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S E R I E S WHOSE PRODUCT IS ABSOLUTELY 
CONVERGENT. 

BY PROFESSOR FLORIAN CAJORI. 

(Read before Section A of the American Association for the Advancement 
of Science, Pittsburg, July 1, 1902.) 

§ 1. That two absolutely convergent series yield an abso­
lutely convergent product was first shown by Cauchy.* About 
three quarters of a century later Alfred Pringsheim pointed 
out that an absolutely convergent product may result also from 
the multiplication of a conditionally convergent or even a di­
vergent series by an absolutely convergent series.f That the 
product of two conditionally convergent series, or of a condition­
ally convergent series and a divergent series, or of two diver­
gent series, may be absolutely convergent was first made public 
by the present writer. J Thereupon Alfred Pringsheim treated 
the subject from a more general point of view and, by very 
simple methods, showed that the property in question is typical 
of certain classes of series. § The present writer developed a 
new class of series possessing this property, demonstrated the 
validity of the fundamental laws of algebra in the multiplication 
of infinite series, and generalized a theorem of Abel on the 
multiplication of series.|| In the present article we aim to 
generalize some of the results previously obtained relating to 
absolutely convergent products of two or more series. 

§2. In this investigation we shall start with an absolutely 
convergent series and determine pairs of series which are factors 
of the assumed series. Given the absolutely convergent series 
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r=Q * Analyse Algébrique, 1821, page 147. 
•\Math. Annalen, vol .21 (1883), pp 357-359. 
J Transactions of the American Mathematical Society, vol. 2, pp 25-36, Jan­

uary 1901; Science, new series, vol. 14, p. 395 September 13, 1901. 
§ Transactions of the American Mathematical Society, vol. 2, pp. 404-412, 

October, 1901. 
|| BULLETIN, 2d series, vol. 8, pages 231-236, March, 1902. 
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er is the general term of any absolutely convergent series, say 

1 
r = (z + r)[log(z + r)y' 

X > 1, and cr, er are constants either real or complex. That 
series (1) is absolutely convergent becomes evident, if we ob­
serve that it is the product formed according to Cauchy's multi­
plication rule, of the two absolutely convergent series 

Z c e and V* ce . r r Zs r r 

Let us assume 
ar_s - ar = crer, (2) 

where s and t are positive integers, a and b are real or complex 
numbers and hr is an odd or an even power of — 1. Let it be 
agreed that a and b cannot have negative subscripts ; in other 
words, that a = 6 = 0 . We have 

r=n r=n 

I L = y ^ C 6 - c ' e = y h (a — a)(b f — b ) . 
n J^J r r n—r n — r Zmmé n—r \ r—s r/ \ n—r—t n — r/ 

If we perform the indicated multiplications and collect the co­
efficients of ar, we obtain 

un = y a (— h b . 4- h b + h b 
n £^1 r\ n—r n—r—t ' n—r n—r ' n—r—sn—r—t — t 

(3) 
- h b ) . 

n—r—s n—r—t/ 

If we assume hx = — hx+t, we have 
r—n 

un = V (a , + a ) (h b —A b X (4) 
n jr^ \ r—t • rf \ n—r n—r n—r—s n—r—*/ \ / 

r=0 

I t will be noticed that if, in the two terms in (3) which involve 
the factors ar and ar_t, respectively, we remove the parentheses, 
we obtain eight terms which are distributed among three terms 
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of the series in (4), namely the three terms which involve, re­
spectively, the parentheses 

K_2, + O , K_( + ar), (ar + ar+t). 

From the inspection of series (4) we readily see that the 
series (1) may be considered to be the product of the following 
two series : 

]C K _ , + ar)ssa0 + a1+ \- at_x + (a0 + at) 

+ K + a,+1) + 
and 

r = co 

J2 ( M r — h-sbr-s) = hh0 + k A + f" K-A-i 

(6) 

According to the condition hr = — hr+t9 we are permitted to 
choose any sign we please for any t consecutive factors hr. 
After such a choice has been made, the signs represented by any 
of the other factors h are determined. 

X 

Since relations (2) are the only conditions imposed upon the 
values of a and 6, it is possible to choose these values so that 
each of the series (5) and (6) is absolutely convergent, con­
ditionally convergent, or divergent. Thus, if \ar\ is of the 
order of magnitude er9 series (5) is absolutely convergent ; if 

\ar_t + ar\ - ^-- ^ ] o g (r + g y 

but approaches the limit zero as r increases indefinitely and if 
(a-r-t + &r) is opposite in sign to and has greater numerical value 
than (ar-t+i +'ar+i)> then (5) is conditionally convergent ; if 
\a-r-t + a

r\ does n ° t approach the limit zero for all values of 
r, as r increases indefinitely, the series (5) is divergent. Simi­
larly for (6). Yet in every case, the product of (5) and (6) is 
absolutely convergent. 

Since, so far as we know, no two divergent series with com­
plex terms have before been given, whose product is absolutely 
convergent, it may be well to construct a special example. Let 

(5) 
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ar = br = A + Brer, where A and Br are complex constants. 
Moreover, let s = 1 and t = 2, A0 == — Ax = + 1. I t will be 
seen that values which are not infinite can be assigned to the 
coefficients er and c'r so that equations (2) are satisfied. By 
substitution in the two series (5) and (6) we obtain the following 
two series : 

8, ^(A + B0e0) + (A + B&) + (2A + B2e2 + B0e0) 
+ (24 + Baea + BA) + 

+ ' 
,) - (2A + BA + B0e0) - (B2e2 - BA) 
(2A + Bsea + B.A) + (BA - BA) - • • 

(?) 

I t will be seen that both series in (7) are divergent and com­
plex, and that their product is absolutely convergent. Another 
pair of complex series possessing this property is given at the 
close of this article. 

Since all the terms in the series Sx are preceded by the posi­
tive sign, it is readily seen that any positive integral power of 
Sx is a divergent series whose terms increase numerically with­
out limit as r increases without limit. The same conclusion 
holds for the series S2. Since 8X • • • 82 • • • 8X • • • S2 • • • [to p pairs 
of factors] = (8X82) (8^82) '" [ t o P parentheses] = S? • • •$£, and 
since 8X • • • 82 is an absolutely convergent complex product, it 
follows that the product of the two complex series S* and $f, 
the terms of both of which increase numerically without limit 
as r increases without limit, is absolutely convergent, no matter 
how large a value the integer JÖ may have.* 

If we let ar and br be positive and decreasing monotonously 
toward zero in such a way that 2a r and 26 r are both divergent, 
if moreover, t= 2, s = 1, A0 = -f 1, ^ = — 1, then (5) and (6) 
reduce to the two following series, one divergent, the other 
conditionally convergent, given by Pringsheim :f 

r + ra £ (flr-, + «,) and E ( " 1) L 2 J (&_! + ( - 1) - 1 K). 
r = 0 r = 0 

*8ee RULUSTIN, 2d series, vol. 8 (1902), pp. 233-236. 
f See Transactions of the American Mathematical /Society, vol. 2, p. 408, equa­

tion (B). The notation --„— signifies here the largest integer contained 

. r — 1 
i n - - . 
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In order fco deduce from (5) and (6) the pair of conditionally 
convergent series, whose product is absolutely convergent, 
which we gave in the BULLETIN, volume 8 (1902), page 231, 
let s = t == 4 ; h0 = \ = h2 = hs = + 1 ; r = 4i>, 4v + 1, 4v + 2, 
or 4v + 3 ; r ' = 4v. Let moreover the parenthesis (ctr_t + ar), 
which we represent for convenience by a'r) be a real number 
which is positive when r = 4v or 4v + 1 and negative when 
r = 4v + 2 or 4v + 3, and such that |a'r\ =r~u, where 
J < w = l , and 2|aJ.| is divergent. Without violating con­
ditions (2) we may assume further 

a r '+2 : = ar'+3> | a r '+2 | — <V+4 = 6r'-f 4 ^ Wr'+4> 

where wr is a quantity numerically not greater than 

1 
(2+r) 2 - w [ log(2 + r)]A* 

Similarly we may assume, without violating conditions (2) , 

hrbr-hr_.br_t = b'r) | & ; | * r ~ ' f 16; | divergent, 

2/ a real number which is positive when r = 4v and 4v + 2, 
and negative when r = 4v + 1 and 4v + 3 ; also 

5 r ' = &r'+2> J r ' - I 6 r ' + l I = V =*= «V> 

5 ^ + 1 = &^+8, &;,+4 - 1 &;,+11 = e / + 4 ± w / + 4 . 

There result from these assumptions the two conditionally con-
r=«o r=co 

vergent series ] P a/ and ]T) b'r, whose product is an absolutely 

convergent series, which were previously given by us in the last 
mentioned article. 

§7. If we are given a series 

E (<»_, + ar), 
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such that ar_g — ar = crer, it is quite evident that we can 
always find a mate for it, such that the product of the two 
shall be absolutely convergent. 

Again it is possible to find two series, every term in the 
product of which, after the (t + l)th term, vanishes identically. 
Moreover, the two series may be so chosen that the product 
possesses the additional property of having for its sum any 
desired finite number N. To bring this about modify condi­
tions (2) thus, 

ar-s — ar = °drj 

where d is any number, and, for r ^ ty 

h(b ~ 6 ) = 0. 
r\ r—t r/ 

r=<x> 

Then]P ur is still absolutely convergent. Let t be even and 
r=0 

ht_x = dbt_2 = d2bt_B = . •. = d P - % 

Then we have, for r = t, 

ur = bQcdr - bQd • cdr~] + b0d
2. edr'2 b0d<-1. cdr-^1 == 0. 

Under the above conditions the two series (5) and (6) have a 
product, every term of which, after the (t + l) th term, vanishes 
identically. 

To make the sum of the product of the two series (5) and 
(6) equal to Ny place the sum of the first t + 1 terms in the 
product equal to N and then determine the values of d which 
satisfy this condition. 

Thus, let t = 2, s = 1, c = + 1, then from ar_t — ar = d!2, 
for r = 1, we get the series (5) (the first term of which is as­
sumed to be a0) 

a0 + (a0 - d) + (2a0 - d - d2) + (2a0 - 2d-d2 - d3) 

+ (2a0 - 2d - 2d2 - d? - d4) + • •.. 

Assuming b0 = 1, the series (6) becomes 

1 - (d + 1) + (d - 1) + (d + 1) - (d - 1) - (d + 1) 
+ ( d _ l ) + . . . . 
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All the terms in the product of these two series, after the second 
term, vanish. Putting the sum of the first two terms = N= 0, 
we have a0 •— d (a0 + 1) = 0. If we assume a0 = — Jg°-, then 
d = 10, and the two factor series become 

f 7 / = l — 11 + 9 + 1 1 — 9 — 11 + 9 + 1 1 

Since U- TJ' = 0, we have Up • U'p = 0. As all the terms in 
U are of the same sign, it is easily seen that Up is divergent 
for all positive integral values of p. XV and U'p are also 
divergent. 

§ 8. If wTe assume t = 2, s — 1, c = — 1, a0 = 1, 60 = 1, 
iVr== 0, then the condition that the sum of the product of (5) and 
(6) shall vanish becomes d2 + 1 = 0 and (letting i = j / —• 1) 
the factor series thus obtained are the two complex divergent 
series 

1 + (1 + i) + i + 0 + 1 + (i + 1) + i + 0 + • • • 

1 - ( 1 + i) + (i - 1 ) + (i + 1) - (i - 1 ) - (i + 1 ) + • • • 

COLORADO COLLEGE, COLORADO SPRTNGS, 
April 12, 1902. 

THREE SETS OF GENERATIONAL RELATIONS 
DEFINING THE ABSTRACT SIMPLE GROUP 

OF ORDER 504. 
BY PROFESSOR L. E . DICKSON. 

(Read before the American Mathematical Society, October 25, 1902.) 

1. CONSIDERABLE interest attaches to the simple group of 
order 504. The existence of this simple group was discovered 
by Professor Cole.* This was one of the facts that lead Pro­
fessor Moore f to his investigation of the linear fractional group 
in the general Galois field, resulting in the discovery of a new 
doubly infinite system of simple groups. 

* " O n a certain simple group," Mathematical Papers, Chicago Congress of 
1893. 

t BULLETIN, December, 1893 ; Mathematical Papers, Congress of 1893. 


