
1900.] GROUPS OF AN INFINITE ORDER. 121 

Similar examples for a larger number of functions can 
readily be built. 

The following theorem however is true : 
If uv u2, •••, un are single valued functions of the real variable 

x defined at every 'point of a certain interval and having at every 
point of this interval derivatives of the first n — 1 orders, and if it 
is possible to strike out the last row and one of the columns of the 
determinant D in such a way that there is no point of the interval 
in question at which the remaining determinant and its derivative 
both vanish, then if D vanishes at every point of the interval, the 
functions uv uv •••, un will be linearly dependent throughout this 
interval. 

This theorem can be readily proved by a slight extension 
of the method given for instance by Heffter in his book on 
linear differential equations p. 233. 

EMS, GERMANY, 
September 15, 1900. 

[Note added November 2, 1900 : I have just found in Pas­
cal's book on determinants a reference to three papers by 
Peano (Mathesis, vol. 9 (1889), p. 75 and p. 110; Rend. d. 
Accad. d. Lincei, ser. 5, vol. 6 (1897), 1° sem., p. 413), in 
which the question which I have here considered is taken 
up. My result is however different from Peano's, wThich 
states that the identical vanishing of D is a sufficient con­
dition for linear dependence, provided there is no point at 
which the first minors corresponding to the elements of the 
last column all vanish.] 

REPORT ON T H E GROUPS OF A1ST INFINITE 
ORDER. 

BY DE. G. A. MILLEK. 

(Bead before Section A of the American Association for the Advance­
ment of Science, New York, June 28, 1900. ) 

VARIOUS terms have been employed to designate the 
smallest elements of which any abstract group is composed. 
Cay ley has called them symbols,* or symbols of operation. 
Dyck and many others have called them operations f or 
operators. Frobenius and others have called them ele­
ments. % In what follows we shall employ the last one of 

*Cayley, Phil. Magazine, vol. 7 (1854), p. 41. 
fDyck, Math. Annalen, vol. 20 (1882), p. 1. 
tFrobenius, Crelle, vol.86 (1879), p. 218. 
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these terms. According to the early definitions of an ab­
stract group a set of distinct elements becomes a group with 
respect bo a given law of combination when it has the prop­
erty that no new element is obtained by combining the ele­
ments of the set in every possible manner according to this 
law of combination. * In recent years the following ad­
ditional conditions have been imposed : 

(1) The elements must be associative when combined ac­
cording to the given law. (2) From either of the two equa­
tions sxs2 = s/s2, s2s, = s2sx

f it follows that sx = s/. (3) If any 
two of the elements of the equation 8X82 = ss are in the given 
set there is one and only one element in the set which may 
be used for the third. This definition is much more explicit 
than Cay ley ' s dictum f " a group is defined by the law of 
combination of its symbols," since it is easy to give definite 
laws of combination of a set of distinct elements which do 
not form a group. Every particular group is, however, 
defined by the special laws of combination of its symbols— 
by its own multiplication table. 

One of the best known examples of a group of an indefi­
nitely large order is furnished by the totality of finite in­
tegers when they are combined by addition. If we denote 
by s~a the inverse of sa, it is clear that the negative expo­
nents of elements may be used to indicate subtraction and 
that the identical element is s° = 0, when the elements of 
a group are combined by addition. In general, if s repre­
sents any integer, the exponent of s will indicate the num­
ber of times this number is to be added or subtracted. The 
given group of indefinitely large order is evidently generated 
by sx = 1 as well as by s2 = s^1 = — 1, but by no other 
one of its elements. While <p(m) of the elements of any 
cyclical group of a given finite order m are generators of 
the group we have here a cyclical group of an indefinitely 
large order which contains only two generating elements. 
All the multiples of any integer whose absolute value exceeds 
unity constitute a subgroup of this group and each one of 
these subgroups is of an indefinitely large order and involves 
only two elements that generate it. 

In order to obtain a subgroup of a finite order m we 
may take the complete series of smallest positive residues 
mod. m (0,1,2, 3, •••, m—1). When we add any two numbers 
of this series and use the smallest positive residue in place 
of the sum we evidently obtain some number of this series. 

*Cayley, loc. cit.; Lie, Le centenaire de l'École normale, 1895, p. 486 ; 
Klein, Vorlesungen über das Ikosaeder, 1884, p. 5. 

tCayley, Amer. Jour, of Math., vol. 1 (1878), p. 51. 
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As the other group conditions are satisfied we have here a 
cyclical group of order m which is generated by any one of 
the <p(m) numbers that are not greater than m and prime to 
it. Hence we observe that the finite integers, when com­
bined by addition, furnish very elementary examples of 
groups of any given finite orders as well as of groups of in­
definitely large orders. 

Since x cannot be an integer in such an equation as 
àx = 19, it follows that the integers do not constitute a 
group with respect to multiplication.* The finite commen­
surable numbers which exceed zero, on the contrary, con­
stitute such a group. Those which are less than zero do not 
constitute a group; but, together with those that exceed zero, 
they clearly constitute a group with respect to the given 
operation. This group of infinite order is included in the 
one formed by all the real numbers with the exception of 0 
and oo. The latter group is, in turn, included in the abelian 
group formed by multiplying together all the complex num­
bers whose absolute value is neither 0 nor oo. The finite 
commensurable numbers, including 0, evidently constitute 
a group of infinite order when they are combined by addi­
tion and this group is included in the one formed by all the 
real finite numbers. The totality of complex numbers of 
finite absolute value constitute a group, with respect to ad­
dition, of which the preceding is a subgroup. 

Although all the integers do not form a group with re­
spect to multiplication, yet it is clear that all the powers of 
any finite integer, with the exception of 0 and 1, constitute 
a group of an indefinitely large order with respect to this 
operation. In order to obtain a group of a finite order by 
multiplying integers together we may take the <p(m) positive 
numbers which are less than m and prime to it and replace 
their products by the least positive residues mod. m. We 
thus obtain a very important class of abelian groups which 
has been studied recently by Weber and others, f 

While the fundamental operations addition, multiplica­
tion, and their inverses furnish such lucid examples of 
groups of an infinite as well as of a finite order, yet it is not 
customary to claim that the theory of groups is as old as 
these elementary operations. At least one group property 
of these operators must have been observed very early; 
viz., that the successive application of two elements is equiv­
alent to the single application of some one of them. While 

* Weber, Lehrbuch der Algebra, 1899, p. 4 ; of. ibid., 1896, p. 54. 
f Weber, Lehrbuch der Algebra, 1899, p. 60. Cf. Burnside, Theory of 

groups of a finite order, 1897, p 239. 
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this concept is of great theoretic interest yet it did not 
enter explicitly into the early use of these fundamental 
operations and hence it may perhaps be said to have played 
a secondary rôle in the developments along this line. 

The concept of group of an infinite order appears in many 
other early developments but the earliest extensive paper in 
which this concept occupies a very prominent place seems 
to be the " Mémoire sur les groupes de mouvements,'' by 
Jordan, which was published in the Annali di Matematica, 
vol. 2 (1868).* No general definition of a group occurs in 
this memoir but on page 181 a "définition caractéristique 
d'un groupe de mouvements" is given, which is in accord 
with the present definition. An abstract of this memoir was 
published somewhat earlier in the Paris Comptes rendus, vol. 
65 (1867). In the beginning of the memoir Jordan points 
out that the determination of all the groups of movements 
is equivalent to the determination of all the possible systems 
of molecules which can be superposed in different positions. 

Bravais had studied particular cases of this question/at a 
much earlier date from the latter point of view, f and ap­
plied his results in the study of the structure of crystals. 
Since Jordan's memoir was inspired by the work of Bravais 
it might perhaps be said that the theory of groups of an in­
finite order has its source in the theory of the structure of 
crystals. However, the group concept does not occupy as 
prominent a place in the works of Bravais as in the mentioned 
memoir of Jordan. We proceed to give an elementary ex­
position of the first part of this memoir with a view to giv­
ing an accurate idea of its contents. After some prelimi­
nary remarks and a brief study of the composition of 
movements the author proceeds to determine all the groups 
of translations in the following manner : 

The lengths and the directions of all the translations of 
the group are represented by line segments starting from a 
general point P. I t is first assumed that all of these seg­
ments are of finite lengths and the length of the shortest 
segment Lx (or one of the shortest segments, if. there is more 
than one of minimum length) is represented by I. The 
line through Lx is taken for the #-axis. An indefinite num­
ber of segments of length I are laid off on the œ-axis starting 
from P. The point P can evidently be transformed into 

*Cf. Frioke und Klein, Automorphe Functionen, vol. I., 1897, p. 12. 
Klein seems to have been the first to make prominent use of the concept 
of discontinuous groups of an infinite order in function theory; cf. Dyck, 
Math. Annalen, vol. 20 (1882), p. 2, footnote. 

f Bravais, LiouviUe1 s Journal, vol. 14 (1849), p. 167. 



1 9 0 0 . ] GROUPS OF AN INFINITE ORDER. 125 

any one of these points of division on the a^axis by means 
of some translation of the group. If P could be translated 
into any other point on the rc-axis, its distance from P would 
be ml do. r, m being an integer and 0 < r ^ / / 2 . If we com­
bine this translation with the translation through — ml, 
which is also in the group, we obtain a translation whose 
length cannot exceed 1/2. As this is contrary to the hypo­
thesis, it follows that the points of division can be trans­
formed into none of the points on the #-axis except points 
of division, by all the translations of the group. 

After proving that all the translations parallel to the 
#-axis are generated by a single translation the author pro­
ceeds to determine all the possible translations in the plane 
and proves that all of these are generated by two trans­
lations which make a finite angle with each other. This is 
done as follows : Among the given line segments starting 
from P we take one L2 whose extremity is at a minimum dis­
tance from the #-axis and represent this distance by d. The 
first object is to prove that ô must be finite. We may as­
sume that the projection a of L2 upon the #-axis does not 
exceed \ I since the group involves translations of length I 
parallel to the #-axis. Since the length of L2 cannot be less 
than I, we have 

T = x/«2 + tf» = J t + 0% or a - ^ - j P . 

On the line through L2 an indefinite number of segments of 
the same length as L2 are laid off, starting from P. Through 
the points of division lines are drawn parallel to the rc-axis 
and through the given points of division of the #-axis lines 
parallel to L2 are drawn. The plane is thus divided into 
parallelograms, as is usually done in the studv of doubly 
periodic functions. I t is then proved that the vertices of 
these parallelograms can be transformed only among them­
selves by all the translations of the group and hence there 
is no finite translation in the plane determined by Lx and 
L2 except those which are generated by the translations rep­
resented by the segments Lx and L2. From this it follows 
that there are two and only two groups of translations, involving 
only finite translations, in a given plane. In one of these groups 
all the translations are parallel to a given line ; in the other 
they are generated by two translations making a finite angle 
with each other. 

If a group contains any finite translations in addition to 
those given above they cannot lie in the plane determined 
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by .Lj and L2. We choose one of them, having a minimum 
projection ft upon the normal to the given plane, and rep­
resent it by Lr The length of ft may be proved to be finite 
by the following method. The projection of L% upon the 
given plane may be assumed to lie in any one of the four 
parallelograms which have P for a common vertex. This 
parallelogram is so chosen that the distance from the #-axis 
to the terminus of the given projection is ^d/2. Since Ls 
cannot terminate closer to the #-axis than L2 it follows that 

**<!*+? o* /^r 5-
Space is now divided into parallelepipeds whose vertices 

are the points into which P may be translated by all the 
operators of the group generated by the translations repre­
sented by Lv L21 L3. I t is readily proved that a vertex of 
such a parallelepiped cannot be transformed into any point 
except a vertex by means of the translations of the group. 
This is therefore the largest group composed entirely of 
finite translations in ordinary space and the two groups 
mentioned above are subgroups of this one. Every point of 
space which is not a vertex of the given system of parallel­
epipeds will clearly be transformed into a vertex of a similar 
system of parallelepipeds by the translations of this group. 

There are six groups of translations that involve indefi­
nitely small translations. The first of these is generated 
by a single infinitesimal translation, the second by an infi­
nitesimal and a finite translation not in the same direction, 
the third by an infinitesimal and two finite translations the 
three translations being not co-planar, the fourth is gene­
rated by two infinitesimal translations not in the same 
direction, the fifth by two infinitesimal and one finite trans­
lation not in the same plane, and the sixth by three infini­
tesimal translations not in the same plane. The last of these 
groups includes all the others as subgroups and each one of 
these nine groups is of an infinite order. 

After the groups which involve only translations have 
been determined the author proceeds to the groups which 
are composed of rotations only. Here the matter becomes 
somewhat more difficult. The first step is to prove that all 
the axes of rotation must go through the same point. This 
is done as follows : Let Rv E2 be two such rotations. Their 
combination E1 R2 = P8 is a new rotation around some axis 
Ar Let x be a point on Ar Rx will bring x to some new 
point xy Hence the axis of R1 must lie on the plane per-
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pendicular to the segment joining x and x1 at its middle 
point. Since B2 must transform xx into x its axis must lie 
in the same plane. Hence the axes of any two rotations 
must go through the same point. Since this point is trans­
formed into itself by the two rotations Blf E2 it must also 
lie on A3. As Az passes through the point x, which is 
not in the plane of the axes of jR, and B2, the three axes of 
rotation cannot lie in the same plane. Since any other 
axis of rotation has to meet each of these three lines it must 
go through their common point, as the lines are not in the 
same plane. This proves that all the axes of a group com­
posed entirely of rotations must be concurrent. 

I t is not difficult to see that there are at least eight 
groups which are composed of rotations only. The first 
is generated by the rotation through an angle 27r/n, n being 
any integer. The second is generated by rotating through 
an infinitesimal angle. The third and fourth are generated 
by adding to each of the preceding a rotation through 180° 
around an axis perpendicular to the given one. The fifth, 
sixth and seventh are the well known rotations which 
transform the regular tetrahedron, the cube, and the 
regular icosahedron * into themselves. These groups are 
respectively of order 12, 24, and 60, and may be repre­
sented as the alternating group of four letters, the sym­
metric group of four letters, and the alternating group of 
hye letters respectively. The eighth is composed of all the 
possible rotations around a point. The proof that there is 
no other group of rotations is somewhat lengthy, and we 
shall not enter upon it. 

The greater part of the memoir under consideration is 
devoted to groups which involve both rotations and transla­
tions. These have recently been studied by Schönflies, who 
published his results in two well-known memoirs, f I t may 
be remarked that Jordan's memoir is not entirely free from 
errors. Sohncke seems to have been the first to observe 
that an important class of groups was overlooked in the 
memoirs mentioned. J The determination of all the con­
tinuous groups of euclidean and non-euclidean movements 
in a space of three dimensions was first published by Lie. 

Although groups of an infinite order were studied before 
Lie and Klein began to publish on this subject, yet they 
were the first to bring them prominently before the pub-

*Cf Klein, Vorlesungen über das Ikosaeder, pp. 1-19. 
^ Math. Annalen, vol., 28, pp. 319-342 ; vol. 29, pp. 50-80 ; cf. Schön­

flies, Chicago Mathematical Congress Papers, 1896, p. 341. 
X Theorie der Krystallstruktur, 1879, p. 26. 
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l i e * Their investigations along this line are so far reaching 
and so numerous as to deserve a report by themselves. Hap­
pily the German Mathematical Association has arranged for 
a report on Lie's work, which is expected to be presented at 
the meeting of next year (1901). The report is to be pre­
pared by Engel assisted by Scheffers, Schur, and Kowalewski 
—men who are in the best possible position to prepare an 
extensive and reliable report in reference to the work of this 
great Norwegian mathematician. In view of this fact we 
shall not consider the works of Lie and his followers in the 
present report. 

In 1882 two remarkable memoirs, dealing with groups of 
an infinite order, appeared. One of these was published by 
Dyck in the Mathematische Annalen, volume 20, and the other 
by Poincaré in the Acta Mathematica, volume 1. These 
articles have received so much attention that it seems un­
necessary to give an outline of them. Burnside has de­
voted Chapter X I I . of his Theory of groups of a finite order 
(1897) to an exposition of Dyck's memoirs, while many 
parts of Poincaré's memoir are elucidated in the work on 
Automorphic Functions by Fricke and Klein, which also 
appeared in 1897. 

This last work makes a clear distinction between continu­
ous groups and groups which contain infinitesimal transfor­
mations. I t is easy to prove that a continuous group al­
ways involves infinitesimal transformations, for if T is any 
transformation of the group and T' the transformation ob­
tained by using parameters which differ by an infinitesimal 
from those of T then T' T~x is infinitesimal. However the 
existence of infinitesimal transformations does not prove the 
group continuous. Attention is called f to the fact that in 
Lie-EngePs work on Transformationsgruppen and in Poin­
caré's memoir not sufficient emphasis is laid upon this 
distinction. The work of Fricke and Klein on the group­

a i . Klein, Erlangen Programme (1872), BULLETIN, vol. 2 (1893), p. 
215. Lie's contributions are systematically treated in the three volumes 
of his Theorie der Transformationsgruppen (1888-93) ; Differential-
gleichungen ( 1891 ) ; Continuierliche Gruppen (1893); Beriihrungstrans-
formationen, vol. 1 (1896); Klein's Emleitung in die höhere Geometrie 
(1893); etc. A considerable part of Klein's work along this line is con­
tained in the two volumes of his Modulf unction en (1890-92), and in the 
Automorphe Functionen, vol. 1 ( 1897). Numerous publications by Picard 
and Poincaré have also contributed very much towards the general in­
terest in this subject. Picard was the first to develop the theory of linear 
differential equations parallel with the Galois theory of algebraic equa­
tions. Vessiot, Drach, and others have perfected this theory in certain 
directions 

f Page 65. 
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theoretic foundation of automorphic functions is doubtless 
the best work on discontinuous groups of an infinite order 
that has yet been published. The direct object of this work 
is the investigation of the groups of linear substitutions in 
one variable which do not contain any infinitesimal substi­
tution. 

While in Lie's theory the parameters of the product of 
two transformations are functions of the parameters only of 
these transformations, Halphen has considered groups in 
which these parameters are functions both of the variables 
and of the parameters of the two transformations that are 
multiplied together. Lie pronounced this group concept 
trivial and said that it had not found any application.* He 
expressed the opinion that the definition of group of trans­
formations had perhaps reached a definite form, but that it 
was not certain that the general notion of group had as yet 
assumed such a form, f 

Study and Engel seem to have discovered independently J 
that the special linear homogeneous group of the plane con­
tains transformations which are not generated by any in­
finitesimal transformations of the group, as was apparently 
assumed by Lie.§ Such transformations have been called 
singular transformations and they have received considerable 
attention in recent years. The two memoirs by Engel 
have been followed by numerous other memoirs especially 
by Taber,|| who established the existence of singular trans­
formations in the group of orthogonal substitutions in n 
variables, n > 3, and also in the group of linear automophic 
transformations of a general bilinear form. He has also de­
termined many properties of groups that contain such trans­
formations. 

One of his students, Mr. Kettger, has recently investi­
gated ^J the two and three parameter subgroups of the gen­
eral projective group in two variables and of the general 
linear homogeneous group in three variables with regard to 
singular transformations, and proved that singular trans-

* Theorie der Transformationsgruppen, vol. 3 (1893), p . 1 9 ; cf. 
Amer, Jour, of Math., vol. 11 (1889), p. 182. 

t Le centenaire de VÉcole normale, 1895, p. 486. 
% Engel, Leipziger Berichte, vol. 44 (1892), pp. 277-296 and vol. 45 

(1893), pp. 659-696 ; cf. BULLETIN, vol. 3 (1893), p. 66. 
g Cf. Taber, BULLETIN, vol. 6 (1900), p. 199. 
|| Taber, Amer. Jour, of Math., vol. 16, p. 130 ; Proc. of the Lond. Mat. 

Soc, vol. 26 (1895), p . 364; Math. Annalen, vol. 46, p. 561; BULLETIN, 
vol. 6 (1900), p . 199. Numerous other references are contained in these 
articles. 

TfEettger, Amer. Jour, of Math., vol. 22 (1900), p. 60. 
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formations occur among the transformations of many of 
these groups. A list of such subgroups is given at the end 
of the article. Many of the results of this article are con­
tained in an earlier note by the same author in the Proceed-
ings of the American Academy, vol. 33 (1898), p. 493. 

Besides the groups which are explicitly of an infinite order 
there is a large class of groups whose orders depend upon 
one or more parameters, which are generally assumed to be 
finite but may also be regarded as infinitely large. To this 
class belong the symmetric and the alternating groups of 
degree n,* the cyclical groups of order n, the metacyclic and 
the semi-metacylic groups, of ordersp(p—l) and %p(p~ 1) 
respectively, etc. Such groups are, however, generally 
classed with the groups of a finite order. We observed 
above that Burnside devoted a small part of his theory of 
groups of finite order to the study of groups of an infinite 
order. In the second volume of Weber's Algebra these 
groups receive much more attention. Considerable portions 
of the chapters on linear groups are devoted to considera­
tions which explicitly relate to groups of an infinite order. 
The object seems to be to devote some space to discussions 
in which the order is not restricted and then to proceed to 
the special cases where the order is finite. 

The theory of groups of an infinite order is closely re­
lated to that of a finite order and the development of the 
former has been greatly influenced by the latter. The 
latter, in turn, has contributed very much towards the 
interest and importance of the former, and, in several in­
stances, it has led to important new developments in this 
theory ; e. g., Maillet has shown f how the concept of param­
eter groups, as used by Lie, can be employed in the theory of 
substitution groups and has made use of this concept to obtain 
several general theorems on simply isomorphic groups. In 
a recent article, X Loewy has established the fundamental 
theorem that a linear substitution group of infinite order 
which contains at least one substitution whose characteris­
tic equation has no equal roots, must always contain a sub­
stitution whose order exceeds any given number. The 
presence of such a substitution is therefore a necessary and 
sufficient condition that the order of a linear group is in­
finite. 

CORNELL UNIVERSITY, 
June, 1900. 

*Dyck, Math. Annalen, vol. 22 (1883), p . 72. 
t Maillet, Ann. di Matematica, vol 23 (1895), p. 199. 
j Loewy, Math. Annalen, vol. 53 (1900), p. 225. 


