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1. Introduction. The electromagnetic field produced by a 
moving charge has been discussed by many writers.* Lange vin f 
in particular has given an elegant investigation of the field due 
to a moving electron. Poincaré % has partially solved Lan-
gevin's problem by the Lorentzian § transformation. In the 
present paper the Lorentzian transformation is applied to the 
expressions for the scalar and vector potentials in the form of 
definite integrals instead of to the differential equations for 
the electromagnetic field. The field due to an electron whose 
velocity is zero at the instant considered is very simply deter
mined. By means of the Lorentzian transformation, the field 
for the more general case when the velocity is not zero is 
deduced. The results are Laugevin's expression for the elec
tric force and a new expression for the magnetic force. 

2. The electromagnetic equations and their solution. Let E 
denote the electric force, H the magnetic force, p the volume 
density, and v the velocity of the electrons, and let the velocity 
of light be the unit of velocity. Lorentz's || fundamental 
equations are 

(1) divE-p, (2) d i v ^ = - ^ , 

dE dH 
(3) curl H^-^t+pv, (4) curl E = - -^. 

The solution of these equations is known to be reducible to the 
determination of a scalar potential </> and a vector potential a 
which satisfy the equations 

*See Lorentz, Encyklopâdie, d. math. Wissensch., vol. V. 2, p. 174. 
t Journal de Physique, 1905. 
t Circolo mat di Palermo, 1906. 
§ Lorentz, Amsterdam Proc, 1903. Einstein, Annalen der Physik, 1905. 
Il Loc. oit. 
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d26 d2a 
(5) V ^ - ^ - p , (6) V * a - ^ = - W 

where 

(7) E = — gr — grad <£ and (8) 1 T = curl a. 

The solutions of (5) and (6) are known to be * 

(KO ..^ffjasèaA, 
where /ox and ^ are the values of p and v at (xv yv z^) at time 
t — r,r being the time from (a?, y, z) to (cc1? yv zx). These 
expressions for the potentials may be expressed in terms of the 
actual charges of the electrons. If we imagine a sphere whose 
center is (x, y, z) and whose radius r diminishes with the velocity 
of light and is zero at time t, an electron will affect (x, y, z) 
only while the surface of the sphere is passing through the 
electron. Hence if the radial velocity of an electron is vr, the 
effect of the motion of the electron is to increase the apparent 
charge in the ratio 1 to 1 — vr. Therefore if de denotes the 
actual charge of an electron at (xv yv zx), 

(») • - JV^> . <"> «-JV*Ü5-
3. The Lorentzian Transformation. Consider the transfor

mation 

(13) x! = fi(x - Vt), t = fi(t-Vx), (fi = l / i / l - V2) 

and its inverse 

(14) x = £(»' + W), t = fi(f + Vx). 

If we wish to transform the electrical system into a new electri
cal system with the same charges, we must have 

(15) I I I p'dxdydz = I I I pdxdydz. 

* Rayleigh, Theory of sound, vol. 2, p. 104. 
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On the left hand side of this equation t' is constant, while on 
the other side t is constant. On account of the velocity vx of 
the electrons (x+dx+vxdt, t+dt) is tranformed into (x+dx, t'). 
Hence from (13) 

dx = 0(dx + vxdt - Vdt), 0 = /3{dt - V(dx + vxdt)}. 

Solving, we find 

, dx 
dx Œ £ ( i _ Vvx) 

and therefore to satisfy (15) we must have 

(16) p=f3p(\-Vvx). 

I t is important to notice that (13) and (16) completely determine 
the new electrical system. 

We proceed to find the values of t/, <£', a', E', H\ Dif
ferentiating (13) we have 

„ ' _ ^ ' _ V*~V > W - ^ - V" 
*~ dtr ~ 1 - T \ ^ ~ <#" ~ 0(1 - Vt>,)' 

(17) 
dz v_ 

I t is easily verified "that the values of p' and v just obtained 
satisfy the continuity equation 

(2') divp'v' %. 

I t should also be noticed that in (11) and (12) 

(18) t — tx = r 
or 

(* - txf = (x- xtf + (y- y J + (z- *,)». 
This equation is transformed by (14) into 

(f - tj = (x' - x[f + (y- y,f + (z- zxf 
or 
(18') t'-t[ = r'. 

Hence the new electron is in position at time t[ to act on the 
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new point (x', y\ z) at time t'. Further it is readily shown 
from (17) and (18) that 

(19) ^ - < ) = w ^ w j 
Hence 

*'_ f de rW-VvJde 
<P-J r'(l-v'r)-J r(l-vr) 

or 
(20) _ _ f = /3(tf>_FaJ, 
and similarly 

a = B(a — Vé), a' = a , a' = a , 
* ' \ as » /7 y y? z z 

Again from (14) 

das' 

Therefore 

d / d d\ d f d d \ 

'̂ = /3 Vââ + F âJ> a? = ^ V ^ + F^J-

or 
(21) K - ^ 
and similarly 

The new electrical system is therefore completely expressed in 
terms of the old system. 

4. Radiation from an electron. If the charge of the elec
tron is e the potentials are, from (11) and (12), 

e ev 
( 2 2 ) * = 4TTT(1 - vry

 a * 4TTT(1 - vry 

Langevin has calculated the derivatives of <j> and a, and so de
termined the electric and magnetic forces. The problem is 
simplified by taking the x axis in the direction of the velocity 
and applying the Lorentzian transformation so as to reduce the 
velocity to zero; solving the new system and reversing the 
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transformation so as to obtain the solution of the original sys
tem. In this case 

(23) F = v , v = v = v' = v' = v' = 0, 
\ / as? y z x y z ? 

and from (22) 

<24) +'-£» a' = 0' 
The derivatives of <f>' and a depend on the acceleration j . On 
differentiating (17) and using (23), we obtain 

dv 
(25) i : = ^ f = / 3 i , fy = P%, y > / s y . . 
From (22) 

e , ej'dt[ 
^ + # = 4 ^ ( r ' + d r ' ) ( l - i ; * r ) ' ** " W * 

But if £' is constant, (18) gives dt[ = —dr'. 
Hence 

, ., e -, C -, 
grad <£ = - — 7 3 r - —*r. 

4irr 47rr 
Also if r is constant cft{ = dt'. Hence 

da ef 
dt' ~~ Airr ' 

Hence 

4TZT'3 4TTT'2 4TJT 

Again 

H' = curl «' = Ç f = - ^ [ ƒ / ] , 
or' 47rr'2 U J 

where da\ is the transverse component of da. The first term 
of E' is the force E[ due to the electron at rest. The other 
two terms are due to the acceleration and have a resultant 
ej'Jlirr' = E'2. This is obviously equal and perpendicular to 
JET. Hence E2 and H' are equal and r', E2, H' are mutually 
perpendicular, E2 being in the plane of r and ƒ . If we now 
apply the inverse Lorentzian transformation the first term of 
E' gives the well-known field for a uniformly moving charge, 
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the velocity wave of Langevin. The terms depending on the 
acceleration (when expressed in terms of the original coordinates 
the origin being taken at the electron so that xx = yl = zx = 0) 
are 

E'* = 4,r(r - Vxf {{yJy + ZJ*)(X ~ Vr) ~ & + ^ 

E'v = 4 ^ ( r l Vxf tM'+PX*- Vr)J*)y- {*+^*- Vrf}U> 

E'- - 4^(^rvxf [ w«- *&+»,>- m*- M+fm > 
H* = 4Tr(r - Vxf (Zjy ~ W'^> ( 2 6 ) 

H'y = 47r(r - Vxf {(X ~ Vr^' ~ Zj*}' 

e/3 
H'*= 4-rr(r - Vxf M> ~ ^ ~ VrW' 

Making the transformation, we easily find 

E* = 47r(r - Vxf &**-+ yJ*+ ^ ~ Vr)~r(r ~ Vx)JJ' 

Ey= 4~7r(r - vxf K^« + w»+ Z^y. - r(r - Vx)Jy]> 

(27) E' = 4Tr(r - Vxf U&. + yjy + Zj> ~ r ( r _ Vx)j*}> 

H* = 4ir(r - VxJ ^ ~ ^ ) ( r ~ Vx)' 

Hy = 47r(r - Fa;)3 {<&•-%Xr- Vx)-(XJ*+ Wy+
zJ,)v*}-

Expressed in vector notation, we have therefore 
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which is Langevin's result, R being the distance from (x, y, z) 
to the point which the electron would reach at time t if its 
acceleration were zero ; that is, a force directed towards this 
point and a force in the direction of the acceleration. More
over 

H== 4 7 r { r - ( F r ) } 2 ^ ~" 4w{r - ( F r ) } 3 ^ ^ F ^ ' 

that is, a force perpendicular to r and j and a force perpendicu
lar to r and V. I t is easily verified from (27) that E is equal 
to H and that r, JE, H are mutually perpendicular. 

CORNELL UNIVERSITY, 
January, 1908. 

SHORTER NOTICES. 

On the Resolution of Higher Singularities of Algebraic Curves 
into Ordinary Nodes. By B. M. W A L K E R . Doctor Disser
tation, University of Chicago, 1906. 8vo. 52 pp. + Vita. 

As stated in the introduction, this dissertation completes in 
detail a procedure proposed by Clebsch for resolving the higher 
singularities of algebraic plane curves. The method is this : 
To relate the points of the plane, one to one, to points of a 
general cubic surface in such a way that one point of multi
plicity higher than 2, with tangents all distinct, is distributed 
into ordinary points of a curve on the cubic. Then by pro
jecting back upon the plane from a center on the cubic surface, 
no new singularities are introduced except ordinary double 
points. 

The first half of the work (26 pages) is devoted to the rela
tion of plane and cubic surface by means of a three-parameter 
linear system of plane cubics with six common base points. 
The restriction that these six points shall not lie on a conic 
suffices to insure that there shall be in the plane no funda
mental curves, i. e. no curves all of whose points correspond 
to a single point of the cubic. On the cubic surface, however, 
the six base points of the plane are represented by six straight 
lines. The author shows in detail what plane curves give rise 
to the rest of the twenty-seven lines on the cubic. Six of these 
are conies which contain five of the base points apiece ; the 


