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Porter showed that there were points on the circle of con­
vergence which are condensation points for the zeros of the 
polynomial convergents and that in the neighborhood of every 
point of this circle the set of these polynomials took on values 
less than any assigned number however small. He also showed 
that no set of these polynomials remained limited throughout 
any region lying outside the circle of convergence. 
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§ 1 . 

FUNCTIONAL equations — particularly integral equations — 
have aroused much interest and activity in recent years. Im­
portant contributions to the subject have been made, notably by 
Volterra, Fredholm and Hubert, and the results have found 
application in the field of mathematical physics and differential 
equations. The equations studied have been for the most part 
of a type difficult of solution, and the treatment correspond­
ingly complicated. 

There is however a type of functional equation whose 
solution may be obtained in a simple manner. Consider the 
equation 

(1) f-9 + W, 

where g is a known function, and S a linear operator, that is 
S(u + v) = Su + So. The operator S will be called convergent 
if the infinite series 

<f> + S<j> + 82<f> + SB<I> + . . . 

converges for all functions <j> which satisfy the conditions of con-
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tinuity demanded of g and ƒ, and if the convergence is such that 
the operation 8 may be performed on this series term by term. 

Suppose S is convergent, and that a solution ƒ of (1) exists. 
Then 

f=g + Sf = g + S(g + Sf) 

= g + Sg + 82f=g + 8g + 8\g + 8f) 

= g + Sg + 8g+S*f=..-, 

the equation 

ƒ = 9 + Sg + 8 V + S*g + . . . + S«~lg + S»f 

being obtained after n — 1 substitutions of g + Sf for ƒ. If 8 
is convergent, the limit for n = oo may be taken. It follows 
that if a solution of (1) exists it has the form 

(2) f - g + Sg + S*g + S*g+..-. 

Conversely, if 8 is a convergent operator the function defined 
by (2) is a solution of (1), for 

Sf=8g + Sig + S3g+... 

To summarize : If 8 is a convergent operator, the equation (1) 
admits a unique solution, given by equation (2). 

A simple example is furnished by the equation 

(3) f(x) = g(x)+ C K(x,y)f(y)dy. 
tJ a 

The opTerator 8 is convergent. For if <3> be the maximum of 
the absolute value of a function <£, and K the maximum of K, 
then 

These results will be applied to the study of certain boundary 
value problems of differential equations. This method has some 
advantages over the method of successive approximations, which 
has been used with such success, notably by Picard. The at-
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tention is at once directed to the essential difficulty, that of con­
vergence, and the uniqueness of the solution is proved without 
special investigation. The method is applicable however only 
to linear equations. 

§ 2 . 

The linear partial differential equation of the second order in 
two independent variables 

Auxx + 2 Buxy + Cuyy + Du% + Euy + Fu + G = 0 

is said to be of elliptic, hyperbolic, or parabolic type, accord­
ing as AC— JB2 is positive, negative, or zero, in the region 
considered. The normal forms of these types are 

Uxx + Uyy = <Mx + buy + CU +f> 

uxy = aux + buy + eu + ƒ, uxx = aux + buy + cu + ƒ, 

the general equation being reduced to the normal form of the 
type to which it belongs, by a transformation of the independ­
ent variables. 

The most important representative of the elliptic type is the 
potential equation 

(4) uxx + uyy = 0, 

and the boundary value problems for this equation are funda­
mental in the treatment of similar problems for the general 
equation of elliptic type. Dirichlet's problem—to determine 
a solution of (4) within a closed region il which assumes 
given values on the boundary of il— is the most famous 
of boundary value problems. There exists a unique solution 
of this problem. The proofs of this statement given by 
Schwarz, Neumann, and Poincaré are classic, In case the 
region ft is convex, Neumann's method gives the simplest solu­
tion. The results of § 1 may be applied to interpret this 
method. The function 

«(*, y) = i f V(0 §i@ •>' *> W>> v(tÏÏdt> ® = arctan f§~3' 
containing the arbitrary function ƒ(£), is a solution of (4) at all 
points within II, the boundary of fl being given by the curve 
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x = £(£), y = rj(t). This function f(t) must be so determined 
that u takes the value g(s) at the point x = £(s), y =* 77(5), 
On account of the discontinuity of u in crossing the boundary 
this leads to the following integral equations f o r / : 

( 6) jw-(.)-ijfj»^* 
where @(s, £) = ®(£(s), ??(s), f(Q, rç(Q). This equation is of 
the type considered in § 1, but the operator is not convergent. 
However, on adding f(s) to both sides and dividing by two, the 
equation takes the form 

where 

The convergence proof of Neumann's method shows that the 
operator 8 is convergent. Hence a unique solution of (5) ex­
ists and is given by 

f =Ï{9 + Sg + S>9+-..}. 

The function u produced by this function ƒ is the desired solu­
tion of Dirichlet's problem. 

On account of the above existence theorem, the existence of 
a Green's function is assured. This function has the form 

Q(v, V> fe V) = log -j=======^ + g(x, yy f, v), 
V(x — £)2 + (y — rjf 

where (f, rj) is a parameter point within ft, and G vanishes 
identically in £, rj when the point (œ, y) lies on the boundary 
of 12. By the aid of this function a solution of the equation 

(6) um + uw =ƒ(«;, y) 

which assumes the values g(s) on the boundary of XI is given 
by the formula 

(7) u = u0 - ^ ƒ ƒ #(a>, y, Ç, ??)ƒ(£ i?)dfdi7, 
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where u0 is the solution of Dirichlet's problem for the bound­
ary values g(s), provided that ƒ satisfies a certain continuity 
condition. 

A more general equation of elliptic type, and one of frequent 
occurrence in the applications, is 

(8) V*z + *>„ = <»+f-

Replacing ƒ in equation (6) by cv + f it is seen that the solu­
tion of (8) which assumes the boundary values g(s) is given by 
the solution of the integral equation 

(9) v = u — ^ j J G(x} y, £, T?)C(£, <n)v(Ç, y)d%dv, 

where u is a known function, given by equation (7). I t may 
be easily shown that the operator S in this equation is con­
vergent, if the region H be sufficiently small, the proof depend­
ing on the fact that 

J J & 
GdÇdv 

approaches zero with the area of CI. There exists one and only 
one solution of the boundary value problem of equation (8) if the 
region O is sufficiently small. 

The general equation of elliptic type, 

(10) uxx + vyy = avx + bvy + cv + ƒ 

presents greater difficulties. To determine a solution of the 
boundary value problem, a functional equation of the form 

(11) v = u — ^ \ J G(avx + bvy + cv)d!;d,r) 

is to be solved. The operator 8 involves differentiation as 
well as integration. The proof that 8 is convergent is accord­
ingly more difficult, and an investigation regarding continuity 
is necessary to show that a solution of (11) is also a solution 
of (10); the results are however the same as in the case of 
equation (8). This existence theorem was first obtained by 
Picard, who used the method of successive approximations. 
The restriction on the size of the region in the theorem is not 
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one due to method alone. In point of fact, if the region be 
allowed to increase in size, a position is reached for which the 
theorem is no longer true. Some of the most interesting in­
vestigations of special boundary value problems deal with the 
equation 

yy 

where X is a parameter, the region l i being fixed. The results 
are analogous to those obtained in § 4 for a similar problem in 
ordinary differential equations. 

To Picard is due a remarkable theorem regarding the nature 
of solutions of the differential equation (10) , viz. : Every equa­
tion of elliptic type whose coefficients are analytic functions pos­
sesses only analytic solutions ; even though the solution assumes 
non-analytic boundary values, it will be analytic inside the 
region. 

§ 3 . 

The equations of hyperbolic type are especially susceptible 
to treatment by the method of § 1. By the aid of this method 
a boundary problem may be solved which includes as special 
cases many problems whose solutions were originally obtained 
by quite distinct methods. 

The equation 

(12) uxy = aux + huy + cu + ƒ 

is to be solved under the conditions 

{y)y^{x) = U(x), K)«=*<*) « Y(y), 

where <£, yjr, Uy Y} are given functions. 
Let uv = v. The function 

u = f f «(*, vWdv + P nv)dy + U(x) 

satisfies the boundary conditions, whatever v be. On substi­
tuting this value u in (12), the equation becomes a functional 
equation for the determination of v, of the form 

v = g + So9 

where 8 is of somewhat complicated form, but involves in-
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tegration only, the upper limits of each integral being x or y. 
On account of this fact the proof that S is a convergent operator 
may be made without difficulty, however large the region within 
which the point (x, y) may vary. The proof is analogous to 
that given in connection with equation (3). It follows that 
there exists one and only one solution of the boundary problem. 
If <f> and yfr are inverse functions, so that x == ^(y) and 
y == (j>(x) define the same curve, the problem is equivalent to 
finding a solution u of (12) when u and the normal derivative 
of u are given on a monotonie curve. If <f>(x) = 6, n|r( y) » a, 
the boundary condition is equivalent to giving the values of u 
on the lines x = a, y = b. Other special cases may be easily 
obtained. 

I t may be readily seen from the expression for u in terms of v 
that the continuity properties of the functions <£, y]r, U9 Y deter­
mine to a large extent the continuity properties of u throughout 
its region of definition. The equations of hyperbolic type thus 
differ fundamentally from the equations of elliptic type. In 
fact, S. Bernstein has recently proved that every equation of 
hyperbolic type possesses non-analytic solutions. 

The general equation of parabolic type offers exceptional 
difficulties. But little is known of the nature of the solutions 
or of the boundary conditions which may be placed upon them. 
These equations form a limiting case between those of elliptic 
and hyperbolic types. Practically nothing is known regarding 
the boundary problems of equations which are of one type in a 
part of the region considered and of another in the remainder. 

§ 4. 
Many of the boundary value problems for partial differ­

ential equations may be reduced by the familiar substitution 
u =s X(x) • Y(y), to boundary value problems for ordinary differ­
ential equations. The differential equation 

(13) y" + \A(x)y = 0, 

where X is a parameter, is typical of a large class, and has 
formed the subject of numerous investigations. The funda­
mental existence theorem for this equation may be easily proved 
by the method of § 1. The function 

(x — f )^(f )df + a\x — a) + a 
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satisfies the conditions y (a) = a, y'(a) = a', whatever be u. I t 
is a solution of (13) if u is a solution of the integral equation 

u = — XA(x) [a(x — a) + a] — XJ.(œ) I (x — %)u(£)df;, 

which is a special case of (3). There exists accordingly one 
and only one solution of (13) satisfying the initial conditions. 
From the form of the solution it is seen immediately that y is 
an integral transcendental function of the parameter X. 

A typical boundary problem for (13) is to determine a solu­
tion, not identically zero, which vanishes for two given values 
a and b of x. The general solution of (13) having the form 

y = o^j + <y?2> 

this problem may be solved when and only when X is a zero of 
the transcendental function 

Vi(a) V2(
a) 1 

Vl(b) V2(b)\ 

This problem was first studied by Sturm, and his results may 
be summarized in the following theorem — Sturm's theorem of 
oscillation : If A (x) does not change sign the parameter X may 
be determined in one and only one loay so that a solution of 
(IS) exists which vanishes at a and at b, and n times between a 
and b. 

This result has since been proved by various methods, some 
of which are capable of greater generalization than the original 
methods of Sturm. The problem may be reduced to the solu­
tion of an integral equation. Any solution of the equation 

y(*)-X f*AfôG{x, QyfôdÇ, 
Ja 

where 

e(,,a. i{| ie-{l-^-)«-H<f-^-»)}, 
is a solution of (13) and vanishes at a and b. This integral 
equation is of a type studied by Fredholm and Hubert. I f 

8(X) = 
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A(x) does not change sign, it can be reduced to the form 

where K is symmetric, the only case to which Hubert 's re­
sults apply.* The application of these results proves im­
mediately the existence of an infinite series of " normal para­
meter values " — zeros of 8 (X) — for each of which there 
exists a " normal function," a solution of the boundary value 
problem. Hilbert proves further that any function may be 
expanded in terms of these normal functions, if it is continuous 
together with its first and second derivatives. The most 
general result regarding the expansion of an arbitrary function 
have however been attained by Kneser, using a different method. 

If the function A(x) changes sign, the above method does 
not apply. The existence theorem may however be obtained 
by a method based on the consideration of certain minimum 
problems. Interesting properties of the normal functions are 
thus set in evidence, and by the aid of these properties a very 
simple proof for the expansion of a function in terms of normal 
functions is obtained, even in the case that A(x) changes sign. 

The field of boundary value problems is of enormous extent, 
and comparatively little is known territory. While the theorems 
stated above are typical, interesting variations result by gen­
eralization to more variables, higher derivatives, and more gen­
eral boundary conditions. Some of these generalizations have 
been rigorously made, many merely guessed. In particular, 
the boundary value problems for systems of differential equa­
tions offer a wide field for research, and work in this field 
would be of especial value in the applications. 

SHEFFIELD SCIENTIFIC SCHOOL, 
YALE UNIVERSITY. 

* Since the above was written a fifth installment of Hubert's Grundzüge 
einer allgemeinen Theorie der linearen Integralgleichungen has appeared, in 
which the case where the function K is not symmetrio is considered. ( Göt-
tinger Nachrichten, 1906, p. 439. ) 


