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ON THE SINGULAR TRANSFORMATIONS OF 
GROUPS GENERATED BY INFINITES­

IMAL TRANSFORMATIONS. 

BY PROFESSOR HENRY TABER. 

(Read before the American Mathematical Society, December 28, 1899.) 

B Y means of r independent infinitesimal transformations 

n ^ 

we may construct a family of transformations 

(i) */ = *< + ka** + i i ^ « M A + -
= ƒ<(*!> - > »n> ttl> - > ar) (* = !> 2> " ' J n ) 

with r essential parameters av a2, —, ar. The transforma­
tions defined by these equations, for assigned values of the 
a's, may be denoted by Ta. Each transformation of this 
family is paired with its inverse. 

For finite values of the parameters a, the transformation 
Ta (provided it is not illusory) belongs to a one parameter 
group generated by the infinitésimal transformation 

As the a's approach certain limiting values, one or more of 
which is infinite, Ta may have a definite finite transforma­
tion T as a limit. The transformation T may be regarded as 
a transformation of the family, and, if equivalent to a trans­
formation Tb with finite parameters, can be generated by 
an infinitesimal transformation of the family (namely, 
bxXx + •" + brXr), but not otherwise.* 

Let it be assumed that 

XjXk - XkXs - i # V T . (j,k = 1, 2,.-., r ) , 

*Thus, if the transformation Ta, for one or more of the a's infinite, is 
finite and definite, but is not equivalent to a transformation of the family 
with finite parameters, the transformation Ta cannot be generated by an 
infinitesimal transformation of the family. To this extent Lie's theorem 
on p. 65 of the Transformationsgruppen, vol. 1, requires modification. 
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the c'a being constants. Then, by the chief theorem of Lie's 
theory, the family of transformations (1) forms a group G 
with continuous parameters ; and each transformation of G 
is, in general, generated by an infinitesimal transformation 
of the group. Thus from 

(1) < = ƒ,(«!> - , *n, <*i, - , <0 (* = 1, 2, - , 71) 

and 

(2) X{" =ƒ,(*/ , -,*'M, 6,, - , 6r) (i = 1, 2, - , n) 

we derive 

(3) < ' = ƒ,(«!> - , *n> Cl> '"J Cr) (* = h % "*> *0 

where 

( 4 ) <V = ^ K , - , ^ &i> - , 6r) 0 ' = 1, 2 , - » *0-

For finite values of the a's and 6's it may happen that 
every branch of one or more of the functions <p is infinite. 
In this case, while each of the transformations Ta and Th is 
generated by an infinitesimal transformation of the group, 
the transformation TbTa, resulting from their composition, 
cannot be generated thus, and the group cannot properly 
be said to be continuous. A transformation of G which 
cannot be generated by an infinitesimal transformation of 
G may be termed essentially singular. 

In what follows I shall signify by Ta, Tw etc., transfor­
mations of the groups with finite parameters generated, 
respectively, by the infinitesimal transformations 

a1X1 + a,X2 + .» + arXr, \XX + btX% + - + brXr, etc. 

Group G may contain a transformation Ta (generated by 
an infinitesimal transformation) which, in composition with 
every transformation of some one (or more) subgroups of 
G with one parameter, in particular with the infinitesimal 
transformation of such subgroup, results in an essentially 
singular transformation. Such a transformation Ta I term 
non-essentially singular. The values of the a's for which Ta 
is non-essentially singular may be termed critical values of 
the parameters. The critical values of the parameters are 
included among those for which one or more of the roots of 
the equation in p 
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2 / % U •""" Pi 2 / ^ 2 1 ? 

r r 

= 0, 

is equal to an even multiple, not zero, of w\/ — 1. This 
condition is necessary but not sufficient. That is to say, 
for values of the a's for which one or more of the roots of 
this equation is an even multiple, not zero, of 7rV — 1, 
Ta is not necessarily singular. 

I find that every transformation of (?, in particular every 
essentially or non-essentially singular transformation, can 
be obtained by the composition of two non-singular trans­
formations. Also that, corresponding to every essentially 
singular transformation T of (?, a non-singular transforma­
tion Ta, whose parameters are functions of a variable A, can 
be found which can be made to approach as nearly as we 
please to T by taking X sufficiently small, and such that 

lim m m ^ 
A = 0 x « M' 

In every group G containing essentially singular trans­
formations which I have examined, non-essentially singular 
transformations also exist, and any non-singular transfor­
mation Ta whatever combined with some one, or more, non-
singular or non-essentially singular transformations Tb re­
sults in an essentially singular transformation. These 
relations undoubtedly hold invariably. 

Let jfa denote the bilinear form 

r r / r \ 

and let I denote the bilinear form X^u^v^. The coefficient 
i 

of u^Vj, in the bilinear form 

i + idra + -hjr: + 

is a power series in the a's, which may be denoted by 
P|0ll/(a), and which is convergent for all finite values of the 
«'s. Let now A„ denote the determinant 

* These theorems were given for subgroups of the projective group by 
the author in a paper read at the February Meeting of the Society, 1899. 
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|-P„(«0» i»i,(«), - I 

and let A^ denote the first minor of Aa relative to PVfJ,(a). 
Then, if we put 

regarding dv •••, âr, 6X, —, 6r as fixed and the a's as func­
tions of t, the latter satisfy the differential equations 

A „ § = M + AA + - + M O' = i. 2> -> 0. 
The A's are integral functions (transcendental or rational) 
of the a's, and A a vanishes only if one or more of the roots 
of the characteristic equation of $a is an even multiple, 
not zero, of it*/ — 1.* 

The functions «p are multivalued. Eeturning to the orig­
inal notation, let 

<>,•= K<*i> -> ar ; 6i> - > U 0' = *> 2> - > r)-

For assigned values of the a's and Vs the difference be­
tween any two branches of <Pj(a, b) is equal to 

2*S/=TXM mk 4>kJ(a, b), 

where the m's are integers, and the <p'& are rational func­
tions of the coefficients of the bilinear form e$<*e$K 

The equations defining the transformations of one group 
may restrict the functions ^ to fewer branches than in the case 
of another group of the same structure (Zusammensetzung.) 
Consequently, of two groups of the same structure, one 
may be continuous and the other may be discontinuous, 
that is, may possess essentially singular transformations.f 

* If we denote by Ta the transformation of G whose parameters are 
tbu tb2, •••, tbr, which is generated by the infinitesimal transformation 
& tZi4 \-brXr, the transformation TtbTâ is essential singular only for 
those values of t for which the determinant is zero of the bilinear form 
€f &e3fa — I 

f My attention was first drawn to this fact by my pupil, Mr. S. E. 
Slocum. 
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If, however, the adjoined of any group G is discontinuous, 
G itself, and, of course, every group of the same structure 
is discontinuous. The bilinear form (jTa is closely re­
lated to the adjoined group. In fact, if $a denotes the 
matrix of $a< the infinitesimal equations of the adjoined 
are 

(a / , a2', •••, ar) = (1 + 3tya) (av a,, - , a r); 

and we have e^Pe*a = e$y 

where r, = ^ (av - , ar, £ , - , ft) (j = 1, 2, - ? r ) . 

CLARK U N I V E E S I T Y , 

December, 1899. 

PEOOF OF THE EXISTENCE OF THE GALOIS 
F IELD OF OEDEE f FOE EVEEY INTEGEE 

r AND PEIME NUMBEE p. 

BY PROFESSOR L. E. DICKSON. 

(Read before the American Mathematical Society, December 28, 1899.) 

EXISTENCE proofs have been given by Serret* and by 
Jordan.f The developments used by Serret are lengthy but 
quite in the spirit of Kronecker's ideas. The short proof 
by Jordan, however, assumes with Galois the existence of 
imaginary roots of an irreducible congruence modulo p. 

The proof sketched in this note proceeds by induction. 
Assuming the existence of the GF\_ptC], we derive that of 
the GF[pnq'], q being an arbitrary prime number. Since 
the GF[p~] exists, being the field of integers taken modulo 
p, it will follow that the GF[pq~] exists, and by a simple in­
duction that the GF\_pr~\ exists for r arbitrary. 

"We employ the lemma : A factor of xpnm— x, belonging to and 
irreducible in the GF[pn~\, can be of degree mf if and only if m' 
divides m. In particular, the irreducible factors of xpnq~- x 
are of degree q or 1. But the product of the distinct % linear 
factors x — )>i belonging to the GF[pn~\ is xpn>— x. 

^Algèbre supérieure, 2, pp. 122-142. 
f Traité des substitutions, pp. 16, 17. 
t Two functions belonging to the Grip"] are called distinct if one is 

not the product of the other by a constant, a mark of the field. 


