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Define the positive sense along this line to be the direction of 
increasing p. This is uniquely defined for any pair of points 
in the interval (t0, T) since X and fi are unchanged by inter­
changing tx and tr 

Define an angle a as follows : 

sin a = ekfjb, cos a = ekX, h = (X2 + /*2)~*. 

Then a is an infinitely many-valued function of tx and £2, its 
values for any given pair of values of tx and t2 differing by 
multiples of 27r. If one of these values a' be assigned to a 
particular pair tx', t2', then from the possible values of a one 
and only one single valued continuous function can be chosen 
which takes the value a at £/, £/.* 

ÜNIVEESITY OF MISSOURI, 
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ON E U L E R ' S ^ -FUNCTION. 

BY PROFESSOR R. D. CARMICHAEL. 

(Read before the American Mathematical Society, December 28, 1906.) 

T H E object of the present note is the demonstration of certain 
very elementary propositions concerning Euler's (^-function of 
a number. 

I . The relation <f>(m) = n, a given number, is never uniquely 
satisfied for any given value of n. That is, there is always more 
than one value of m for every possible value of n. 

If any solution is m = an odd number, then the given rela­
tion is satisfied by 2m also. Likewise, if m is twice an odd 
number, we may show that m/2 will also satisfy the relation. 

*Cf., e. g., Stolz, Differential-Rechnung, vol. 2, p. 15-20. 
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Hence, if there is a unique solution, m is a multiple of 4 ; say 
m = 4/A. Now n is even ; say n = 2v. Then we have 

<f>(4fi) = 2v. 
Hence 

<t>(2fi)=v. 

Then in a manner similar to the above we may show that /JL and 
v are both even. By continuing the process step by step we 
are able to show that a unique solution cannot exist unless 
both m and n are powers of 2. I t remains therefore to show 
that this cannot give a unique solution. Let n = 2a. Then 

<£(m) = 2 a 

is satisfied not only by m = 2 a + 1 but also by m = 2a(26 + 1 ) 
(2C + 1 ) • • • in every way in which a, 6, c, • • • can be so chosen 
that a + 6 + c + • • • = a + 1, a 4= 0 ; or 6 + c •. • = a, a = 0 ; and 
2b + 1, 2C + 1, • • • shall be different primes. I f a = 3, one such 
solution is always a = a — 2, 6 = 1 , c = 2. An examination 
for the smaller values of a shows that no unique solution exists 
in these cases. Hence the proposition 

I I . The equation <$>(m) = 2n has just n + 2 solutions when 
n -f 2 = 33 ; 6M£ /MS^ 33 solutions for n = any number from 32 
to 255. 

An odd solution evidently requires 

m = (2* + 1)(2* + 1)(2? + 1) • •-•, 

where oc + )3 + 7 + •••= /ft and each factor is prime. Since 
2*+ l is prime* forœ = 1, 2, 4, 8,16, but not for x = 32,64,128 
nor any value of x not of the form 2p

y it is clear that <j>(m) = 2n has 
one and but one odd solution for every value of n up to n = 31 . 
Also twice every even value of m which satisfies <p(m) = 2n will 
satisfy the equation when the second member becomes 2n+1. 
Hence the number of solutions is increased by one when n is so 
increased up to n = 3 1 ; but beyond that up to n==255 the 
number of solutions remains constant; for there is then no solu­
tion except those given by twice each solution for the preceding 
value of n. Up to w = 3 1 it is easy to see that the number of 
solutions is n + 2; then from this point onward to t i = 255 the 
number remains constant and is 33. 

* See BULLETIN, June 1906, p. 449. 



1907.] ON EULER'S ^-FUNCTION. 243 

I t will be noticed that the first value of 2W to which there 
corresponds no odd solution in m is 232. This is the smallest 
value of <£(m) known to the writer to have no odd solution in m. 

III. COROLLARY. The equation <f>(m) = 2n has (only) one 
odd solution when n = 31 ; otherwise no odd solution at all up to 
n = 255. Also it has evidently no other odd solution except for 
such values of n as make 2n + 1 prime. 

I V . All the solutions of the equation <j>(m) = 4n — 2, TI 4= 1, 
are of the form pa and 2pa, where p is a prime of the form 4s -— 1. 

Now m =|= 4. Then if m contains the factor 4 it is evident 
that the equation is not satisfied. Neither is it satisfied if m 
contains two odd primes. Therefore the only values left are of 
the form pa and 2pa. Moreover p must be a prime of the form 
4s — 1 ; for otherwise the equation is not satisfied. (There may 
evidently be more than one p which furnishes such a solution. 
A case in point is <f>(m) = 18, which has the solutions m = 19, 
27, 38, 54.) 

V . If p is of the form 4s — 1 and </>(m) =pa (p — 1) has but 
the two solutions m = p a + 1 , 2pa+l, then the relation <j>(m) = 
2pa (p — 1) has an odd solution, (a belongs to the series 0, 1, 
2 , . - . . ) 

For one solution of the latter is m = 4pa+1. There is no 
other solution in which m is a multiple of 4 ; for then there 
would correspond to that a third solution for <£(m) =p* (p — 1). 
But <£(m) = 2pa (p — 1), by proposition I , has more than one 
solution. Hence it is easy to see that it has both an odd solu­
tion and another twice that one. 
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