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I N T E G R A L EQUATIONS. 

An Introduction to the Study of Integral Equations. By 
M A X I M E BÔCHER. Cambridge Tracts in Mathematics and 
Mathematical Physics, No. 10. Cambridge, The University 
Press, 1909. iv + 72 pages. 

I N 1823 Abel proposed a generalization of the tautochrone 
problem whose solution involved the solution of an integral 
equation which has more recently been designated as an integral 
equation of the first kind, and in 1837 Liouville showed that 
the determination of a particular solution of a linear differential 
equation of the second order could be effected by solving an 
integral equation of a different type, called the integral equation 
of the second kind. The ripple of mathematical interest which 
had its origin in these investigations increased at first but slowly. 
Recently, however, stimulated by the researches of Volterra, 
Fredholm, and Hilbert in the period between 1896 and the 
present time, that which seemed at first only a ripple has grown 
into a formidable wave which bids fair to carry the integral 
equation theory into a place beside the most important of the 
mathematical disciplines. Notwithstanding the rapidly multi
plying investigations in integral equations and the numerous 
applications of them which have been made, the sources of in
formation concerning the theory have remained widely scattered 
and none too easily accessible to any but the specialist in the 
subject. I t is with a hearty welcome, therefore, that the thought
ful mathematician will receive an introduction to the theory 
written by so clear a thinker and writer as the author of the 
book which is the subject of this review. As stated in the pref
ace, the purpose of the author was to furnish the careful student 
with a firm foundation for further study, and at the same time 
so to display and arrange the principal theorems that one may 
with only a superficial reading obtain some idea of the subject. 
These objects seem to have been successfully attained. The 
book should furthermore be very useful as a text in an intro
ductory course, especially if the instructor would content himself 
at first with the discussion of integral equations whose kernels 
are continuous or have discontinuities of the explicit forms which 
occur in the problem of Abel, treated in § 2, and other applica
tions. 
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The emphasis which is placed on the historical development 
of the subject is an interesting feature of the book. After an 
introductory section in which some essential theorems concern
ing definite integrals are set down, the problems of Abel and 
Liouville, probably the earliest applications of integral equa
tions, are discussed, and thereafter the reader's attention is 
constantly directed to the contributions which have been made 
by Volterra, Fredholm, Hubert, Schmidt, Kneser, and other 
writers. In the papers of Hilbert and Schmidt the kernel of 
the integral equation is first assumed to be symmetric and con
tinuous. Later they show that the theory for unsymmetric 
kernels can be regarded as an application of the theory for the 
symmetric case. Professor Bôcher, following the earlier writers, 
has inverted this arrangement, which seems more convenient 
since many of the principal results follow as easily for the un
symmetric as for the symmetric hypothesis. The author has 
also admitted from the start certain kinds of discontinuities in 
the kernels of his equations. This is perhaps disconcerting 
to the reader who wishes merely a survey of the theory, 
but the applications of equations with discontinuities are so 
frequent that one must feel that the admission is justified. I t 
seems regrettable that more of the applications of the integral 
equation theory, for example Hubert's unification of the theories 
of the expansion of an arbitrary function in terms of other 
functions and some of the applications to boundary value prob
lems, could not have been introduced. The limited size of the 
book was evidently the preventive. 

In commenting upon the theory as developed by Professor 
Bôcher, I shall not attempt to follow closely the order of his 
arrangement, but shall try to give an idea of the contents of 
the book as they have impressed themselves upon me. There 
are two kinds of integral equations which may be written in 
the forms 

(1) /(aO = jrV(*,f)«(f)df, 

(2) u(x)=f{x)+ f '*-(», f) u(f)dÇ, 
•Ja 

where K(x,%) and f (x) are given functions, while u(x) is to 
be determined. The problem proposed by Abel was to deter
mine a curve y = y(x) down which a heavy particle would fall 
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from a variable point (x, y) to the origin (0, 0) in a time T = 
f(x)/2g, where ƒ (x) is an arbitrarily assigned function. The in
tegral equation which gives the solution is one of the first kind, 
in which K(xf y) = 0 for y > x. I t has the form 

' < • > - ! 
v>(l)dl 

where v(x) is the length of arc measured from the origin and 
is to be determined. Liouville later made the determination 
of a particular solution of the differential equation 

where p is a constant, depend upon the solution of the integral 
equation 

l rx 

(3) u(x) — cos p (œ — a) + — I a-(C) sin p(x — %)u{%)d%, 
P J a 

which is an equation of the second kind. In §§ 3, 5 Profes
sor Bôcher exhibits the method which Liouville applied to the 
solution of these two equations, and applies the same method 
of successive substitutions to the general equation of the second 
kind. 

The treatment devised by Volterra for equations of the 
second kind is both remarkable and elegant. I t depends upon 
the notion of the iterated functions K.(x, y) defined by the 
formulas 

Kx(x, y) = K{x, y), Kfa y) = Ç K{x, Ç)K^<$, y)dl 

The series 

(4) - k(x, y) = Kl + K2+..., 

when it is uniformly convergent, determines uniquely a con
tinuous function k(x, y) which with K(x, y) satisfies the 
equations 

(5) K(x, y) + Jc(x, y) = ÇK(x, f )£(£, y ) # 

= J V , i)K{l y)dl 
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Any two functions K, h which have proper continuity properties 
and satisfy the last equations are said to be " reciprocal." By 
means of equations (5) it can be shown that the integral equa
tion of the second kind has one and only one continuous solution, 
which is expressed by the formula 

(6) «(«)=ƒ(»)- ƒ%», f)ƒ(*)<*£. 

The solution by Volterra which has just been discussed de
pends for its validity upon the convergence of the series (4). 
Another method suggested by Volterra, but investigated by 
Fredholm, and later revised and extended by Hubert, goes 
deeper into the meaning of the integral equations, explains the 
circumstances under which the reciprocal function k(x9 y) will 
or will not surely exist, and has besides an important applica
tion to integral equations involving an arbitrary parameter X 
which will be mentioned later. Professor Bôcher shows in §7, 
following Fredholm, how one may regard the equation (2) as a 
limiting case for the system of equations 

n 

(7) Un(Xi) =ƒ(»<) + Z K(Xi> Xl)U«(Xj) ( « = 1 , 2 , . . . , n) 

as n becomes infinite. Here xv x2, • • •, xn = b are supposed to 
divide the interval ab into n equal parts, and un(x^), w„(œ2)> • • •, 
u(xn) are the quantities to be determined. The determinant 
Dn of these equations goes over as n approaches infinity into 
an infinite series of integrals involving the kernel K9 and if 
the values (x^, xv) have the limit (x, y) the corresponding 
cofactor Dn{x^ xv) of Dn approaches a limiting value D(%, y) 
which is also expansible into an infinite series. In § 8 the 
convergence of the series for D and the " adjoint " D{xy y) is 
rigorously proved, and the important relations 

-DK{x, y) + D(x, y) = Ç K{x, f)D(£, y)d£ 

= £ D{x, Ç)K{i, y)di 

are derived. I t follows at once that when I) 4=0 the function 

(8 Kx,y)=-D±iE. 
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is reciprocal to K(x, y), and equation (2) has a unique solution 
expressed by means of formula (6). On the other hand when 
D = 0 there will be no solution unless f(x) satisfies 

ÇD{x, f)/(f)d? = 0, 

a relation which is suggested by the condition which must be 
satisfied if equations (7) have a solution when Dn — 0. 

The integral equation (3) which Liouville studied is of the 
form 

(9) u(x) =f(x) + X f K(x, QuiëW > 
•Ja 

where X = 1/p and K{x, y) = 0 for y>x. In § 9 Professor 
Bôcher begins the study of such equations. The determinant 
and adjoint function, as well as the reciprocal function, are here 
functions of the form D(X), D(x, y, X), k(x, y, X) containing 
the parameter X which may take either real or complex values. 
The roots of D(X) are the " Eigenwerte " of Hubert, or the 
" roots for the function K(x, y)." I t is found in §§ 9, 10 that 
the necessary and sufficient condition that K(x, y) have a re
ciprocal k(x, yy X) corresponding to a particular value of X is 
that J5(X) 4= 0. If this condition is satisfied, equation (9) has 
a unique solution determined by equations (8) and (6). 

The situation is somewhat different for the homogeneous 
equation 

(10) u{x) = X f K(x, ?HI)c?f, 
*J a 

as is explained in § 10. The unique solution of this equation 
when D(X) 4= 0 is u = 0. On the other hand, for any root of 
D(X) the homogeneous equation has always an infinity of con
tinuous solutions, called " principal solutions," which do not 
vanish identically. When D = 0 it follows from these results 
that the non-homogeneous equation (9) has either no continuous 
solution or else an infinite number found by adding to any par
ticular solution of (9) the solutions of (10). 

I t was mentioned above that in the papers of Hilbert and 
Schmidt the theory of integral equations with unsymmetric 
kernel K has been made to depend upon that of equations in 
which the kernel is symmetric. In §§ 11, 12 Professor Bôcher 



212 INTEGRAL EQUATIONS. [Jan . , 

develops the theorems which relate especially to equations with 
symmetric kernels. For any such equation the determinant 
£>(X) has at least one root, all the roots are necessarily real, 
and to any root of DQC) there corresponds only a finite number 
of linearly independent principal solutions of the homogeneous 
equation (10). A system u.(x) (i = 1,2, • • • ) of principal solu
tions belonging to roots of I)(X) can be so chosen that any 
principal solution of equation (10) is expressible linearly and 
with constant coefficients in terms of a finite number of the 
functions u.(x), and furthermore so that 

ƒ u2
i(x)dx=^l) I uJ(x)u.(x)dx== 0 (i 4=i)» 

A system of solutions having these properties is called "a complete 
normalized orthogonal system of characteristic functions for the 
kernel K." The trigonometric functions sin x, sin 2x9 • • -, 
are an example of such a system, in terms of which any function 
satisfying suitable restrictions can be expanded as an infinite 
series. Similar expansion theorems hold also for the system of 
characteristic functions belonging to any symmetric kernel. 
Professor Bôcher has restricted himself here, however, to the 
consideration of a single expansion, that for the kernel K{x, y) 
itself, and to some of its applications. 

The theory of the integral equations of the second kind hav
ing been developed, it is a comparatively simple matter to show, 
as Professor Bôcher does in § 13, that the solution of the inte
gral equation 

(11) /(x) = P K(x,l)u(Ç)dÇ, 
•Ja 

which is one of the first kind with K == 0 when y>x, are all 
solutions of the equation 

f'(x) = K(x, x) u(x) + £ ^ - # «(*)#. 

If K(x, x) does not vanish in the interval ab, this is an equa
tion of the second kind (2), and the problem of solving it is 
equivalent to the solution of the original equation (11) of the 
first kind. The case when K(x, x) vanishes identically is treated, 
and an example illustrative of the case when K(x, x) has a finite 
number of zeros is given. The section concludes with the study 
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of the more general equation of the first kind where K(x, y) is 
assumed to have a discontinuity along a curve y = <j> (x). 

In the section just described the kernel was assumed to be 
finite. The earliest integral equation of the first kind, that of 
Abel, was however one in which the kernel became infinite 
along the line x = y. The concluding section of the book is 
devoted to equations of the type 

which has a kernel with an infinite discontinuity including Abel's 
kernel as a special case for G = 1, and to a number of examples 
not falling under the previous theory. Especially interesting 
is the explanation of the relation of Fourier's integral 

to the theory of integral equations in which the limits are n-
finite. 

G. A. Buss . 

SHORTER NOTICES. 

Grundlagen der Analysis. Von MOKITZ PASCH. Ausgearbeitet 
unter Mitwirkung von CLEMENS T H A E E . Leipzig, Teub-
ner, 1908. 8vo. vi + 140 pp. 

T H I S book presents an admirable attempt to develop the 
concept of the real number in a more exact logical fashion. 
There is no attempt to reduce the assumptions to a categorical 
set, and even their consistency is not considered ; but they are 
everywhere clearly stated, the theorems follow by ready deduc
tions, and the large number of definitions would seem to be put 
in an unusually clear way, and one especially well adapted to 
the purpose of the general argument. 

The book opens with a consideration of the relation of things 
to names, of the notions of precede and follow, and of methods 
of mathematical proofs. This is followed by a treatment of 
sets, sequences, and series, leading up to integers. By subject
ing the integers to the four fundamental operations, fractions, 
including decimal fractions, and negative numbers are intro-


