
1 8 9 8 . ] THEORY OF FUNCTIONS. 5 9 

SELECTED TOPICS IN THE GENERAL THEORY 
OF FUNCTIONS. 

SIX LECTURES DELIVERED BEFORE THE CAMBRIDGE 
COLLOQUIUM, AUGUST 22-27, 1898. 

BY PROFESSOR W. F. OSGOOD.* 

Lecture I. 

Picard's Theorem, and the Application of Riemannh Geometric 
Methods in the General Theory of Functions. 

T H E subject which I have chosen for the first lecture of the 
Colloquium is Picard's noted theorem which in its more re­
stricted formf may be stated as follows : Any function G{z) 
which is single valued and analytic for all finite values of z takes 
on in general for at least one value of z any arbitrarily assigned 
value C. There may be one value, a, which the function does not 
take on. But if there is a second such value, b, the function reduces 
to a constant. 

To prove the theorem it is sufficient to establish the ex­
istence of a function w(x) such that 

(1) OJ(X) is analytic for all but three values of x; 
(2) (*>(x) does not enter a certain region of the w-plane, no 

matter what path x traces out in the œ-plane. 
For, let x = G(z) and let the singular points of the func­

tion (o(x) be the points a, b, oo. If z, starting with the 
value 20, traces out a closed path in the 3-plane, x, starting 
with the value x0, will return to this value ; but w(x) may 
conceivably, when x describes this path, fail to return to its 
original value ; i. e., x may have described a path which on 
the Riemann's surface of the function a>(x) is not closed. To 
show that this is not the case, Picard reflects that, the path 
in the s-plane being drawn together continuously to a point, 
the corresponding path in the #-plane must behave likewise 
and hence in the course of its deformation cannot pass over 
any one of the points a, b, oo. Hence (o{x), regarded as a 
function of z, is a single valued function, analytic for all 
finite values of z. Now by a well known theorem of Weier-

* To Professors E. H. Moore and H. S. White for their assistance in 
editing these lectures for publication I wish to express grateful acknowl­
edgments. 

t Picard, "Sur une propriété des fonctions entières," Comptes Rendus, 
vol. 88 (1879); also his Traité d'Analyse, vol. 2, p. 231. 
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strass' s* such a function must for certain values of z come 
arbitrarily near to any assigned value. If we choose as 
this value an interior point of the region in the w-plane that 
is never entered by w} we are led to a contradiction and the 
theorem is proved. 

Thus far we have reproduced substantially Picard's 
reasoning. Let us notice that the proof is intuitional in 
the use it makes of continuous deformations of continu­
ous curves. To place the proof on the firmest foundation 
we possess it remains to arithmetizef these steps. I t is en­
tirely possible to do so, the method employed being substan­
tially the same as that by which it is shown that the anglej 
of a continuous function of a complex variable, be the func­
tion analytic or not, comes back to its original value when 
z describes a closed path that forms the complete boundary 
of a region within and on the boundary of which the func­
tion does not vanish. I wish to call your attention, how­
ever, to a second method, also geometric, which is instructive, 
and which is fully as simple as the above. 

Let z0 be any value of z and let % be one of the values of 
<*>(x0), where x0= (?(z0). Then, since 

w — wo = f iO - »o) 
and x — x0 = f 2 0 - z0) 

it follows that o> — % = | ) (z — z0) 

and we wish to show that this last power series converges for 
all values of z. Suppose this were not the case. Let », be 
one of the singular points of w, regarded as a function of z, 
on the circle of convergence of |)(2 — z0). Connect z0 with 
zx by a right line. As z, starting from z0, describes this line, 
x describes a certain curve L on the re-surface for w(x) and 
the neighborhood of each point z' of the line goes over con-
formally upon the neighborhood of the corresponding point 

*Weierstrass, u Zur Theorie der eindeutigenanalytischen Functionen," 
I 8 ; Abh. d. Berliner Akad. d. Wiss., 1876. 

1 1 do not mean to imply that no geometric proof can be as rigorous as 
an arithmetic one. There is every reason to expect that geometry will 
some time be placed on as rigorous a footing as that which arithmetic now 
possesses. But at the present time the most rigorous proofs which we 
have of theorems like the above are those which belong to that realm of 
geometry whose processes can be at once translated into arithmetic pro­
cesses (i. e. arithmetized). 

% Burkhardt uses the term arcus instead of the unfortunate one ampli­

tude of a complex quantity, a + hi, to denote tan~x — I t may well be 
(I 

rendered in English by angle. 
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xr of L, or possibly, in the case of a finite number of points 
za

fj upon a set of p > 1 leaves spread out over the ^-surface 
and connected at a branch point in xa

r. For simplicity, as­
sume that no branch points xa' appear. Then it is possible 
to mark out a (narrow) strip in the 2-plane containing the 
line z0zx in its interior and related conform ally to a strip in 
the a>plane containing the curve L in its interior. But this 
latter strip is related conformally to a strip in the w-plane 
containing the curve corresponding to L. Thus the neigh­
borhood of the point zx goes over conformally on the neigh­
borhood of a point xx and the neighborhood of the latter point 
goes over in turn conformally on the neighborhood of a point 
wv Hence <*>, regarded as a function of z, is analytic in the 
point zv and this determination of w in and near zx coincides 
for those values of z near zx which lie within the original circle 
about zQ with the values given by the series w — w0 = 
$!(3 — z0), since it can be obtained from that series by ana­
lytic continuation. This would be impossible if the point 
zx were a singular point of the function <o defined by the 
element 

The excluded case of branch points in the points xa' pre­
sents no difficulty. 

This proof is, like the first proof, geometric. But one 
who is conversant with Weierstrass' s theory of functions will 
observe that it can be arithmetized immediately by the elementary 
methods of that theory. 

I t may be remarked that analysis of the above nature is 
not infrequently useful in problems of elimination—prob­
lems too often treated superficially by formal methods. 

I t remains to construct the function w(x). Picard ob­
tained such a function by taking the ratio of the moduli of 
periodicity of an elliptic integral of the first kind 

rx dx p1 dx 
= Jo \/(i _^) ( i - ay/ ^ Jo ̂ (l-^xi-fc'v/ 

2K'i 

The proof that this function has the desired properties in­
volves some development of the theory of the elliptic trans­
cendents. Now I wish to set over against this method for 
obtaining w(x) the general methods of Riemann1 s theory of func­
tions,—methods which may with advantage be employed 
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much more extensively than has hitherto been the case in 
the general theory of functions. 

For this purpose I begin with a figure which in the geom­
etry of inversion is a triangle each of whose angles is 0, 
—the shaded triangle numbered (1). Let this triangle be 

reflected* on each of its sides, thus generating the non-
shaded triangles numbered (2). Again, reflect each of 
these new triangles on each of its outer boundaries, thus 
generating the shaded triangles numbered (3). And so on 
indefinitely. A figure is thus formed with the following 
properties : 

(1) each pair of adjacent triangles are symmetrical to 
each other ; 

(2) the triangles never enter the negative half-plane. 
We are now in a position to construct the function w(x). 

We may without loss of generality set a = 0, b = 1. This 
amounts to proving Picard's theorem for the function 

whence the theorem for Q(z) follows. Kiemannf enunci-

* By the image or reflection of a point P in a circle is meant that point 
P' which lies on the line OP, on the same side of O as P, and at such 
a distance from 0 that OP OP' = R2, where R denotes the radius of the 
circle. A family of circles through P and P' cuts the given circle or­
thogonally ; and conversely, if a family of circles through two fixed 
points cuts a given circle orthogonally, the basis-points of the family 
are symmetrical to each other (i. e., mutual images of each other) with 
respect to the given circle. In any reflection of the plane, angles are 
preserved in magnitude, but reversed in sense, and circles go over into 
circles. Hence it follows that two points which are symmetrical to each 
other with respect to a given circle go over, when the plane is reflected in 
any other circle, into points symmetrical with respect to the transformed 
circle. 

t Inaugural Dissert ition, Göttingen, 1851 ; Gesammelte Werke, p. 40. 
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ated the proposition that any simply connected region can 
be mapped con formally on a circle and Schwarz* gave a rig­
orous proof of it for the case that the boundary consists of 
a finite number of analytic curves. Let us map then the 
first triangle on the positive half of the #-plane, the vertices 
going over into the points 0, 1, oo . If we denote the inde­
pendent variable oî the first plane by <o, the map defines 
w as an analytic function of x. This function can be con­
tinued across the axis of reals into the negative half-plane 
by Schwarz's principle of symmetryf as follows: Let P b e 
any point of the triangle (1), Q the corresponding point in 
the positive half of the #-plane. Let P ' be the image of 
P i n a specified side of the shaded triangle (1) (and hence 
a point of a specified one of the non-shaded triangles (2)) , 
and let Q' be the image of Q in the axis of reals. Thus the 
negative half-plane is mapped on the specified triangle (2) . 
The function defined by this map is the analytic continua­
tion of to across that piece of the axis of reals which cor­
responds to the specified side of the triangle (1). 

This process being repeated indefinitely, all the analytic 
continuations of the function w(x) are obtained geomet­
rically by reflections of the triangles of the w-plane in their 
sides. The points 0, 1, oo are singular points for each 
branch of the function w(x), and they are the only singular 
points of this function. 

The function w(x) thus defined is the function sought. 

"We turn now to the more general form of Picard's theo­
rem : 

If F(z) is any analytic function of z which in the neighborhood 
of a point A is single valued and has in this region no other sing­
ularities than poles, and if A is an essentially singular point of 
F(z), then there are at most two values which F(z) does not take 
on in every neighborhood of the point A. If there are no poles 
in the neighborhood of A, there is at most one value that F(z) 
does not take on in every neighborhood of A. 

This theorem, it will be noticed, is concerned with the 
behavior of a function im Kleinen, i. e., throughout a cer­
tain arbitrarily small region ; while the earlier theorem was 
one im Grossen, the domain of the independent variable 
being there the whole finite region of the plane. 

The first part of the theorem follows from the second 
part. For, if F(z) has poles clustering about A and fails 

*Cf. Picard, Traité d'Analyse, vol. 2, ch. 10. 
t Ibid. 
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to assume the value a, then the function -=7-7 has no 

poles in the neighborhood of z0 and hence by the second part 
of the theorem can fail to assume at most one value, which 

surely is not 0. Denote this value by 7——. Then, if 

c =f= a, 6, the equation 
1_ _ 1 

F{z) — a G — a 

can be satisfied, and hence F(z) = c, if « is a root of that 
equation. 

Let then F(z) be analytic everywhere in the neighborhood 
of the point A = 00 , i. e , in the region # lying outside of a 
certain large circle about 2 = 0 a s center ; and assume that, 
within $, F(z) never takes on the values a, 6, which we will 
again set equal to 0, 1. As in the earlier proof, let 

x = F(z). 

Then if we cut S along the positive axis of reals, ">(#), re­
garded as a function of 2, will be single valued within this 
simply connected region S'. But when z crosses the cut and, 
after encircling the point z = 00 , comes back to its original 
value, the path of x may be an open path A on the Biemann's 
surface for w(x) and w will have gone over into a new value 
w0'. Let us notice that in that case the whole neighborhood 
of o)Q will have gone over conformally into the neighborhood 
of o>0'. In fact, this transformation of w, though defined origi­
nally by the paths in the #-plane and the w-plane which cor­
respond to the path from z0 back to z0, may now be studied 
directly by means of the last two paths alone. But here 
o)' appears simply as an analytic continuation of w along a 
path in the œ-plane. Such a continuation, we have seen, 
can always be obtained by reflecting the original triangle of 
the w-plane successively, and since x has come back to its 
starting point, the reflections must be even in number ; for 
only then will shaded regions in the ^-figure be carried over 
into shaded regions, non-shaded regions into non-shaded 
regions. And now I say : the transformation of the region 
about w0 on the region about UJ0' is a linear transformation of the 
complex variable u>. For any reflection of the plane in a cir­
cle defines a transformation of the whole plane into itself 
which is conformai everywhere (including the point 00 ) with 
reversal of angles. An even number of such reflections 
will define, then, a transformation of the whole plane into 
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itself conformai everywhere without reversal of angles. Such 
a transformation defines an analytic function of a complex 
variable, and this function can readily be shown to be lin­
ear—a good exercise, by the way, for students in a course 
on the theory of functions. Hence 

yco + d 

Let z describe the same path again. I t follows, then, by 
a repetition of the above reasoning that o>' will be carried 
over into a new branch u>", where o>" is a linear function of 
o>'. But will this be the same linear function as before? To 
answer this question we observe that the above linear relation 
between w and ID' holds, when w, «/ are regarded as func­
tions of z, for all values in the neighborhood of z0. I t must, 
therefore, continue to hold for all simultaneous analytic 
continuations of o> and w'. And since the function «/ can 
be continued analytically along the same path along which 
w was just continued, it follows that at the end of the path 

„ ««*' + P 
yw' + Ô 

Thus <o, regarded as a function of z, is multiple valued, 
taking in each point of 8 the values corresponding to the 
group of transformations consisting of the powers of the 
transformation 

aw + 13 
yco -\- d 

We proceed now to form a function <p(w) which shall be 
invariant by the transformations of this group, shall be a 
single valued function of z, and shall furthermore not enter 
every region of the ^-plane. To do this we will first show 
that the above linear transformation must be either 

(a) the parabolic transformation 
i i 

m> — o/O) (0 _ _ „,(0) 

in particular w' = w + k, 
where h is real ; or 

(6) the hyperbolic transformation 

, = h 
0> — ûiCO) " _ a / 0 ) 7 

where h is real, positive, and =)= 1. 
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For, since each of the reflections used in generating the 
automorphic figure of the w-plane carries the upper and the 
lower half-planes over into themselves, the same must hold 
true of the linear transformation in question. Its fixed 
points must, therefore, either lie on the axis of reals, and in 
that case it will be one of the above transformations, or be 
symmetrically situated with reference to that axis. We 
proceed to show that this latter case is impossible. 

The automorphic figure above generated covers the whole 
of the upper half-plane. For the purposes of the proof of 
this theorem it will be convenient to generate a new auto­
morphic figure as follows,* and subsequently to show that 
it is identical with the old figure. Begin with the shaded 

triangle (1) and reflect it on its semicircular side, thus 
generating the triangle (2). If the finite vertices of (1) 
were at the points 0 and 1, a vertex of (2) will be at 1/2. 
Now reflect the whole figure thus formed on each of the 
two semicircular boundaries, thus obtaining the triangles 
numbered (3). The maximum radius of a semicircle of the 
new boundary will be 1/22. Next reflect the total figure thus 
formed in each semicircle of its boundary. The maximum 
radius of a semicircle of the new boundary will be 1/23. And 

* This method of proof was suggested to me by Professor Bôcher. 
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so on. Hence the boundary of the figure will ultimately 
sweep over any preassigned point of the upper half-plane 
which lies between the parallels through 0 and 1. Finally, 
complete the automorphic figure by an indefinite repetition, 
in each direction, of the figure just constructed, interchang­
ing, however, the shaded and non-shaded regions in such a 
manner that, in the complete figure, of any two adjacent 
triangles, one shall be shaded, the other non-shaded. Notice 
that, from the manner in which the figure was constructed, 
there can be no overlapping, not merely from step to step 
(im Kleinen), but after any series of steps (im Grossen). 

I t remains to prove that the two complete figures are 
identical. Each pair of adjacent triangles in the second 
figure are symmetric, either by construction or because they 
are the images of a symmetric pair. If then in the genera­
tion of the old figure we make the same shaded triangle (1) 
of the new figure the point of departure, as much of the old 
figure as at any given step has been generated will coincide 
throughout with a part of the new figure, and hence it can 
readily be shown * that the old figure coincides throughout 
with the new one. 

If now a fixed point a>(0) of the linear transformation lay 
in the upper half-plane, we could connect w(0) with wQ by a 
path lying in that half-plane, mark the corresponding path 
z joining x(0) with x0 on the Biemann's surface, add to this 
the path X above considered, and then add to A a path x' con­
gruent to x, but lying, of course, in a different leaf. Let w, 
regarded as a function of x, be continued from x(0) along the 
complete path xXx'. Then &, starting at x(0) with the value 
a>{0\ will end at x{0) with the value Ö/(0) = a/0). Hence the cor­
responding points of the ^-surface (i. e., the extremities of 
the x^x'-path) must lie in the same leaf, and here is a con­
tradiction. 

We are now ready to form the function <p(a>). Begin 
with the case 

w' = a) + k. 

Then it is sufficient to set 

<p(w) = e '*i . 

Since the pure imaginary part of (o is always positive, 

* f i r ) <•>• 
* The point is that the limiting figure approached in the generation of 

the old figure cannot be a part, but must be the whole of the new figure. 
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where R denotes the real part of the complex quantity. 
Hence 

| (p^w) I == e M*I
 w; < l . 

Similarly, if 
1 * +h 

0>' _ a,®) w _ _ ^(0) 

we may set 

, v I AI <o — o > ( 0 ) 

<p{ü)) = e 

For the hyperbolic transformation <p(w) may be defined 
as follows : 

2iri co—coO) 
|logft| l 0 g w-w(O) 

This function, to be sure, is not a single valued function of 
oj ; but it is a single valued function of z. For, ^ remain­
ing always in the positive half-plane, the angle of the com-

O) »w 
plex quantity <0) may be taken as lying between 0 and 

7T, provided w(0) < w(1), and hence the pure imaginary part 
Ù) — W ( l ) 

of log ö) cannot vary by so much as m. Thus \<p(w)\ is 
constrained to lie between two fixed limits. The proof is 
now complete. 

The limitation of the linear transformation a/ = —-
yaj-j-o 

to the above two types could be established in various other 
ways. Thus it could be shown that, since this trans­
formation carries one triangle over into a second, each tri­
angle is carried over into a different one, and hence no point 
of the upper half-plane can be a fixed point. Or it could be 
shown directly that an even number of reflections of the 
kind here considered yield only parabolic and hyperbolic 
transformations of the above kind. But the complete dis­
cussion of the automorphic figure is valuable for other pur­
poses. One property of this figure which can now be easily 
established has not explicitly come into play in the fore­
going, namely, that a reflection on any side of any triangle 
carries the figure over into itself, except that shaded and 
non-shaded regions are interchanged. 

I t is hardly necessary to add that the methods set forth in 
this lecture are to a large extent those which Klein has done 
so much towards making a vital force in the modern theory 
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of functions which B iemann init iated. Cf. Klein-Fr icke, 
Modulfunctionen, vol. 1. 

Ano the r noted theorem of P icard ' s is the following:* If 
between two single valued analytic functions of a single variable 
there exists an algebraic relation of deficiency greater than unity, 
these functions cannot have an isolated essentially singular point. 
Picard published a proof in Darboux ' Bulletin (1883) , 
which however is incomplete in an essential respect. H e 
gave two other proofs la ter in t he Acta (1. c.)> the first of 
which is based on propert ies of the automorphic functions. 
I t would be in teres t ing to apply t he methods of th is lecture 
to t he proof of t h a t theorem also. 

Lectures II and III. 

The Representation of Multiple Valued Functions by Means of 
Single Valued Functions of a Parameter, treated Geometric­

ally by Biemann1 s Methods. Poincar&s Theorem. 

P O I N C A R É ' S THEOKEM.f Let y = ƒ (x) be any analytic func­
tion of x whatsoever. Then it is possible to find two single valued 
analytic functions of a parameter z such that, if 

x= <p(z), 

y = ^ 0 ) , 
each value of z pertaining to the domain of definition T of the 
function <p(z) will yield a point (#, y)$ of the analytic configura­
tion y = f(x) and, conversely, to each point of this analytic con­
figuration will correspond, in general, one or more values of z 
pertaining to T, two such values of z never becoming coincident. 
There will be at most three values of x at which some branches of 

f(x) are analytic and such that any point (x, y) of the configura­
tion in which one of these participates will fail of such represen­
tation. The domain T will be the interior of the unit circle, 
or a domain included within that circle. 

If, in particular, there are at least three values of x which are 
singular points for all branches of the function, then the analytic 
configuration y = ƒ(#) is represented adequately by the functions 
<p(z), (p(z), in that each point (x, y) of the configuration has cor-

* Picard, ''Démonstration d'un théorème général sur les fonctions 
uniformes liées par une relation algébrique"; Acta Math., vol. 11 (1888). 

f Poincaré : u Sur un théorème de la théorie générale des fonctions ;" 
Bulletin de la Soc. math de France, vol. 11 ( 1883). 

| This term is intended £o express a generalization of the familiar idea 
of a point of an algebraic configuration ( Gebilde), and means a value of 
x with which is coupled a value of the function y—f(x) that belongs to 
a branch of that function which is analytic at x. 
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responding to it at least one point z of T, two such values of z never 
becoming coincident. But even then the neighborhood of a branch 
point of finite order in the x-surface does not go over into the 
neighborhood of a point in T. 

Before entering on the discussion of this theorem, let us 
consider some examples of representation by means of a 
parameter. 

1. Suppose ƒ(») is multiple valued and has two singular 
points. These may be thrown to 0 and oo ; and now two 
cases arise : 

(a) f(x) has but a finite number of values, m ; 
(b) f(x) is infinitely multiple valued. 
In the first case, the representation is effected by means 

of the equations 
X=Zm, 

in the second case, by the equations 

x = e% 

2. A further example is furnished by the unicursal curves 

x= <p(z), 

where <p(z)j <p(z) are rational f unctions of z, and z = B(x, y). 
In each of the above cases, to each value z ( T consisting 

of the whole plane with the exception of a finite number of 
points) corresponds in general a point (x, y) of the analytic 
configuration, y being in this point an analytic function of 
x ; and, conversely, to each such point (#, y) corresponds 
in general one, and never more than one, value of z. , 

3. Next may be mentioned the representation of the co­
ordinates of algebraic curves by the elliptic functions when 
p = 1, and, generally, by automorphic* functions. Here the 
relation between (#, y) and z continues to be one-to-one im 
Kleinen, but is one-to-infinity im Grossen. 

Turning now to Poincaré's investigations, we find that 
Poincaré begins by constructing a Eiemann?s surface for the 
function ƒ(#) in a novel manner. Let x0 be a point at which 
ƒ(#) is analytic ; let a, 6, c be any three values of x, intro-

*Cf., for example, Klein, Ueber lineare Differentialgleiohungen der 
zweiten Ordniing 1894, (lithographed); in particular, p. 515, where 
Picard's " Methode des Linienelements " is set forth. 
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duced for a purpose to be explained later, and let them be 
regarded as singular points of each leaf. Consider a path 
that starts from x0 and returns to x0. Such paths may be 
divided into two classes : 

(a) paths that can be contracted to the point x0 without 
sweeping over a singular point of the function or one of the 
points a, b, c ; 

(6) all other paths. 
In the case of paths of the first class only shall the ter­

minal point be said to belong to the same sheet of the Bie-
mann's surface as the initial point. 

The surface thus constructed will be infinitely many leaved; 
it will be bounded by no other isolated singular points than 
branch points of infinitely high order, these points not being 
regarded, of course, as belonging to the surface; and thus 
the function f(x) will be analytic at each point of the sur­
face. Any closed curve on the surface can be drawn together 
continuously to a point, and thus the function I f(x)dx 

will be single valued on this surface. 
Next, a set of curves containing x0 is constructed bounding 

regions Cv C2, ••• such that each region is contained in 
each of its successors and each point of the Biemann's sur­
face just constructed is ultimately contained in a Cn. That 
such a set of contours can always be constructed will be 
shown presently. 

Poincaré then constructs for each Cn the Green's func­
tion un with its singularity in x0 and shows that, E being 
any region of the surface, un converges uniformly on E 

lim u = u. 
n 

n = oo 

His analysis at this point is allied with that by which Har-
nack proved his noted theorem* that a function un which is 
harmonic throughout aregion for all values of n, which always 
increases when n increases, and which at one point of the 
region converges toward a limit, converges at all points 
within the region, and the limiting function is also harmonic. 
In fact, in the light of Harnack's theorem it is sufficient 
for Poincaré to show that the constantly increasing harmonic 
function un converges toward a limit for one single point of 
the Biemann's surface,—and this he can do at once by means 
of his auxiliary function, which is virtually the same func­
tion (o(x) that we constructed in the previous lecture. He 

* Cf. Picard, Traité d'Analyse, vol. 2, p. 57. 
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uses, moreover, only those properties of w(x) that were de­
duced in the first part of that lecture. The three points a, 
b, e are the singular points of the auxiliary function and 
were introduced solely for the purpose of proving the con­
vergence of un. 

Poincaré then shows that the function 

where v denotes the conjugate function of u, maps the whole 
Eiemann's surface either on the interior of the unit circle 
or on a region T contained within it, which does not over­
lap itself. Thus x appears as a single valued function of z \ 
and y, being single valued on the surface, is likewise a sin­
gle valued function of z. Notice, however, that while <p{z) 
has a natural boundary, this is not necessarily the case for 
the function <f>(z). 

To show the possibility of constructing the contours, num­
ber the rational points of the Kiemann's surface.* By a 
rational point x = x' -f x"i is meant one for which x' and x" 
are both rational numbers. Begin with those situated 
within the circle of convergence of the series 

/oo-$.(*-*.). 
Put them down as the first line of a two-dimensional array 
(the sort of array used in writing out a doubly infinite 
series). Next, consider the continuations having these 
points as centers, and number their rational points (not 
already numbered), to begin with, in a two-dimensional 
array, the nth line giving the rational points in the circle 
of convergence about the rational point numbered n ; then 
contract this array into a single line, the second line of the 
final array ; — etc.f The final array can then be reduced 
to a single line. And now it is sufficient to take Cn so as 
to include a circle about the point numbered n whose radius 
is half the radius of the circle of convergence of the element 
whose center is that point. For, let P be any point of the 
Biemann's surface, i. e., a, point lying within the circle of 
convergence of an element J^O» — xj which is a continua-

*This is essentially what Poincaré did in numbering the elements 
(power series) defining the analytic continuation of ./(#), whose centers 
are rational points. Cf. Poincaré : u Sur une propriété des fonctions ana­
lytiques, " ÈeruUconti del circolo maternâtico di Palermo, vol. 2 (1888). 

f The analysis here employed applies to the analytic continuation of 
any function whatsoever, an I thus fills a gap that frequently remains 
open in the presentation of the Weierstrassian theory of functions. 
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tion of the element f!0(# — x0). Draw a circle about P 
whose radius is one-third that of the radius of convergence 
of the series I ^O — œj , and let P' be any rational point 
situated within this circle, the number of this point being n. 
Then Cn will include the whole of this circle, and hence the 
point P. 

In the foregoing, the points a, 6, c were introduced solely 
for the purpose of effecting the proof of convergence. With­
out them, the Biemann's surface, the contours Cn, and the 
Green's function un could have been constructed as before. 
At a given point of the surface un steadily increases as n in­
creases and if it could be shown that in one single point un 
converges toward a limit, when n = GO, we should be in pos­
session of that generalization of Poincaré's theorem which 
consists in removing the restriction " in general." But it 
is not by the fact that certain points at which f(x) is ana­
lytic (those, namely, for which x = a,b, c) or at which f(x) 
has a simple singularity (a branch point of finite order, for 
example) have no corresponding point within T tha t we are 
constrained to seek the essential limitations of Poincaré's 
theorem. An ideal theorem would be one by which the 
multiple leaved domain of definition of the function f(x) is 
mapped in general conform ally on a single leaved domain in 
the z-plane, the neighborhoods of certain isolated points (in­
cluding isolated singularities and the point x «= oo if neces­
sary ) going over by a well defined geometric law into the 
neighborhoods of vertices abutting on the boundary of T. 
Such a theorem exists for the algebraic functions, the aux­
iliary functions <p(z), <P(z) being automorphic functions with 
fundamental circle. 

Poincaré's proof of the restricted theorem makes no use 
of other properties of the function ƒ(#) than the situation 
of the singularities of its various branches, and it thus 
establishes, in certain cases, the existence of functions be­
longing to a given Biemann's surface,—a question which for 
the most general Biemann's surface has not as yet been 
settled. The simplest case is that in which a simply con­
nected Biemann's surface is given, with no other isolated 
singularities than branch points of infinite order, and such 
that at least three values of x are included in no leaf. To 
such a surface there surely correspond functions. 

A further point is the following : Nothing in Poincaré's 
analysis throws any light on whether the region T fills the 
whole circle. Suppose that in certain cases it did not. 
Would there then exist a function <p(z) whose domain of 
definition is the unit circle and which has otherwise the 
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same properties as the old <p(z)1 This question can be 
answered in the affirmative if the following theorem is true : 
The interior of any simply connected region whatsoever can be map­
ped eonformally on the interior of a circle. The determination 
of the correctness or the incorrectness of this theorem would 
be a useful contribution to analysis. 

Let us assume that this theorem is true. Then we can 
give with Klein* an elegant proof of the theorem that the 
coordinates of an irreducible algebraic curve can be repre­
sented as single valued automorphic functions, with funda­
mental circle, of a parameters. For, construct Poincaré's 
surface for such a function y = ƒ(#). If now x describes a 
path which, though not closed on the surface, nevertheless 
brings the element |)0(# — x0) back into itself, we thus have 
a one-to-one and conformai transformation of the whole 
Biemann's surface into itself. This transformation defines 
then a similar transformation of the interior of the unit 
circle in the z-plane into itself, and such a transformation 
can readily be shown to be linear. Hence the function 
<p(z) admits a group of linear transformations into itself and 
this group has the unit circle as fundamental circle, the 
generating transformations of the group being finite in num­
ber. The function <p (3) is then an automorphic function 
with fundamental circle, and the same is true of y = 0(3). 

Klein's reasoning is, however, of much wider scope than 
is here indicated. I t applies to any function such that, if 
it is continued analytically along a path from x0 back to x0, 
the element ^0(x — x0) comes back to its original value with­
out the path's closing on Poincaré's surface. 

The lecture closed with the suggestion of a line of thought 
which had for its object a possible test of the correctness of 
the first generalization of Poincaré's theorem above proposed. 

Lectures IV and V» 

On some Recent Study of the Relation between the Properties 
of a Function defined by a Power Series and 

the Coefficients of that Series. 

Let the constants a0, av a2, etc., be given, and let a func­
tion be defined by the series 

F(x) = a0 + axx + a2x
2 + 

The first question to be considered is of course that of con-

* 1. 0. p . 519 et seq. 
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vergence. Cauchy* in 1821 established a theorem, which 
can be stated best in terms introduced by G. Cantor. ."Rep­
resent in the usual manner by a set of points on a line the 

values | a j ~ ^ , ( n = l , 2, 3, •••), and let the largest value be­
longing to a point of condensation! of the set be denoted 

by A ; then if A > 0, the series will converge when | x | < —r 

and diverge when | x | > - j , while if A = 0, the series will 

converge for all values of x. This gives as a necessary and 
sufficient condition for the convergence of the series for all 

i 
values of x, that lim | an \^ = 0. 

The foregoing theorem was obtained recently de novo by 
HadamardJ. He applies it to the further question : has the 
function defined by the series a singularity at a specified 
point upon the circle of convergence ? The necessary and 
sufficient conditions for such singularity being deduced, it 
is possible at pleasure to produce series defining functions 
having singular points everywhere dense on their circle of 
convergence, and hence having this circle as a natural boun­
dary. Such a function is given by the series Sa^x0^ if the 
further condition is satisfied : 

v n - < v > 8 > 0 

for all § values of & greater than some fixed value t± ; that 
is, if with increasing /u the ratio c^+x : e,* becomes and re­
mains greater than some quantity itself greater than unity. 

A more general sufficient condition has been obtained by 
Fabry11, namely, the condition that cM + i — ĉ  shall increase 
without limit as fi increases. This and the former consti­
tute sufficient conditions ; necessary conditions also have 
been obtained, but only of a very general type. 

*It is interesting to note that Cauchy here had the notion of a Cantor's 
set and of a derivative which might consist of more than one point. 

t Analyse algébrique (Paris, 1821), pp. 59, 143, 151. Cf. also Bésumés 
analytiques (Turin, 1833), p. 47. 

t " Essai sur l'étude des fonctions données par leur développement de 
Taylor," thesis in Liouwlle's Journal, 4th series, vol. 8 (1892). 

? This condition, Hadamard points out, can be stated in somewhat more 
general form. 

|| " Sur les points singuliers d'une fonction donnée par son développe­
ment et l'impossibilité du prolongement analytique dans des cas très gén­
éraux." Annales de VÉcole normale supérieure, 1896. 
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Eeturning from this application, I wish next to call at­
tention to the study of the simplest singularities of the 
function on the circle of convergence, namely poles. Dar-
boux had given in 1878* necessary conditions that the func­
tion represented by the series should have on the circle of 
convergence one pole of specified order, but no other singu­
larity ; and he had further considered the case of p poles, 
and also of a branch point of finite order. The question of 
the sufficiency of his conditions Darboux did not raise, but 
Hadamard establishes it (1. c. § 14) for the case of a single 
pole of the first order. A simple pole occurs namely on the 
circle of convergence of the series 

a0 + axx + a2x'2 + ••• 

when and only when two conditions are satisfied : 

(a) —— approaches a finite limit, say xv for fx = co ; 

(6) J 2 i - _ : 

becomes and remains, as fi increases, less than a quantity 
inferior to unity. 

More complicated is his deduction of the precise condi­
tions for the occurrence of poles of aggregate order p and 
for the absence of other singularities. The notion of a 
Cantor's set plays here again an important rôle, as also in 
the problem of finding the zeros of a given power series, a 
problem which Hadamard solves by aid of the analysis that 
he has here developed. 

In brief, the details of Hadamard's method are as follows. 
He first establishes a necessary condition that the function 

f(x) == a0 + axx + a2x
2 + — 

have poles xv x2, ••• of aggregate order p on the circle of con­
vergence of the series. Let 

w-('-*)"('-Î)"" 
= 1 + Amx + J . ( V + - + A™af; 

ms= — p 

* " Mémoire sur l'approximation des fonctions de très-grands nombres, 
et sur une classe étendue de développements en série," Liouville's Journal^ 
3d series, vol. 4 (1878). 
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Then bm = am+p + A^am^p_x + - + Awam} 

where a_*= 0, k= 1, 2, —,p. 

Let p, p' denote respectively the radii of the circles of con­
vergence of the above series, p' is greater than p ; then, if 
e denotes an arbitrarily small positive quantity, 

I«J< ( 1 + e\m / l + e\" 

for all values of m > m (a fixed integer). A function of the 
coefficients is now formed, defined by the determinant 

•*-^m. v ""— 'm, p 

I ^m + p^m + p + l " " Wm+2p 

If the rth column of this determinant, multiplied by A^^1"^ 
(i = 1, 2, -~,p), is added to the last column, the a-s of that 
column will be replaced by V s of like index. Hence it fol­
lows that 

or |Z)„ /y,= < 1 _ + f . 

when m exceeds a certain fixed value, and thus a necessary 
condition is obtained, which can be formulated as follows : 

i 

Represent by a set of points the values \ Dm> p | "* ; then the largest 
value belonging to a point of condensation of the set is less than 
1 / pp+1 and does not exceed 1 j p?pf. 

Conversely, consider the Cantor's set 
i 

Ii>™,plw, ( m = l , 2 ," . ) 

for each value of P : 1,2, — . The largest value X belong­
ing to a point of condensation is surely not greater than 
1 / pp+ \ I t may for some values of P be less. Let p be the 
smallest such value. Then f(x) has no other singularities than 
poles on the circle of convergence, and their aggregate order is p. 
With the exception of these poles, ƒ(#) is analytic throughout a 
circle of radius p\ where X = 1 / fp'. 

The proof of this theorem rests on the following reason-
i 

ing. First the lemma is established that I Dm,p_i | m , m = oo, 
actually converges toward 1 / pp. Hence the p equations 
which Hadamard introduces at this point 
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®m+p-\-i r -Am amjrP_ijri~f- AmamjtP^2-\-i "r *** 4* Am üm+i = 0 

will determine p quantities A%\ A%\ •••, A{£> as functions 
of m. These quantities are shown to converge respectively 
towards limits Aa\ ••• A(p\ when m = oo, and the quantity 

K — «*+* + ^(1) «*+*-i + - + A™am 

is such that \K\<\—r-)> 0 ' > P') 

Thus if the polynomial 

Pp(x) = 1 + A^x + A™x2 + - A(p) af 

is formed and multiplied into ƒ(#), the product 

m = —-p 

wTill have a circle of convergence of radius />' >p. This 
establishes the proposition. 

Hadamard then proceeds to obtain the necessary and suf­
ficient condition that f(x) should have on the second circle, 
the circle of convergence of the 6-series, only poles. He 
makes this determination directly, not by a mere repetition 
of the previous reasoning. And so on. The discussion of 
the results is easy. Perhaps one of the most striking con­
sequences is the establishment of the necessary and sufficient con-

dition that the function ƒ(#), defined by the power series 2 a
m

xtn 

and its continuations, should have no other singularities in the 
finite region of the plane than poles, and the determination of the 
position and order of each of these poles. 

As an application of the foregoing Hadamard determines 
the zeros of a function, defined by a power series 

0̂*0 = c0+ cxx+ ctœ + -, 
that lie within the circle of convergence of that series, ex­
plicitly in terms of the O's. 

Let ƒ(» = ^ ~ y = %+ «i* + <h<* + '" 

Hereaw can be expressed rationally in terms of O0, Cv ..., Cm* 
Next JDm>p is expressed rationally in terms of the O's and 
thus a solution of the problem, of a nature similar to that 
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of the solution of the main problem above discussed, is ob­
tained. 

Daniel Bernoulli had pointed out that if one root xx of an 
algebraic equation is in absolute value smaller than any 
other root, it can be obtained as the limit when m = oo of a 
variable which is a rational function, for each value of m, 
of the coefficients of the equation, namely : 

xx = lim - ^ - , 
m= co S_m_i 

where s. = xx* + < + • • • + xj. 

Runge* generalized Bernoulli's results. Hadamard's re­
sults amount to a still further generalization to power series. 

I t is worthy of note that the criteria occurring in the 
above theorems of Hadamard's differ from those usual in 
the lower analysis in that they do not turn npon the exist­
ence and character of a single limiting point, but rather upon 
those of a set of such points, namely the cluster points of a Can­
tor's set. 

Two theorems of Hadamard'sf next to be considered con­
cern integral functions, whether rational or transcendental. 
As before, denote by F(x) a function explicitly defined 
by the series 

F(x) = a0+ a^x + a2x
2 + •• + amxm + - , 

and let the series converge for all finite values of x. The 
necessary and sufficient condition for this was seen to 
be that 

i 

lim | am I m = 0. 

Of all points x not lying without a circle of radius E about 
the origin, there is at least one—call it x—upon the cir­
cumference, in which | F(x) | attains the maximum value. 
That maximum value increases indefinitely with the radius 
E ; but how rapidly ? As to the manner of its increase 
Hadamard establishes the theorem : The absolute value of 
F(x) for points x, I x | = E, becomes infinite less strongly than the 
expression 

* Acta Math., vol. 6 (1885). " 
t u Etude sur les propriétés des fonctions entières et en particulier d'une 

fonction considérée par Riemann," Liouville's Journal, 4th series, vol. 9 
(1893), p . 171 seq. 
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f 
Re • er *o 

^(R) 
dR 

where s is any arbitrarily small positive constant, and <J>(R) is an 
increasing positive function of R depending upon the coefficients 
a0, av a2, ••• in the following manner. I t is always possible to 
construct a positive continuous f unction* / (I) such that 

O ) if am + 0, x(m) S —., (m ̂  in) ; 
' 'm 

(b) the function 

? - K O =[*(*)] T 
steadily increases as £ increases, and becomes infinite with £. 
The inverse of the function p, 

will then, for values of y that exceed some fixed inferior 
limit R0, be a single valued function of y, increasing indefi­
nitely with r\ ; and this is the function lF whose definition 
completes the statement of the above theorem. In place of 
the particular lF so defined we may substitute any increas­
ing function which becomes infinite more strongly, and the 
theorem will hold true a fortiori. 

An example is this : if from and after the value m = m 
the condition is satisfied 

I am I = £ ^ y p 

where a is some positive constant, then | F(x) I becomes infi­
nite less rapidly than eB/3, R denoting j x I and /3 being any 

constant greater than — 
a 

A second theorem given by Hadamard is based upon the 
lemma: if the real part of an integral function G(x) is 
algebraically less than RK (R = | x I ) for all values of x whose 
R exceeds some fixed inferior limit then G(x) is a polyno­
mial of degree not higher than X. The theorem itself is as 
follows. If F(x) = e0{x\ where G(x) denotes an integral func­
tion, and if for all values of x having | x I = R > R the absolute 
value of F(x) is less than eRK, then G(x) is a polynomial of de-

* Hadamard's analysis at this part of his memoir requires revision. 
The results appear to be correct. The account that I gave in the lecture 
of the construction of the function x(%) must be essentially modified in 
details, but the general method was, I believe, correct. 
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gree not higher than A. I t may be remarked in passing that 
for such integral functions F(x) Picard's theorem is at 
once seen to be true, since the equation 

pG(x) = c + 0, 

where c is arbitrary and O is a polynomial, always has roots. 
The third theorem to which we now turn is the great 

theorem of this paper. I t relates to the zeros of an integral 
function. Denote by p the absolute value of any zero xp 
of the integral function 

F(x) = £ amx" ; 
m = 0 

and arrange the zeros in a definite order, giving to each 
the corresponding index p in such a manner that always 
PP+1=Ëpp. If a function <p(m)> monotonie when m>m, be so 
chosen that 

1 1 — 
= I«JW> (m>m), y>(m) 

then, for any arbitrarily small positive quantity e, an inferior limit 
p can be found such that, for p*> p, 

rP> ( l — S)'<P(P)> 

An illustration of this third theorem is given in any series 
having 

I n | < 

1 w | - ~ ( m ! j * 

Assuming any a' such that 
0 < o! < a, 

and taking 
<p(m) = ma', 

there results pp>pa', and the genre* of F(x) is an inte­

ger not exceeding - . 

The impulse to the inquiries culminating in these theo­
rems was given by two theorems of Poincaré,f inspired by 
the researches of Weierstrass J: 

*A term introduced by Laguerre, Comptes Rendus, vol. 94 (1882), p. 160. 
Cf. Forsyth's Theory of Functions, $ 59 et seq. 

t "Sur les fonctions entières :" Bulletin de la Soc. math, de France, vol. 11 
(1883) 

X "Zur Theorie der eindeutigen analytischen Functionen ;'> Abh. d. Ber­
liner Akad.y 1876 ; Math. Werke, vol. 2, p. 7. 
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(a) If F(x) has the genre N, then 

\F(x) <hecRN+1 

for all values of x having I x \ = E > E, where h, c denote any 
real positive constants. 

CO 

(6) If F(x) = 2 V * has the genre JV, then 
OT = 0 

i « J < — 9 ~ z n 
(m ! )^+i 

where e is taken arbitrarily small, provided m is sufficiently 
large. 

Poincaré also raised certain questions regarding the genre 
of sums and derivatives of functions whose genre is given. 
Concerning Poincaré's two theorems Hadamard shows that 
with slight modifications the converse theorems are true. 

Borel has studied a number of questions akin to those 
that we have here considered, and has carried further some 
of the investigations instituted by Hadamard, I refer to 
his memoir in the Acta Mathematica, vol. 20 (1897) : " Sur les 
zéros des fonctions entières.?? 

Hadamard closes his memoir with a valuable application 
of the results he has obtained to the study of Riemann's 
function C(s). 

Lecture VI. 

On certain Cantor's Sets, and their Application in a Question con­
cerning Cauchy's Definition of an Analytic Function. 

In investigations in the general theory of functions, either 
of real or of complex variables, a clear insight into the pos­
sibilities that Cantor's sets present is indispensable. I t is 
here less a question of systematic theoretical developments 
than of a body of knowledge of facts given by concrete 
examples. I should like to present to you today one or 
two examples that I have frequently found useful in work 
of a general nature.* 

* The last of these examples is, for instance, useful in forming a cri­
tique of the classification of Cantor's sets which Painlevé adopts (Cf. his 
Thesis : ' * Sur les lignes singulières des fonctions analytiques, ' ' Paris, 1887 ; 
Toulouse Annales, vol. 2 (1888)). The division into the three classes, 
ponctuel, linéaire, superficiel suggests that a set which is ponctuel, for ex­
ample, is a fortiori, linéaire, and for that reason is excluded from that 
class. That would surely not be the case if Painlevé had used the 
square instead of the circle in denning ponctuel, as the last of my 
examples shows. If on the other hand, the set of that example is in fact 
not ponctuel, then it fails to fall under any one of the three classes. 
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I will begin with a set of points on a line, the conception 
of which enabled me to give the first example,* so far as I 
know, of a series of real terms 

ux(x) + u2(x) + -

of the following sort : for each value of x in the interval 
a ^ x ^ b each term of the series is continuous and the series 
converges toward a continuous function f(x) ; the term-by-
term integral 

I u1(x)dx + I u2(x)dx + ••• 

likewise converges toward a continuous function, <p(x)\ but 

?0) + f f(x)dx. 

This set is a special case of a set given by Harnackf and 
is constructed as follows. I t shall lie in an interval L of 
unit length. 

—(TT--72) (3) (T) (3) (2) ~"(T)~-

.Fmtf /Step. In the middle of this interval lay off an in­
terval (1) of length 

where X is chosen arbitrarily as a positive quantity not 
greater than the unity : 0 < X É= 1. 

In particular, let ^ = f ; lx = \. 
Second Step. In the middle of each of the free end-inter­

vals lay off an interval (2) , both of these intervals to be of 
the same length l2 and such that the total length of the in­
tervals (1), (2) is 

n-th Step. In the middle of each of the equal free inter­
vals lay off an interval (w), all of these intervals to be of 
the same length ln and such that the total length of the in­
tervals (1), (2), ••• ,(n) is 

k + 2h + 2% + - + 2»-\=X ±-L 
71 —f- JÙ 

* Cf. § 20 of my paper : " Non-uniform convergence and the integra­
tion of series term by term," Amer. Jour, of Math., vol. 19 (1897). 

•\Math. Ann., vol. 19, p. 239. 

file://?/Math
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When n increases indefinitely, a set of intervals is ob­
tained and their extremities form a Cantor's set. This set 
is enumerable. I t is not perfect, i. e., does not coincide with 
its derivative. Let all the limiting points not already in­
cluded in the set be annexed. Then we have a perfect set, 
and this set is the first example I wish to show you. 

The content* of this set is 1 — A and hence is not, in general, 0. 
In order to obtain an example of a two-dimensional set 

which is nowhere dense in two dimensions, i. e , is such 
that in every neighborhood of any point of the set there 
exist two-dimensional regions which are free from points 
of the set, it is sufficient merely to erect at each point of the 
above set a perpendicular of unit length to the line on 
which the set lies, all the perpendiculars being drawn on 
the same side of this line. But it not infrequently hap­
pens that the simplest example is not the most striking one. 
And so here. You would prefer to see a set of points con­
taining no lines. Very well. Take the perpendicular at 
one extremity of L as a new interval II and construct in U 
a set of points like the set just constructed in i . Through 
each point of this set draw a parallel to L ; the points of 
intersection of these parallels with the above perpendiculars form 
the set in question. 

I t is readily shown that the content of this set is (1 — A)2, and 
is then in general not 0. Moreover, if e is an arbitrarily 
small positive quantity and P any point of this set, a rect­
angle can obviously be drawn containing P, but having no 
points of the set on its boundary, and having its sides less 
than e in length. 

As an instance of the use of such conceptions of Cantor's 
sets as those just considered may be mentioned a question 
that arises in the Cauchy definition of an analytic function. 
Let f(z) be a single valued function (the word function be­
ing used here in its most general sense), defined at each 
point of a two-dimensional region T, and let it have, at each 
point of T, a finite derivative, i. e., for any such point z, let 

ƒ(« + *)-ƒ(«) 
h 

* Amer. Jour., I. c. $ 17. Let the interval L be divided into 1/2™ 
equal parts and denote the sum of those parts to which points of the set 
pertain by sm. Then the content of the set is defined as lim sm. The 

extension of the definition to two-dimensional sets is at once obvious, the 
above subintervals being replaced by squares 1 / 2m on a side ; etc. 
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converge toward a finite limit ƒ'(«) when h approaches 0. 
What next ? I t is customary to add the condition that ƒ ' (z) 
be continuous in T] for without this condition no proof of 
Cauchy's integral theorem has as yet been given. Now the 
question is* whether this further condition is not super­
fluous ; i. e., whether the continuity of ƒ'(2) does not follow 
from the preceding conditions, or at least from those coupled 
with a less comprehensive condition ; as for example, that 
ƒ'(2) remain finite in T 

l/'OOl < G, 
where G is some fixed quantity. That a little less than the 
assumption of exceptionless continuity will suffice is easily 
seen. For, from the existence of the derivative follows the 
continuity of the function ƒ(#)• Now it is both a necessary 
and a sufficient condition for the continuity of ƒ (2) that 
ff(z)dz, taken along any closed path in T tha t can be drawn 
together continuously to a point of T, should vanish.* 
Hence it is readily shown that if ƒ '(2) is in general continu­
ous in T, but behaves in an unknown manner at isolated 
points or along curves that are not too crinkly, then ƒ f(z) 
will be continuous everywhere in T. We can go a step 
further and state the theorem : If f'(z) is in general continuous 
in T< the points about which no supposition is made forming a set 
of content null, and if 

l/'OOl < G, 
where G is a fixed quantity, then f\z) is everywhere continuous in 
T.f For Goursat's proof of Cauchy's integral theorem 
applies, with a slight modification, to this case. 

* Cf. u Some points in the elements of the theory of functions," this BUL­
LETIN, 2d Ser., vol. 2, 1895-96. At that time a paper by G. Morera " Un 
teorema fondamentale nella teorica delle funzioni di una variable com-
plessa," Beat. 1st. Lomb. Eend. (2) vol. 19, Apr., 1886, was unknown 
to me, in which the author not only establishes the above conditiou as 
sufficient, but applies his results to prove Weieistrass's theorem that a 
series of functions, analytic throughout a two-dimen-ional region, which 
converges uniformly within this region, defines a function analytic within 
the region. 

t Professor Chessin states this theorem without the restriction that 
\f/{z)\ < G. (Cf. Annals of Math., vol. 11, 1896.) disproof, which is 
given by a familiar method, is based on the following theorem (1. c , pp. 
52, 53), which he ascribes to Harnack, but which Harnack neither states 
nor proves : Let X(x, y) and Y (x, y) be two functions of the real variabtes 
x and y, which are finite and continuous throughout a connected domain (D), 
and which generally (i. e., with the exception of points and lines forming 

a discrete multiplicity) satisfy the equation -z— = — ; let further (x0i y0) 



8 6 THEORY OF FUNCTIONS. [NOV., 

Finally, we may add the following theorem, which in­
cludes the preceding one as a special case : If ƒ («) exists at 

OU *ÓU 

each point of T and if ^—, ^— (where f(z) = u + vi) are each 
capable of surface integration over any two dimensional region 
contained in T, as well as of partial integration with regard to x 
and y (i. e., line integration parallel to either axis), then ƒ(«) is 
analytic in T. 

For u and v are continuous functions of x and y in 1\ 
satisfying the relations 

'du ^_dv du __ dv t 

dx By ' 3y dx' 

each of the integrals 

C(udx — vdy), C(ydx + udy), 

taken along a closed path that cuts out from T a simply 
connected region, can be shown by Green's theorem* to van­
ish ; and hence ff(z)dz, taken along such a path, vanishes 
too. d 

This theorem is in one respect more general than any of 
the preceding in that it makes no supposition about the 
continuity of ƒ (z) whatsoever. I t meets its limitations, 
however, already in the case that, ƒ'(2) being in general 
continuous in T, nothing is known about the behavior of 
ƒ'(3) in the points of a Cantor's set of positive content, 
—for example, the above set when X < 1. 

I t may be remarked that the existence of the derivative 
ff(z) involves more than the mere existence of the partial 
derivatives of u and v, and of the relations between them. 

and (%,y) beany two points within (D); then the definite integral 

J r*&, y) 
I (Xdx+Ydy) 

will be independent of the path of integration, provided the several paths lie en­
tirely within (D) and can be brought to coincide with one another by a continu­
ous deformation without crossing any of the boundary lines of (D). Without 
introducing further restrictions there is at present no prospect of obtain­
ing a proof of this theorem (if indeed it be true). 

*The proof of Green's theorem in the generality here required de­
pends on the following theorem : If 0(a?) is defined for each value of x in 
the interval : a^x^b, and if <p(x) has in each of these points a finite 
derivative f{x) ; if furthermore <j>'(x) is integrable in the interval, then 

X <l>'(x)dx — <i>(x)—<j>(xQ). 
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I t involves the existence of a complete differential of the 
functions u and v. Cf. Stolz, Differential und Integral-
rechnung, vol. 1, ch. 4, §8 and vol. 2, ch. 12, §7. 

To test the truth of a general theorem one mode of pro­
cedure is to form an example which proves the theorem to 
be false. From the foregoing it appears that in the present 
case simpler examples are surely impossible than those 

(a) in which ƒ'(«) becomes discontinuous along a curve 
whose tangent does not turn continuously along any arc ; * 

(b) in which, f'(z) being assumed to remain finite in T, 
f(z) becomes discontinuous in a Cantor's set of positive 
content ; 

(c) in which not both of the partial derivatives ^—, ^— 

are capable of surface integration over any region lying 
in Tj or of line integration along a line parallel to one of 
the coordinate axes. 

HAEVAED UNIVERSITY, 
September, 1898. 

T H E F I F T I E T H ANNIVERSAKY MEETING OF 
T H E AMERICAN ASSOCIATION FOE THE 

ADVANCEMENT OF SCIENCE. 

T H E semi-centennial meeting of the American Associa­
tion for the Advancement of Science was held in Boston, 
August 22-27. There were over 900 members and associ­
ates registered. A large number of members of affiliated 
societies were also in attendance, many of whom did not 
register, but had the privilege of taking part in the proceed­
ings of the sections in which they were interested. Their 
presence increased the general scientific interest ; and it 
was the evident desire of the various sections to have still 
closer relations with the respective affiliated societies, as it 
is felt that any tendency towards the isolation of groups of 
specialists may partially defeat one of the objects the Asso­
ciation has at heart, viz., the spread of a popular interest 
in the work of scientific men. 

The section of mathematics and astronomy, and its near 
neighbor, the physical section, were well attended, the 

* It is possible that by analysis similar to Jordan's, Cours d'Analyse, 
vol. 1, H 193-196, this condition may be made more general. 


