th power of the 
former of these operators is equal to the 2(1 — a)th power of the 

* Annals of Mathematics, vol. 9 (1907), p. 51. 
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latter. Hence it results that the order of each of these operators 
is a divisor of 2(a — 1) (>S — 1). That is, if two operators are 
such that each is transformed into a power of itself by the square 
of the other, the order of each of them is a divisor of twice the 
product of the indices of these powers diminished by unity. When 
a and ft are different this evidently furnishes a lower limit for 
the order of one of the operators than the one given before» 
Since s^o-i) a n ( j ^(«-o a r e invariant under G, it results that 

g a - l a&~1 

Sl — SV S2 — S2' 

Hence the order of sx is a divisor of ft*"1 — 1, and that of s2 is 
a divisor a3"1— 1. These conditions will sometimes give lower 
limits for these orders than those given above, as may be seen 
from the special cases in the following section. 

The preceding considerations prove that two operators which 
satisfy the two conditions 

have their orders limited by these conditions when, and only 
when, each of the numbers a, ft is different from unity. When 
a, ft satisfy this condition, s2

v s\ generate an invariant subgroup 
whose order is a divisor of the product of their orders. For 
every pair of odd values for a, ft there is an infinite system of 
groups whose fourth derived must be unity and each of these 
systems must include the dihedral groups. The properties of 
the invariant subgroup generated by s2

v s\ are known, since 
these operators transform each other into powers, and every G 
may be constructed by adjoining to this invariant subgroup 
the operator sxs2 and then adjoining to the invariant subgroup 
thus obtained the operator sv While these fundamental prop­
erties apply to every possible G, a number of interesting special 
properties apply to given values of a and ft, as may be seen 
from the examples of the following section. 

§ 3. Special Cases. 

The following special cases may serve to illustrate some of 
the preceding theorems. Suppose that sv s2 are any two opera^ 
tors which satisfy the two equations 

o—2Q Q2 c 3 «—2Q Q2 ___ «3 
ô l Y l — 2J ö2 ö i ö 2 — " 1 * 

From the general results of the preceding section it follows that 
s\ = s\} s\ = s\ == 1, and that sv s2 have the same order when-



470 A CLASS OF GKOUPS. [June, 

ever neither of these operators is identity. When sv s2 are 
commutative they generate the four-group or a subgroup of 
this group. This trivial case will be excluded in what follows. 
That is, we shall assume that sv s2 are non-commutative. 
When each of these operators is of order 2 they generate a 
dihedral group and every dihedral group may evidently be 
generated by two operators satisfying the given conditions. 
The only two possible cases which remain to be considered are 
when the common order of sv s2 is either 4 or 8. In each of 
these cases the order of sls2 is a multiple of 3 since 

» 1 »2 **2 ô 2 1 — * ö 2 ö i — o 2 ©2 Oj ° 2 ô l — Ö 2 Ö 1 > 

SY sj • S2SY • SgSj = SY s2sl s2sx = SY' * SiS2
sT ' V i = SY s2 = sly 

Si S2 ' S±' Sfîi = = ^ 1 * ^ 1 ^ 2 ^1 ' ^2^1 = = = ^1^2 ^1 = = ^2 ' ^2^1^2 ^ 1 = = ^ 2 # 

When the common order of sv s2 is 4 the invariant subgroup 
H generated by s\} s?2 is the four-group. If the order of ^s 2 is 
3, G must be the symmetric group of order 24. In fact, in this 
case G is generated by two operators which are such that each 
is transformed into its inverse by the square of the other and 
hence its properties are known, as was observed in the introduc­
tion. The only case which remains to be considered is the one 
where the common order of s1} s2 is 8. In this case H is the 
quaternion group and the order of G is a multiple of 48. 
When the order of sif s2 is 3, G is one of the four groups of order 
48 which involve the non-twelve group of order 24. Since 
(s^l)2 = 8^28^2 = sfil • s^s^l = 1, this group can be represented 
as a transitive substitution group on 8 letters. I t is easy to 
verify that the following generators of this transitive substitu­
tion group satisfy the conditions imposed upon sv s2 ; 

8l = aefhbdeg, 82 = agdfbhce. 

These generators are directly obtained from those given by 
Cole.* 

From what precedes it is not difficult to deduce some funda­
mental properties of the infinite system of groups generated by 
two operators of order 8, each of which is transformed into its 
third power by the square of the other. In each of these groups 
(V2)3 generates an invariant subgroup whose operators are 
separately invariant under half the operators of the entire 

* BULLETIN, vol. 2 (1893), p. 188* 
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group, while they are transformed into their inverses by the 
remaining operators. The fourth derived of each of these 
groups is identity while the third derived is of order 2. 
The quotient group of G with respect to the subgroup gener­
ated by {sxs^f, s\, si, is the symmetric group of order 6 and 
this subgroup has the group of order 2 for its commutator 
subgroup. The quotient group of G with respect to the in­
variant group generated by (s^)3 is either the symmetric group 
of order 24 or the group of 48 which may be generated by the 
two substitutions given in the preceding paragraph. Hence 
the theorem : If two non-commutative operators are such that 
each is transformed into its third power by the square of the other, 
they are of the same order and this common order is 2, 4, or 8. 
If this order is 2 they generate a dihedral group ; if it is 4 they 
generate a group whose quotient group with respect to a cyclic 
invariant subgroup is the symmetric group of order 24 ; and if it 
is 8 the corresponding quotient group is either this symmetric 
group or a group of order 48 which can be represented as a 
transitive substitution group of degree 8. 

I f sv s2 satisfy the two conditions 

81~82ST = = S2> 87 S1S2 = = SV 

their orders divide 16, since 54 — 1 is not divisible by 32. I t 
also follows from the theorems of the preceding section that 
sfsl 5= 1, and hence s\ = «ij. To verify that the common order 
of sl9 s2 may actually be 16 we may employ the following sub­
stitutions : 

sx = abcdefghijklmnop, s2 = ahcfmlojipknedgb. 

When sv s2 represent these substitutions, H is of order 32 and 
involves a commutator subgroup of order 2. Since 

$L$2 = bf-eg em-hp-jn• ko 

the order of G is 128. In the next paragraph we shall prove 
that the order of H is 32 and that the order of G is a multiple 
of 128 whenever sx is of order 16. 

The operator (s1s2)
2 is invariant under half the operators of G 

while it is transformed into its inverse by the remainder of these 
operators since 

(^1S2/ = = 8£ 8Ï S2~ 8T = 82 ' 82 5 f S2 ' 82~ ST 

= #2^1 ^2 ^1 = = ^2^1 * ̂ 1 ^2 ^1 ' ^1 = = = ( ^ 2 ^ 1 / * 
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As (si$2)
2 is transformed into its inverse by s19 it is also trans­

formed into its inverse by s2 and hence it is transformed into 
itself by half the operators of G. To prove that the order of 
H is exactly 32 when st is of order 16 it is only necessary to 
observe that s* is not invariant under G, and this results from 
the continued equation 

yS^S j 818182 = S2~ ®l^2 ==s ^1 * ^ F ^2 81' 82= 6*^2 = S1 . 

These results give rise to the theorem : If two operators of order 
16 are such that eaeh of them is transformed into its fifth power 
by the square of the other, these squares generate an invariant sub­
group of order 32 involving a commutator subgroup of order 2. 

I t has been proved that the group generated by (s1s2)
2 is in­

variant under G and that the order of the corresponding quo­
tient group is a divisor of 128. To prove that this invariant 
subgroup has at most two operators in common with the invari­
ant subgroup H it is only necessary to observe that a subgroup 
of order 4 in the former of these invariant subgroups can 
not be contained in the latter. This results directly from the 
facts that sts2 is not commutative with sj or si and that the 
operators of order 4 in H which are not generated by sj or s2 

are non-commutative with «J, while (s^)2 is commutative with 
this operator. Since the commutators of G are contained in 
the invariant subgroup generated by sf, «|, («A)2* and this in­
variant subgroup has a commutator subgroup of order 2, it 
results that the second derived of G is identity. I t is also 
evident that the quotient group of G with respect to this in­
variant subgroup is the four-group. Hence the theorem : If 
each of two operators is transformed into its fifth power by the 
square of the other, the orders of these operators divide 16 and the 
second derived of the group generated by them is identity. 
Hence these operators may have a common order only when 
this order is 1, 2, 4, 8, or 16. and if they are non-commutative 
they can have different orders only when these orders are one 
of the two pairs 2, 4 ; 4, 8. 

As a third and final special case we consider the relations 

^1 ^2% ==:: ^2> ^ 2 ^1^2 === ^l) 

where a and ft are unequal. According to the theorems of the 
preceding section, the orders of sv s2 divide 8 and 4 respectively. 
I t is easy to verify by means of substitutions that the orders 
of $1, s2 may actually be 8 and 4 respectively. 
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sx == abcdefgh • ijlmnopy s2 = aiem * cogh 

When sx is of order 8, s2 must be of order 4 since s\ is not 
commutative with sv When sx is of order 4, the order of s2 Is 
either 4, 2, or 1, as may be readily seen from the following sub­
stitutions : 

sx = aecg, s2 = abed • efgh ; sx = a&cd, s2 = ac. 

Finally, when sx is of order 2, the order of s2 is evidently 2 or 1. 
Hence the theorem : If two non-commutative operators satisfy 
the relations sf 2s2s

2 = *L &T2sis2 = si> their orders are one of the 
following pairs of numbers : 8, 4 ; 4, 4 ; 4, 2 ; 2, 2. 

When «! is of order 8, JHT is abelian and of order 8. From 
the following equations it results that s2 is transformed into its 
inverse by (s^)2: 

V^l^'2) ^1^1^2 == ^2 ^1^2 = = ^1 ' ^1 ^2 ^1 ' ^ 2 = = ^ 1 ^ ) 

\^1^2J ^1\^1^2) ^^ ^2 ^1^2^1^2 === ^2 ' ^2 ^1^2 ' ^1^2 = = ^2^1 ^2 = = ^1 • 

Hence the order of G is a multiple of 8 -4-2 = 64 whenever 
Si is of order 8. That the order of G may be exactly 64 results 
directly from the given substitutions, as they generate an im-
primitive group of degree 16 and order 64. From the proper­
ties of the dihedral group it results that sv $2 may be so selected 
that the order of G is an arbitrary multiple of 64 and that the 
third derived of each one of these groups is identity. The 
categories of groups which result when the orders of sly s2 have 
the other possible sets of values are still more elementary and 
their fundamental properties are easily derived from the general 
theorems of the preceding section. 

T H E SOLUTION O F AN I N T E G R A L EQUATION 
OCCURRING IN T H E T H E O R Y 

O F RADIATION. 

B Y PROFESSOR W. H . JACKSON. 

(Read before the American Mathematical Society, December 30, 1909.) 

PROFESSOR Arthur Schuster * has discussed the propaga­
tion of heat by radiation when the isothermal surfaces are 

* " The influence of radiation on the transmission of heat." PUL Maga­
zine, Feb., 1903. 


