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au, bv, cm, dx meet at a point S in o>, the section of these planes 
by co gives chords of the conic concurrent in 8. Thus we have 
the theorem : If points of a conic are protectively paired, they lie 
on concurrent chords, which is the foundation of the theory of 
involution on a conic. 

For the sake of brevity, as little detail as possible has been 
given in this note, the design being simply to draw attention to 
this mode of proving fundamental properties of the conic. 

BEYN MAWR COLLEGE, 
June, 1906. 

A R Z E I A ' S CONDITION FOR T H E CONTINUITY 
O F A FUNCTION D E F I N E D BY A SERIES 

O F CONTINUOUS FUNCTIONS. 

BY PROFESSQR E. J . TOWNSEND. 

( Read before the American Mathematical Society, September 7, 1905. ) 

§ 1. A FUNCTION defined by a series whose terms are con­
tinuous functions may or may not be itself continuous. I t 
may in fact be discontinuous at a set of points everywhere 
dense within the interval of definition. I t is important to 
establish a criterion by which the continuity of such a function 
may be determined. Conditions which are sufficient, although 
not necessary, are to be found in any extensive work on cal­
culus. Arzelà was the first to formulate a set of conditions 
which are both necessary and sufficient.* In his first dis­
cussion of the subject, however, he was not sufficiently rigorous, f 
A later and more rigorous development was given, differing 
from the first in some particulars. J Still more recently he 
has revised his first set of proofs and maintains that they are 
now sufficiently rigorous to be valid. § I t is the purpose of 
this paper to present in substance the final results of Arzelà's 
investigations. 

*Intorno alla continuité délia somma di infinite funzioni continue, 
Bologna, 1884. 

fSee Schoenflies, Punktmannigfaltigkeiten, p. 225, footnote. Also 
Arzelà, Sulla serie di funzioni di variabili reali, Bologna, 1902, p. 6. 

t Sulla serie di funzioni, part 1, Bologna, 1899, p. 10 et seq. 
§See Sulla serie di funzioni di variabili reali, Bologna, 1902. 
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Let us then define SJx) by the relation 

8n(x) = u^x) + u2(x) + h uK(x) + (- un(x)9 a^x^/3, 

where uK(x) and hence Sn(x) is a continuous function of as. 
Moreover, let us define ƒ (as) by the equation 

W=00 

The interval of convergence of the series is then the interval 
of definition of the function ƒ (as). The problem is to find a set 
of conditions which are necessary and sufficient for the con­
tinuity of ƒ (as) in a given interval (a, /?), equal to or less than 
the interval of convergence. 

With Arzelà, let us consider this problem as a special case 
of the following more general problem. Suppose ƒ (a?, y) to be 
a function of the two independent variables as and y, defined 
for all values of x within the closed interval (a, /3) and for 

y = (y) = Vv y2> y» • • • > & > • • -> 

yv y& Vv * " ? y»> * • • being a set of values dense at y = y0, but 
not including yQ. Let /(as, ya) be a continuous function of as 
for each value ya included in the set (y). For y = y0, let 
ƒ (as, y) be defined by the equation 

ƒ0», y0) = L ƒ(®> y.)-

The more general problem, which we shall now consider, is to 
find a necessary and sufficient set of conditions that the limit­
ing function ƒ (x9 yQ) shall be a continuous function of x in the 
interval a~x = /3. If we put ys= 1/w, n = 1, 2, 3, • • -, this 
reduces at once to the case of the infinite series given above.* 

§ 2. First of all, let us consider the necessary and sufficient 
condition that the limiting function ƒ (as, y0) shall be continu­
ous at a single point as0 of the interval (a, /3). This condi­
tion may be stated as follows : 

*The results given in this paper can be obtained, and perhaps more easily, 
without the introduction of the more general problem indicated. It is suffi­
cient for this purpose to consider £«(#) as a function of the two variables 
x, n and to make of use the principles of ordinary convergence. Arzelà's 
method has been retained, not because it has any virtue in itself, but because 
it gives an opportunity to interpret more clearly his results at a point where 
he has been criticized. 
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I. In order that the function f (x, y0), defined as in § 1 for the 
interval (a, /3), be continuous at any point x0 in this interval, it 
is necessary and sufficient that to an arbitrarily small positive 
number a- and to every yt sufficiently near y0 there shall correspond 
a neighborhood of the point xQ9 which, however, may vary in ex­
tent with yt, such that for every value of x in this neighborhood 

\Ax> y0) -f(
x> yt)\ <

<T-
We shall first show that the above condition is necessary. 

Let us suppose then that f(x, y0) is a continuous function of x 
at the point x = x0. By virtue of the limit 

Axo> Vo) = I J AXO> Î0> 

there must exist a definite number ySl of the set (y) such that 
for every yt of this set lying between ySl and yQ, we have 

(!) \A*» y0) - Axo> yt) I < * A 
where a as elsewhere in this paper is an arbitrarily small posi­

ez xo - dVo ®o œ0+âv. fi 
[I 

Xo ~ ht »o+ ht 

FIG. l. 

tive number. Because f{x, y0) is a continuous function of x for 
V = y& w e n a v e a l s o f° r s o m e neighborhood of x0, say (a?0 — S ô, 
x0 + 8yo), the inequality 

(2) \A*>îfù-A«>9>ye)\<"P> 
Likewise, because f(x, yt) is a continuous function of x, there 
exists a neighborhood (x0 — h'Vt, x0 + $yt ) on the line y = yt 

(Fig. 1), such that for every x within it 

(3) \f(x0, yt) - ƒ (x, yt) | < <r/3. 
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Combining (1), (2), (3), we have 

\f(x> yo) - / (*> yt) I < *•> 

which holds for every yt between ySl and y0 and for every x 
within a neighborhood (x0 — c? ,̂ x0 + c?y<), where d^ is the 
smaller of the two values Syo and 8^, and dyt is the smaller 
of the two values Syo and 8yt. 

The given condition may be shown to be sufficient as fol­
lows. We have by hypothesis the inequality 

(4) \f(*>yt)-f(v,yo)\<<T> 

which is valid for every value of x within a certain neighbor­
hood, say (x0 — 8', x0 + 8). The existence of the limit 

gives, for all values of yt from a certain definite value on, the 
ineq uality 

(5) \f(vo>yo)-f(xo>yt)\<(T-
By hypothesis, ƒ (x, y) is a continuous function of x for each 
value of yr Hence, for every x within a certain neighborhood, 
say (x0 — 8[, x0 + 8X), we have 

(6) \f(v0,y,)-f(v,yt)\«r-

By combining the inequalities (4), (5), and (6), we have 

I / OV 2/o) -/(*> 2/o) I < 3 *•> 
which holds for all values of x lying within the smaller of the 
two neighborhoods (x0 —- 8', xQ + 8) and (x0 — 8J, œ0 + 8,). This 
inequality establishes the continuity of ƒ (œ, y0) at the point 
X — tAŷ  d o the theorem requires. 

§ 3. Let us now consider the necessary and sufficient condi­
tion that ƒ (as, y0) shall be a continuous function of x through­
out the closed interval (a, /3). This condition Arzelà states 
in substance as follows : 

I I . In order that the function f (xf y0) deûned as in § 1 be 
continuous throughout the interval a = x ~ /3, it is necessary and 
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sufficient that to an arbitrarily small positive number a and to an 
arbitrary ys 4= yQ9 there shall correspond a positive number I and 
a finite set of values 

lying between ys and y0, for which the following condition holds : 
On lines y = ySt(t = 1, 2, • • -, p), it shall be possible to choose a 
series of segments, each of length at least equal to I, whose pro­
jections on the line y = y 9 when taken together, completely cover the 
interval a = x = /3, and for which, furthermore, the relation 

\f(x> 2/0) - / («> yO I < G 

holds, (x, ySt) being an arbitrary point on any one of these 
segments.* 

I t may be shown as follows that this condition is necessary.f 
Let ns assume then that f(x, y0) is a continuous function of x 
throughout the interval a = x^==/3. By virtue of theorem I , 
there exists for any x'(a = x = /3) and for each yt sufficiently 
near y0 a neighborhood (x — 8'yt, x + S^), which may vary 
with yt but always, however, in such a manner that for each 
value of x within it the inequality 

(i) \Ax>yo)-ffayt)\<°' 

is valid for any previously assigned positive value of o\ In 
this discussion Arzelà distinguishes between that part of the 
neighborhood to the right of x and that part lying to the left. 
Let us denote these two parts of the neighborhood by A (x , yt) 
and A'(as', yt) respectively. These two parts may or may not 
be of the same magnitude. In other words, having chosen an 
arbitrarily small positive number a and a yg at pleasure, we 
may then select any value x of the interval (a, /3), end points 
included, and there will exist upon some line y = yt lying be­
tween y =ys and y = y0 a neighborhood of magnitude A (x', yt) 
to the right of x , such that for every x within it the inequality 
(1) is valid. Let us now consider A (x', yt) for all values of yt 

included in the set (y) and lying between y0 and ys. For some 
of these values of y(, A(aj', yt) may be zero, and consequently 

* In his statement of the theorem, Arzelà does not say that the given in­
terval shall be closed. This, however, is necessary. 

fSee Sulle serie di funzioni, Bologna, 1899, p. 17, et seq. 
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for these particular values of yt no neighborhood exists to the 
right of x for which the above inequality holds. I t may 
happen that for some values of yt lying between y0 and y9 this 
inequality does not hold even for x itself. However A (x'f yt) 
cannot be zero for all values of yt lying between the above 
limits unless x is the extreme point /3; for we know that 
when yt is taken sufficiently near y0 A(cc', yt) is always greater 
than zero. Having selected x', there may exist for any par­
ticular yt a great variety of values which might be taken as the 
corresponding A(œ', y^. In what follows, let us understand 
by A (05', yt) the upper limit of all these values. This magni­
tude A(cc', yt), regarded as a function of yt for all values of yt 

between ys and y0, has an upper limit greater than zero, pro­
viding x is different from $. Such a superior limit is there­
fore definitely determined for each value of x', a and yH having 
been previously selected. Let us denote this upper limit by 
A(cc'). In the same way, consider that part of the interval 
(x' —- 8'Vt, x + Syt) lying to the left of x'', and denote by 
A'(cc') the corresponding upper limit, which must likewise be 
different from zero for x different from a. 

Consider now the sum 

A'(V) + A(V). 

This sum is uniquely determined for each value x' of x, where 
a^iœ = /3. As a function of x, it has a lower limit which we 
shall now show to be greater than zero. Denote this lower limit 
by I. There must exist then in (a, /3) at least one point, in every 
neighborhood of which the lower limit of A'(x) + A(x) is I. Let 
xx be such a point. For the point xx itself, we have the value 
^'(xi) + ^(xi)f w h î c n is certainly greater than zero. Among 
the values of (y) included between y$ and y0, there is at least 
one, say yt, for which the magnitude A(xv y^ of the neighbor­
hood to the right of xv within which for each value of x we have 

\Rx>yù-Ax>yù\<a> 
is as near A ^ ) as we may choose. In the same way, there 
exists a yr, which may be equal to or different from y0 such 
that the magnitude A ' ^ , yr) of the neighborhood to the left of 
xv within which we have for each value of x 

\Ax,y0)~-Ax>yr)\<(7> 
is as near A'(^j) as we choose to make it. 
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On the line y = yQ} consider the sub-interval 

For every value x" included within this interval, there exists 
the neighborhood (Fig. 2) 

(*„*,+%i )) 
or the neighborhood 

according as x" is to the right or to the left of xv such that for 

<* xi P 

oci-Kte^yJ 

05,-f A(a?,,2/,) 

F I G . 2. 

any value of x within these neighborhoods we have either 

\Av,yo)-Ax>yt)\<
(T 

or 
l^y0)-Myr)l<°"-

Consequently, for every value x" the corresponding value of 
Af(x) + A(#) is greater than the smaller of the two numbers 

2 ' 2 " 

The lower limit of A'(a?) + A(#), namely £, must then be 
greater than or at least equal to the smaller of the same two 
numbers. But we have already seen that these numbers can be 
made to differ as little as we choose from 
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A'foi) Afa) 
2 ' 2 ' 

respectively, and these latter are certainly greater than zero. 
Hence we have in any case 

Z > 0 . 

Since the lower limit of A'(x) + A(cc) for a ~ as = /3 is greater 
than zero, it can be shown that a finite number of segments of 
the lines lying between y = y0 and y = ys can be found fulfill­
ing the requirements of the theorem. The projections of these 
segments upon y — y0 may, and in general will, overlap. That 
a finite number of them is sufficient in order that the sum of 
their projections shall completely fill the interval (a, /3) may be 
shown by considering the end points of those parts which the 
projections contribute to the sum. If there are an infinite 
number of such points, then there must exist on the line 

a a 

i i 

FIG. 3. 

y = y0 at least one limiting point of the corresponding values 
ofx. This, however, can be avoided by the proper selection 
of the segments. For, let x0 be such a limiting point. As 
we have seen, the value of A'(x) + A(cc) for x = x0 is at least 
equal to L Hence by the proper selection of a segment, we 
have for x0 a neighborhood on y = y0 equal to or greater than I 
which is entirely free from the end points mentioned above, 
and this is contrary to the supposition that they must of neces­
sity become dense at some point. 
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I t follows then that having selected an arbitrarily small 
positive number a and a ys at pleasure, we may choose a num­
ber I > 0 and lay off on the lines 

y ==2/si? Vs2y ' " Vspi 

(ySl, yHy • • • ys ) being taken between ys and y0, a finite number 
of segments fulfilling the requirements of the theorem. In case 
any segment extends beyond the given interval (a, /8), we take 
only that portion of it which falls within (a, /3). 

The condition given by the theorem is also sufficient. To 
show this, let us suppose this condition fulfilled, and show that 
f(x,yQ) is a continuous function for the interval a = # = /3. 
Let x0 be any value of x within this interval and let ys be any 
value chosen from the set (y) dense at y0. If we assign to ys 

any particular value, say y8l, then by hypothesis there exists a 
finite number of segments of lines lying between y = ySl and 
y = y0 fulfilling the condition of the theorem. Upon some one 
of these lines, say y = yH, there exists for xQ a neighborhood for 
which 

Again, if we put ys== yS2, where yS2 lies between yh and yo, 
there must exist a finite number of segments of lines lying 
between y = yS2 and y = yo likewise satisfying the condition of 
the theorem. Upon some one of these lines, say y = yh, there 
exists for x0 a neighborhood for which 

|/(^2/0)-/(^^2)l <*"• 
Continuing in the same manner, we obtain for xo an infinite 

succession of neighborhoods each point of which satisfies the 
inequality 

\Ax>yù-f(x>yû\<a> 
where J j ytn = yo. These successive neighborhoods may vary in 

extent with ytn, but from some point on they are all different 
from zero. The condition of theorem I is therefore satisfied 
for the point x = xo and consequent ly/^ , yo) is continuous at 
that point. But x0 was any point of the given interval 
a = œ = /3, and hence f (x, y^ is continuous throughout the 
interval. With this, the demonstration is completed. 
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§ 4. As we saw in §1, the representation of a function by 
means of an infinite series of continuous functions may be 
regarded as a special case of the problem considered in §§ 2, 3. 
Theorem I, giving the necessary and sufficient condition that 
the limiting function shall be continuous for the value x = x0 

becomes the following for the case of infinite series. 
I ' . Given an infinite series 

ux{x) + u2{x) + • •• + un(x) + . . . 

whose terms are continuous functions of x for the interval 
a =. x = /3, and which converges for every value of x within the 
same intervaL In order that the function f(x) defined by this 
series be continuous at a point x0 of the given interval, it is neces­
sary and sufficient that for an arbitrarily small positive number a 
and for every value of n greater than a sufficiently large number 
m there shall exist a neighborhood, which, however, may vary in 
extent with n, such that for every value of x within it we have 

\f(x)-Sn(x)\^\Bn(x)\<cr, 

where Sn (as) denotes the sum of the first n terms of the series and 
HJx) is the remainder. 

From theorem I I we obtain the necessary and sufficient con­
dition that f(x) shall be continuous throughout the given in­
terval aH==x=$. This condition may be stated for the in­
finite series as follows : 

I I ' . Given an infinite series of continuous functions which 
converges toward a limit f(x) for each value of x within a definite 
interval a = x=./3. In order that f(x) shall be continuous 
throughout this interval, it is necessary and sufficient that for an 
arbitrarily small positive number cr and for any integer mx there 
shall exist another integer m2 > mx such that for some integer m 
lying between mx and m2 we have 

\f{x)-8Jx)\ = \RJp)\«r, a^x^/3, 

where, however, m may change its value a finite number of times as 
x varies from a to /3. 

When we regard x and 1/n as the rectangular coordinates of 
a point in a plane, the above theorem may be stated more clearly 
perhaps as follows, where we make the same assumptions as 
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before concerning the nature of the terms of the infinite series 
and its convergence. 

I I " . An arbitrarily small positive number <r and an integer 
m being chosen entirely at pleasure, then in order that f (x), defined 
as above, shall be continuous throughout the interval a~x=/3, 
it is necessary and sufficient that there shall exist a finite number 
of segments of the lines 

n = m+px, m + p 2 > . . . , m+pr 

fulfilling the following conditions : The sum of the projections of 
these segments upon the x-axis shall fill the entire interval a = x = /3, 
and every point (x, 1/n) of these segments shall satisfy the inequality 

\f(x)-Sn(x)\ = \Rn(x)\<*. 

Theorems I I ' , I I " introduce a kind of convergence of infinite 
series which Arzelà has called uniform convergence by segments 
(convergenza uniforme a tratti), although sub-uniform conver­
gence seems a more appropriate name.* I t differs from ordinary 
uniform convergence in that for uniform convergence each segment 
must fill the entire interval in question, and, moreover, such a 
segment must be present for every value of n greater than some 
given integer. As we have seen, neither of these conditions has 
to be fulfilled for the case of sub-uniform convergence. In fact, 
a series might converge sub-uniformly in a given interval and 
yet not be uniformly convergent in any sub-division of that 
interval, however small. 

On the other hand, sub-uniform convergence differs from the 
simple uniform convergence (einfach gleichmâssige Convergenz) 
introduced by Dini.f While Dini's simple uniform convergence 
is like sub-uniform convergence in that it does not require that 
the segments mentioned in the theorem shall be present for all 
values of n from a certain point on, it differs from sub-uniform 
convergence in requiring that these segments shall each fill the 
entire interval in question. From these considerations it fol­
lows that when we have uniform convergence of a series in the 
ordinary sense, or simple uniform convergence in the Dini sense, 
the series converges sub-uniformly in the Arzelà sense. The 
converse, however, is not true. Since sub-uniform convergence 
is the necessary and sufficient condition for the continuity of 

* See also Moore: BULLETIN, vol. 7, March, 1901, p. 257. 
f See : Grundlagen, etc., p. 137. 
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the limiting function, it follows from what has been said that 
any series which converges uniformly or simply uniformly 
defines a continuous function, provided the terms of the series 
are also continuous functions within the given closed interval. 

The distinction between these various kinds of convergence 
is illustrated by the following examples. 

1. Let f(x) be defined by the series 

1 + x + x2 + xB H + xn H , 0 ^ x ^ J. 

We have then 

w W X — l ' JK J 1 — x' ' n W I X — l 

I f now we select <r arbitrarily small, we can determine a value 
of n, say nv such that for n > nx we have 

|£»l<* 
for all values of x for which the series is defined. In other 
words, if we consider any of the points on the lines given by 
putting 

n=nv n1+ï9 nx + 2, . . . 

the above inequality holds for all values of x within the given 
interval. The series converges uniformly therefore within this 
interval. We have also simple uniform convergence, since 
the projection of each of these segments upon the œ-axis fills 
the entire interval 0 = x = J and the corresponding values of 
n from a set dense at infinity. Moreover, the series converges 
sub-uniformly ; for it is at once evident that the conditions of 
theorem I I ' ' are satisfied. 

2. Given the series whose terms are formed in accordance 
with the following law : 

x 
%hm~1 = mx* + (1 - mxf ' 

— x 
Ulm = (m + l)x2+ [1 — (m+ 1>] 2 ' 

( m = l , 2 , 3 , . . S - J S ^ S J ) . 
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The series converges for all values of x within the given in­
terval and gives 

J V J X2, + 1 —• X 

When n is odd, say of the form 2m — 1, we have 

x 

Hence for all odd values of n} however large, we have 

On the other hand, when n is even, say of the form 2m — 2, 
we have 

8n(x) = œ 2 +(l_œ) 2 "" mK?+(l--mx)*> \Rn(x)\= mx2+(l-mx)2 

As n takes increasing even values, it is impossible to find any 
integer beyond which for all such values of n, and for all values 
of x within the given interval, the inequality 

l-R»l<* 
shall exist when we choose <r < 1. This follows from the fact 
that the values of Ii2n(»)| approach 1 along the line x = 1/m 
as n approaches infinity. Hence for cr < 1, those segments 
which fill the entire interval — i ^ œ = J, and for each point of 
which the above inequality is valid, can exist only for odd 
values of n. These values of n are, however, dense at infinity. 
Hence we have simple uniform convergence, but not ordinary 
uniform convergence. However, the conditions of theorem I I ' ' 
are satisfied and the series converges sub-uniformly. 

3. Given the series, the sum of whose first n terms is 

7} X 

SXX) = i—->—TV ~ ! — » — + 1 nK } 1 + n2x2 

This series converges for each value of x within this interval 
and gives 

A*) = L sjx) = o. 
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For any finite value of n} Sn(x) at one point on the line x = 1/n 
is equal to J and at one point on the line x = — 1/ti is equal to 
— J. Hence, for cr < J , there are no segments filling the entire 
interval (— 1, + 1) such that for each point of them we have 

\Bn(x)\«r. 

I t follows that the series does not converge uniformly in the 
given interval, nor do we have simple uniform convergence. 
However, the series does converge sub-uniformly ; for we may, 
for any arbitrary <r, select the required segments as follows. 

First of all, consider the series for values of x in the neigh­
borhood of x = 0. For x — 0, we have 

/(o) = IA(o) = o. 
W=00 

Hence there exists a definite value of n} say n = nv such that 

(i) i/(o)-^(o)l<i-

Because SJx) is continuous in x, there exists upon the line 
n = nx an interval (0 — Sni> 0 + S^) such that for every value 
of x within it, we have 

(2) KW-WKj 

Moreover, since f(x) equals zero for all values of x within the 
given interval (— 1, + 1), we have for all values of x under 
consideration the inequality 

(3) |/(*)-/(0)|<f. 

By combining the inequalities (1), (2), (3), we obtain the 
following relation 

(4) |/(*)-^)|H^(*)l<^ 
which holds for all values of x within the interval (0 — Bni9 

0 + B^) taken on the line n = nv Excluding this sub-interval 
from consideration, the given series converges uniformly through-
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out the remaining portion of the interval (— 1, + 1). Hence, 
for the same value of <r, we can find on some line n = n2, 
n2 > nv a segment filling the entire remaining part of the given 
interval which lies to the right of x = SWl, such that at each 
point of this segment the inequality 

is valid. For the same reason, we can find on some line 
n = ns, nB > nv a segment filling the remaining part of the 
given interval to the left of the point x = — SWl, such that for 
each point of this segment the above inequality holds. 

- 1 x=J) 

-6» 

r/n 

+1 

H-Om 

X 

n—«3 

FIG. 4. 

The three segments taken together satisfy the conditions of 
theorem I I ' , and hence the series converges sub-uniformly in 
the interval — 1 = # = 1. 
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