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Incidentally, the value of p obtained in (9) shows that the 
torsion, unlike the curvature, is independent of v. 

An arbitrary field of force (1) produces oo5 trajectories, of 
which oo1 pass through a given point in a given direction. These 
oo1 trajectories have, at the given point, a common osculating 

plane and a common torsion. The locus of centers of their oscu­
lating spheres is a straight line. Thus every field of force gives 
rise to a correspondence between the direction elements and the 
straight lines of space, 

COLUMBIA UNIVERSITY, 
August^ 1905. 

ON THE POSSIBLE NUMBERS OF OPERATORS 
OF ORDER 2 IN A GROUP OF ORDER 2™. 

BY PROFESSOR G. A. MILLER. 

(Read before the American Mathematical Society, September 7, 1905.) 

I t is well known that every group of order 2m which con­
tains only one operator of order 2 is either cyclic or it is 
composed of the cyclic group of order 2m_1 and 2m~l operators 
of order 4 transforming each operator of this cyclic group into 
its inverse.* There are exactly two such groups for every 
value of m > 2. When m == 3 the latter of these two is the 
quaternion group, and when m < 3 the cyclic group is the only 
one that contains only one operator of order 2. 

The groups of order 2m in which the number of all the 
operators of order 2 is = 1 mod. 4 have been determined inci­
dentally in a recent paper.f Such groups exist only when the 
number of operators of order 2 is of the form 2h + 1, and there 
are exactly two possible groups for every arbitrary value of k. 
One of these is the dihedral rotation group of order 2k+\ and 
the other is obtained by adding to the cyclic group of order 
2k+l an operator of order two which transforms each of its 
operators into its (2* — l)th power. Just half of the additional 
operators are of order two and the others are of order 4. 

For instance, there are just two groups whose orders are of 
the form 2m and which contain just five operators of order two; 

* Burnside, Theory of groups, 1897, p. 75. 
f Transactions Amer. Math. Society, vol. 6 (1905), p. 62. 
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one of these is the well known octic group, or the group of 
movements of the square, while the other is of order 16 and 
includes the cyclic group of order 8 in addition to four opera­
tors of each of the orders 2 and 4 transforming each operator 
of this cyclic subgroup into its third power. The latter consti­
tute two complete sets of conjugates, while the operators whose 
orders exceed two in the cyclic subgroup of order 8 are conju­
gate in pairs. In general, the operators whose orders exceed 
two in the cyclic subgroup of orders 2k or 2*H~1 respectively are 
conjugate in pairs while the remaining operators constitute two 
complete sets of conjugates. 

I t is well known that every group whose order is divisible 
by 2 contains an odd number of operators of order 2. More­
over, it is clearly possible to construct a group which contains 
any arbitrary odd number of operators of order 2. To con­
struct a group which contains exactly 2n + 1 operators of this 
order it is only necessary to extend the cyclic group of order 
2n + 1 by an operator of order 2 which transforms each opera­
tor of this cyclic group into its inverse. From the theorem 
mentioned in the second paragraph it follows that it is impos­
sible to construct a group whose order is of the form 2m and 
which contains an arbitrary odd number of operators of order 2. 

In view of the popular saying that 13 is an unlucky number, 
it is of interest to note that there is no group whose order is of 
the form 2m and which contains exactly 13 operators of order 2, 
but there are groups which contain exactly any other odd 
number, less than twenty-one, of such operators. The truth 
of this statement follows almost directly from the second para­
graph. I t will be included among the results of the develop­
ments which follow. In these developments it will be assumed 
that the orders of all the groups under consideration are powers 
of 2. 

The dihedral rotation group of order 2k+1 contains exactly 
2* + 1 operators of order 2, whenever k > 0. By forming the 
direct product of this dihedral rotation group and the abelian 
group of order 2^ and of type (1, 1, 1, • • •) there results a 
group in which the number of operators of order 2 is exactly 
3*4-/3 _|_ 2/3+1 __ i ^ g t j j e v a ] u e s 0f ft a n ( j k a r e arbitrary ex­
cept that k 4= 0 it follows that it is possible to construct groups 
in which the number of operators of order 2 is exactly 2X -f 2y — 1, 
where x and y can have any arbitrary pair of integral values 
with the exception of 0, 1. When the groups are abelian x — y} 

but the converse is not necessarily true. 
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From the preceding paragraph it follows that it is possible 
to construct a group of order 2m in which the number of oper­
ators of order 2 is the sum of two arbitrary powers of 2 dimin­
ished by one. We shall now prove that it is possible to con­
struct a group in which the number of these operators is the 
sum of three arbitrary powers of two diminished by one, pro­
vided the smallest of these powers is divisible by 4. I t is clear 
that we may restrict ourselves to the case when the three powers 
are distinct since the other cases reduce to those considered in 
the preceding paragraph. 

To prove this theorem it is convenient to consider the group 
((TJ) of order 2a + 2 which is obtained by taking all the operators 
of the holomorph of the cyclic group of order 2a which trans­
form this cyclic group into its 1, 2 a _ 1 — 1, 2 a _ 1 + 1, and 2a — 1 
powers respectively. These powers are distinct when a > 2. 
In this case there are 1, 2a_1, 2 and 2a operators of order 2 which 
transform the cyclic group into the respective powers mentioned 
above. I t is clearly possible to establish a (2% 2^) isomorphism 
between Gx and the dihedral rotation group of order 2 /3+2 in 
such a manner as to obtain a group ((?) which contains 
3 _|_ 2/3+1 + 2a+/3 operators of order 2, whenever fi > 0. 

As a and /3 are arbitrary independent positive integers, with 
the restriction that a > 2, it follows that the number of operators 
of order 2 in G is the sum of two powers of 2, whose indices 
differ by at least two units but are otherwise arbitrary, increased 
by 3. In GY the number of these operators is the sum of two 
powers of 2, whose indices differ by one but are otherwise arbi­
trary, increased by 3. Hence by forming the direct product of 
an abelian group of order 2y and of type (1, 1, 1, •••) into 
either G or Gx we obtain a group in which the number of opera­
tors of order 2 is 2X + 2V + 2Z — 1, where x, y, z satisfy the condi­
tion x > y > z > 1 are but otherivise arbitrary. This proves 
the theorem in question. 

I t has recently been proved that the number of operators of 
order 2 in a group of order 2m, in which more than half the 
operators are of order 2, is always the sum of two powers of 2 
diminished by one, and that it is possible to construct such 
a group in which the number of operators of order 2 is an 
arbitrary number of this form. Hence it follows from the 
preceding paragraph that groups in which less than half the 
operators are of order 2 may involve a number of operators of 
this order which could not be the exact number of these opera-
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tors in any group in which more than half the operators are of 
order 2. 

A (2% 2^) isomorphism between G{ and the direct product 
of the dihedral rotation group of order 2 3 + 1 into an operator 
of order 2 can be established in such a manner as to obtain a 
group in which the number of operators of order 2 is either 
3 + 2* + 2'3+1 + 2*+/3, or 3 + 2a+1 + 2>3+1 + 2 a+' 3- 1

J /3>0. In 
fact, it is possible to form other such isomorphisms, but 
these two seem especially useful in this connection. Moreover, 
by establishing a (2a, 2^) isomorphism between Gx and a group 
of order 2/3+2 which is constructed in the same way as Gv we 
arrive at groups which contain any of the following three num­
bers of operators of order 2 : 3 + 2a + 2^ + 2a+/3, 3 + 2a+1 + 
2^+1 + 2a+/3-2 , 3 + 2a + 1 -f 2^ + 2a+0-1. 

From the above results it follows directly that there are 
groups of order 2m which contain any prescribed number of oper­
ators of order 2 which satisfies the conditions that it is = 3 mod. 4 
and less than 124. By other considerations this limit can read­
ily be extended, but my methods seem too special to be given 
here. I t would be interesting to find a number = 3 mod. 4 which 
could not equal the number of operators of order 2 in any 
group of order 2™, or to prove the non-existence of such a 
number. 

ON T H E AKITHMETIC N A T U R E O F T H E COEF­
F I C I E N T S I N GROUPS O F F I N I T E MONOMIAL 

L I N E A R SUBSTITUTIONS. 

BY DR. W. A. MANNING. 

( Head before the American Mathematical Society, September 7, 1905. ) 

PROFESSOR MASCHKE * has proved (with a certain restriction) 
that the coefficients of finite linear substitution groups can, by 
proper transformations, be made rational functions of roots of 
unity. Professor Burnside f has also recently written on this 
subject. In this note it is proved that linear groups all of 

* Maschke, Math. Annalen v. 50 (1898), p. 492. 
t Burnside, Froc. London Math. Society, ser. 2, v. 3 (1905), p. 239. 


