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NOTE ON T H E H E I N E - B O K E L T H E O E E M . 

BY MR. N. J . LENNES. 

(Read before the Chicago Section of the American Mathematical Society, 
December 29, 1905.) 

I N this note is presented a generalized form of the Heine-
Borel theorem together with a corollary which is of immediate 
application in many theorems in metrical analysis. The present 
form of the theorem is the result of an effort to understand the 
meaning of the properties of boundedness and unboundedness 
of sets of points (numbers) in non-metrical analysis situs. I t 
appears that for many purposes the property of boundedness 
when applied to a closed set may be replaced by the property 
that the set shall contain its limit points at infinity, i. e., the set 
shall be closed even if it is unbounded. In non-metrical anal­
ysis, therefore, the chief distinction between a closed bounded 
set and an unbounded set not containing its limit points at 
infinity seems to be that the latter is necessarily not closed. 

The theorem is stated for the case of three dimensions and 
the language of geometry is used exclusively. In view of the 
one-to-one correspondence of the set of all points in a three-
space and the set of all triples of real numbers, the reader may, 
if he wishes, regard the geometric language as a notation for a 
three dimensional number manifold. 

§ 1. Definitions and Preliminary Notions. 

The word region is used to denote any set of points what­
ever. Two half-lines proceeding from the same point O and 
not lying in the same line form an angle. (The half-line con­
tains the point O from which it proceeds.) We assume that an 
angle separates the remaining points of the plane in which it 
lies into two unique sets, an interior and an exterior set. If 
the half-lines a, 6, c, no two of which lie in the same line and 
all three of which do not lie in the same plane, proceed from 
the same point O then the three angles formed by these half-
lines together with the interior points of these angles form a 
trihedron Oabo. If A, B, C, are points of the respective half-
lines a, b, c, then the four triangles OAB, OBCy OCA, and 
ABC, together with their interior points, form a tetrahedron. 
Such tetrahedron we shall speak of as associated with the tri-
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hedron Oabc. We assume that a trihedron and also a tetra­
hedron separates space into two unique sets, and hence that 
these figures have a definite interior. 

A finite point P ' is a limit point of a set [ P ] of points if 
there are points of [PJ other than P' within every tetrahedron 
of which P ' is an interior point. If a set [P ] of a half-line is 
unbounded then the set [P ] is said to have a limit point oo 
on the half-line. We will regard every half-line as having 
one point at infinity. A point oo on a half-line I proceeding 
from a point O is said to be a limit point of a set [ P ] if for 
every trihedron Oabc containing the points of I as interior 
points, and for every associated tetrahedron OAB C there are 
points of [P ] other than oo within Oabc and exterior to 
O ABO. A point is within a region P if it is not a limit 
point of points not of the region. This definition applies to 
points at infinity, i. e., a point oo lies within a region R if 
there exists a trihedron Oabe and an associated tetrahedron 
OABC such that oo is an interior point of Oabe and further 
such that every point, other than oo, within Oabc and exterior 
to OAB O is a point of P . A closed set contains all its limit 
points. This also applies to points at infinity. 

§ 2. The Generalized Heine-Borel Theorem. 

T H E O R E M : If [ P ] is a closed set of points and if [ P ] is a 
set of regions such that every point of [P ] is an interior point of 
at least one region of the set [ P ] then there exists a finite subset 
Bv P 2 , • • -, P n , of regions of the set [ P ] such that every point of 

lies within at least one region of the set Bv P2 , • • -, P n . 
roof : Consider any trihedron Oabc. Denote by [ P J the 

points of [ P ] which lie on the half-line a. We show first that 
there is a finite subset of [ P ] , Rv P2 , • • -, i?Wl, such that every 
point of [ P J lies within at least one of the regions Rv P2 , • • -, 
Rni. Since the set of all points common to two closed sets is a 
closed set it follows that the set [ P J is closed. If the point 
oo of a is a point of [ P J it follows that there is a region of 
the set [R] which contains some infinite segment iToo of a. I t 
remains to show that all points of [ P J on OK are contained 
in some finite set of regions of [ P ] . Beginning at 0 denote 
by [P 0 ' ] the set of all points of [ P J on OK which are 
contained within some finite set of regions. This set of 
points has a least upper bound B [P a ' ]> which is a point of 

[pi 
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[ P J since [ P J is closed. By hypothesis B [P a ' ] lies within 
one region of [ P ] . Then either P [ P J is a limit point of 
points of [ P J which are on B [ P J Ky in which case B [ P J 
fails to be an upper bound of [ P J , or there is a definite next 
point of [ P J on B [ P J K and lying within a region of [ P ] . 
Hence J 3 [ P J cannot be an upper bound as just specified. 
Hence the points of [ P J on OK which lie within a finite set 
of regions of the set [ P ] has no upper bound and therefore 
there exists a set of regions Rv • • -, P n i of the set [ P ] such 
that every point of [ P J lies within at least one of them. 

Obviously there are half-lines k proceeding from O and lying 
within the angle (a, b) such that every point of [P ] which lies 
on or within the angle (a, b) lies within at least one of the 
regions Rv • • -, P n i . If there does not exist a finite set of regions 
of the set [B] such that every point of [P] which lies on or 
within the angle (a, b) lies within at least one of them, then let 
k' be the bound of all half-lines proceeding from O such that the 
points of [ P ] which lie on or within the angle formed by them 
and a lie within such finite set of regions. By the above proof 
all points of [ P ] which lie on kl lie within a finite set of re­
gions of the set [ R ] . Hence k' cannot be a bound as specified, 
and every point of [ P ] which lie on or within the angle (a, b) 
lies within at least one of a certain finite set Rv P2 , •. -, Pn2 of 
regions of the set [ P ] . In the same manner we may show 
that there exists a subset of [ P ] , Rv P2 , • • -, Rnz such that 
every point of [ P ] which lies on or within the trihedron Oabo 
lies with in at least one region of the set Rv • • -, P„3. But the 
three planes determined by the faces of the trihedron Oabo 
separate the three-space into eight trihedrons of the type Oabo. 
whence the theorem follows for the whole set [ P ] . 

This theorem has many immediate corollaries, of which I 
instance the two following. 

1. Every infinite set of points has at least one limit point which 
may be finite or infinite, 

2. If z = ƒ (ce, y) and if (a, b) is a limit point of the set (x, y) 
on which f(x} y) is defined then z =f(x, y) has some value ap­
proached as (xf y) approach (a, 6). 

Proof : If the theorem fails to hold, then about every point 
of the line x = a,y = b there is some region within which there 
is no point of the graph of the function z =f(%, y). By the 
theorem of this note there is a finite subset of these regions and 
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hence a cylinder enclosing the line x = a> y — b within which 
there is no point of the graph of the function. Hence for 
values of x and y within this cylinder there are no values of 
the function, which is contrary to the hypothesis that the func­
tion is defined on a set which has (a, b) as a limit point. 

§ 3. A Theorem of Continuity. 

T H E O R E M : If [P ] is a closed bounded set of points and if [ P ] 
is a set of regions such that every point of [P ] is an interior point 
of at least one region of the set then there exists a number d such 
that a cube whose edge is d and whose center is any point what­
ever of the set [P ] will lie entirely within one of the regions of the 
set [ P ] . 

Proof : About every point of [P ] construct a cube c lying 
within some region of the set [ P ] . Let the sides of the cubes 
be parallel to the coordinate planes of a fixed rectangular system. 
By the Heine-Borel theorem there is a finite subset cv • • • cn of 
these cubes such that every point of [ P ] lies within at least 
one of them. Obviously, that part of the surface of any cube 
of cv •• -, cn which is exterior to all other cubes of the set is 
made up of a finite number of rectangles. Denote the set of 
all such rectangles obtained from cv • • -, cn by [ r ] . No such 
rectangle contains a point of [ P ] or is a limit point of [ P ] . 
Hence there exists a positive number d' which is less than the 
distance from any point of [ P ] to any point of [ r ] . Let d' 
be a positive number less than the distance from any side s of a 
cube of cv • • -, cn to any parallel side (the plane of which does 
not contain s). Let df" be the smaller of these two numbers 
then d = \d!" is the required number. 

This theorem appears to have been stated in essentially the 
above form by several persons during the last year. Professor 
Bolza used it for a set of points in a plane as early as the 
spring of 1905, and it is possible that the present statement of 
it is partly due to his suggestion. Mr. Wedderburn has also 
used the theorem in this form for linear sets. So far as I know 
it has not been published before now. Dr. Yeblen suggested 
that this form of the theorem be called " the theorem of uni­
formity." The following is an immediate corollary : " A func­
tion which is continuous over an interval is uniformly continuous 
over that interval." 

CHICAGO, 
February 22, 1906. 


