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T H E THEOEEMS OF OSCILLATION OF STURM 
AND KLEIN. (THIRD PAPER.) 

BY PBOFESSOB MAXIME BÔCHEE, 

(Bead before the American Mathematical Society at its Fifth Summer 
Meeting, Boston, Mass., August 19, 1898.) 

T H E following pages form a continuation of two papers 
presented under the same title to the Society and printed 
on pp. 295-313 and 365-376 of the preceding volume of 
the BULLETIN. These papers will be referred to as Th. of 
Osc. 1 and 2 respectively. 

The object of the present paper is to extend the results so 
far established to some cases in which the coefficients of the 
differential equation in question are no longer continuous 
throughout the intervals with which we are concerned. 
Such extensions are made in § § 2 and 3 of the present 
paper but for this purpose it is necessary in § 1 to establish 
some fundamental theorems concerning linear differential 
equations of the second order with discontinuous co­
efficients, results which are perhaps of some interest apart 
from the special applications here made of them. Before 
entering on these questions, however, it will be convenient 
to describe accurately the kind of discontinuities with which 
we shall deal, and to establish certain general theorems. 

All the functions with which we shall have to deal in the 
present paper are, throughout the interval in which we con­
sider them, single valued real functions of one or more real 
variables. Taking first the case of a function of a single 
variable ƒ(#), we shall consider only the case in which 
this function has in an interval a = a ;^&a finite number of 
points of discontinuity. 

The simplest discontinuities from some points of view 
are the so-called finite discontinuities* of ƒ(#), i. e., discon­
tinuities x = c for which a positive quantity M can be found 
such that in the neighborhood of c, |/(of)l < M. Going be­
yond these finite discontinuities we have discontinuities at 

* Strictly speaking this includes the case in which the discontinuity is 
simply due to the fact that the function has not heen defined at the point 
in question ; for example e~1^ at the origin. We will, however, here 
once for all make the convention that in such cases we will regard the 
function as being so defined at the point in question as to preserve the 
continuity if possible. 
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which the function becomes infinite for some or for all 
methods of approach. For our purpose we need merely to 
restrict these discontinuities by requiring that the functions 
do not become infinite more strongly than (x — c)_ i where 
0 < i < 1. We may then describe the discontinuities with 
which we have to deal, including the finite discontinuities, 
as follows : 

(A) The functions f(x) with which we shall have to deal are 
such that a function (fi(x) exists single valued and continuous 
throughout the interval a^==x = b and such that at every point of this 
interval except cv c2, •••, cn 

<p(x) = [ O - cx) (x - c2) - (x - cn)Yf(x), 

where 0 < i <C 1. 
I t should be noticed that for functions of this &ov\)/f(x)dx 

extended over a part or the whole of the interval ab is ab­
solutely convergent, i. e.,f\f(x)\ dx is convergent. 

We shall also have to deal with functions of two or more 
independent variables x, A, p, ••• which we can describe as 
follows : 

(B) The functions ƒ(# ; X, p, •••) with which we shall have to 
deal are such that a function <p can be found which is a single 
valued and continuous function of (#, A, p, •••) when a~x~b, 
X2^X^XV p^=:p =vv ••• and such that for all of these values 
except when x = cv c2, •••, cw 

(p(x ; X, p, - ) = [(a — ex)(x - c2) •••(> - cj\lf{x ; X, p, •••) 

where i is a constant satisfying the inequality 0 <C i < 1. 
We give now an important theorem concerning such 

functions : 
(C) Iff(x ; A, p, "• ) is a function of the hind described in 

(B) and if x0 is a constant satisfying the inequality a = x0 = b, 
then 

F(x ; X, p, ... ) = ( f(x ; A, //, ••• )dx 

is a continuous function of (x, X, p, ••• ) for all the values in 
question. 

In order to prove this we have merely to show that as 
Axj AX) Ap, ... approach zero independently of each other the 
difference : 

AF= F(x + Ax ; X + JA, p + Ap, ». ) - F(x ; X, p,... ) 
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approaches zero. Now we can write 

J
f*x + Ax s*x -f Ax 

I f(x ; A + JA, ft + J/x, — )da? — I ƒ (a? ; A, p, ••• )da? 

J (*x-\- Aaj /»•* 

I /(a? ; A, fi, ... )<fc — I ƒ(# ; A, n, - )efe. 
We have, therefore, the inequality 

,1F I ̂  !ƒ(*; A + J A ^ + J / , , . . . ) - ƒ ( * ; A , ^ . . . ) | . | ^ l 
Jx0 

X x+ Ax 

I/O*; *, / * , - ) ! • I*»I-

The second of these integrals clearly approaches zero as 
àx approaches zero. The first may be written, if we use 
the same notation as is used in (B), in the form 

%Jx 
1 (ic — c j •••(« —cn) r M ^ l l c ^ l 

^ f I O - cL) - (a - cn) I - ' I J^ | da?, 

where A4> = ^(a? ; A + JA, ^ + 4a, •••) — <p(x ; A, ^ ••• ). 

If now we denote the greatest value of I ^0 I in the interval 
a^x = b by e we see that the integral we are considering 
does not exceed 

' I | (^ — cL) ». (x — cn) I ~*dx. 

But owing to the uniform continuity of <p, e clearly ap­
proaches zero when JA, J/*, ••• all approach zero. Accord­
ingly the whole integral, and therefore AF, approaches zero, 
as was to be proved. 

(D) If f(x] A, //,..• ) is a function of the hind described in 
(B) and ?>(#, A, //, ••• ) is throughout the region in question a 
single valued continuous function of (#, A,/*, ••• ), then f.y is a 
function of the hind described in (B). 

The proof of this theorem follows immediately from (B). 
(E) If throughout the interval*a = #=&, <p(x) is single val­

ued and continuous and <p(c) = 0 (a = c = b), then if h > 0 and 
#0 is any point of ab 

ÏS[C*"e)>iT(i=§ ïq : ï<fal"0-
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In order to prove this let us take a point xx so near to c that 
when | x — c I ~ \ xx — c |, | <p(x) | < Ice. Now denoting the ex­
pression which stands above in square parentheses by F{x) 
we have 

F(x) - (* - ey f"1 jr^M* dx + (x- cy rj^%^ dx 

so that when | x — e | < | xx — c | 

+ he | X — C |* f * 
I c?# I 

C\K 

The second of these two terms is evidently less than s 
while the first can be made less than e by taking | a? — c I 
sufficiently small. No matter how small e may be chosen 
I F(x) I can be made less than 2e by taking | x — c | small 
enough, and this proves the theorem. 

§ 1. On Linear Differential Equations of the Second Order 
with Discontinuous Coefficients, 

Let us consider the differential equation 

in which throughout the interval a—:x = b the coefficients 
p and q are functions of the kind described in (A). "We 
can, of course, not expect to find solutions y which satisfy 
(1) at all points of ab. We shall therefore seek func­
tions which, together with their first derivatives are single 
valued and continuous throughout ab and except at the 
points of discontinuity (x = cv c2, •••, cn) of p or q satisfy (1). 

In order to simplify matters let us first assume that there 
is only one point (x = c) of discontinuity in ab. I t is at 
once clear from (A) that we can find a positive quantity M 
such that at all points of the interval a = x = b (except c) 

\p l < M | x — o h', I q l < MI x — c r . 
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We will now prove that the method of successive approxima­
tions enables us to find a function y which, together with its first 
derivative, is single valued and continuous throughout the interval 
a = x"=b, which satisfies (1) at every point of this interval except 
at c, and which at c has the arbitrarily prescribed value y while its 
derivative has the arbitrarily prescribed value yf.* 

To prove this we will let 

i7
0=r + / 0 — c) 

and compute the quantities Yv F2, ••• from the formulae 

YJ—fJlpY^' + qY^Jdx, 

where accents denote differentiation. I t should be noticed 
that the functions YJ and Yn as thus defined are continu­
ous throughout the interval ab. We wish to prove that the 
series 

(3) F0 + Fx + F2 + -

converges throughout ab and represents the desired solution 
of (1). In order to prove this let us consider by the side 
of the series (3) the series formed by differentiating it term 
by term 

(4) Y0> + F / + Yi + - . 

We will begin by proving (3) and (4) uniformly conver­
gent throughout ab. Let us write for brevity I x — c | = t. 
Let I be a positive quantity greater than 1 and such that at 
all points of ab,t<l) and finally let G be a positive quan­
tity such that at all points of ab the inequalities I Y01< C, 
I F0'.l < G hold. We will first establish the inequalities 

"•.''<S(£'i" 

These formulae evidently hold when n = 0. They will 
therefore be established for all values of n if assuming them 

* A precisely similar theorem holds for homogeneous linear differential 
equations of order higher than the second. The proof is essentially the 
same as that here given. 
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to hold for a given value of n we can show that they hold 
for the next larger value. Now we have 

| F ' n + I | ^ J f j [ V [ I F / l - f YJ]dt 

2CM /2Ml\n
 r> 

<-^r[T^iHt^ dt 

~ ( n + l ) ! \ l —*/ I T 

C i2Ml ^X^ 
< ( n + l ) ! \ l - * < / ' 

Furthermore 

r* G I 2Ml\n+1 1 r< 

G / 2MI \w+1 t 
\\T=î) 

^ ( n + i ) ( i_ i ) 
" (n + l ) ! [ ( w + l ) ( l - t ) + l ] \ l - t ; I 

C / 2MI ^ \n + 1 

Thus formulae (5) are established. From these formulae 
we can deduce the following inequalities in which the vari­
able t no longer enters 

' • ^ ' ^ r a i y 1—if' 
(6) 

From (6) it appears that each term in (3) and also each 
term in (4) is less than the corresponding term in the ex­
ponential series 

»=- C J2MP 

Since this last series is a series with positive constant terms 
and is known to be convergent, it follows that the series 
(3) and (4) are both uniformly convergent throughout ab. 
Each series, therefore, represents a continuous function of 
x and (4) represents the derivative of (3). We will denote 
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the value of the series (3) by y. We see then that y is a 
function which, together with its first derivative, is single 
valued and continuous throughout ab. To prove that y 
satisfies (1) at every point of ab other than c let us differen­
tiate (4) term by term 

- (pY: + qY0) - ( p F / + qYx) - (pYJ + qYJ - - . 

I t is clear that this same series might have been obtained 
by multiplying (4) by — p and (3) by — q and adding. I t 
is accordingly uniformly convergent throughout any part of 
ab which does not contain c, and is therefore equal to y". 
On the other hand it is equal to — py' — qy. Therefore at 
every point of ab other than c, y satisfies (1). 

Finally when x = c all the terms after the first in both 
(3) and (4) are zero while the first reduce to y and y' re­
spectively. Thus our theorem is established. 

We will now prove that every function y which satisfies (1) 
at all points of the interval a = x <; c (or of the interval c <^x=b) 
approaches, as does also its derivative y', a finite limit as x ap­
proaches c. To prove this let yx and y2 be two of the solu­
tions just obtained by the method of successive approxima­
tions, chosen (and this is evidently possible) so as to be 
linearly independent of each other. Then y = C1yl + C2y2 
where Cx and C2 are two constants. Now since yv y{, y2J y2 
approach finite limits as x approaches c it follows that the 
same is true of y and y'. 

Finally, we will prove that if throughout the interval 
a^x'—b, yx and y2 are together with their first derivatives single 
valued and continuous and except when x = c satisfy (1), and if 
2/iO) = 2/2(

c) = Y <*nd 2//0) = &'(<0 = r', then y\ = y2 through­
out the interval ab. For consider first the case in which y and 
y' are not both zero. Then if yx and y2 were not identical 
it is clear that they must be linearly independent. Every 
other solution y would therefore be expressible in the form : 
V ^ Gxyx + C2y2, so that 

y(c)=(Cx+C2)y 

and 2/'(c)= (Cx+ C2)y'. 

We thus see that y(c) and y'(c) are proportional to y and 
/ whereas we have proved that they can be arbitrarily 
chosen. This disposes of all cases except that in which 
Y = y' = o, and here the theorem above stated will be es­
tablished if we can prove that yx and y2 are both identically 
zero. This, however, follows at once from the case already 
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considered as otherwise by adding yt or y2 to a solution y3 
which does not vanish (or whose derivative does not vanish) 
at c we should get a different solution which at c has the 
same value and the same derivative as y9, and this we have 
just proved to be impossible. 

The results just obtained can be at once extended to the 
case in which there is more than one point of discontinuity 
of p or q in the interval ab. For this purpose it is merely 
necessary to break up the interval ab into shorter intervals 
in each of which only one point of discontinuity lies. We 
thus get the following theorem 

I. If in the interval a = # = 6, p and q are functions of the 
kind described in (A) there exists one and only one function y 
which together with its first derivative is single valued and con­
tinuous throughout ab, satisfies (1) at every point of ab except at 
the points of discontinuity of p or q, and has at an arbitrarily 
given point of ab (which may or may not coincide with one of the 
discontinuities of p or q) an arbitrarily given value while its de­
rivative also has at this point an arbitrarily given value. 

Finally we note that theorems (E ) and (F ) Th. of Osc. 
1, pp. 297, 298 hold for the more general case with which 
we are now dealing in which p and q are functions of the 
kind described in (A). The same is true of the theorem 
concernin g the separation of the roots of two linearly inde­
pendent solutions quoted in Th. of Osc. 2, p. 366. 

In §3 we shall have to deal with the case in which in (1) 
the coefficient p is still a function of the kind described in 
(A)* while q has a point of discontinuity c at which it be­
comes infinite more strongly than the functions described in 
(A) but only in such a way that the function (x — c)q be­
longs to the class described in (A). We will here again 
begin by confining ourselves to the case in which c is the only 
point of discontinuity of p or q in the interval a ̂ = x ^ b, and 
we will prove that in this case the method of successive ap­
proximations enables us to find a function yx which together with 
its first derivative is single valued and continuous throughout the 
interval a^x^b, which satisfied (1) at every point of this inter­
val, except at c, and which vanishes at c while its derivative has at 
c the arbitrarily prescribed value p'.f 

* In fact in the special case with which we there have to deal p = 0. 
fThis is merely a special case of the following theorem which can be 

proved by the same method : If plt p2, •••, pu, {% — c)pu +Î, {x — c)2pu + 2, 
•", (x— c)n-kpn are functions of the kind described in (A) whose on]y 
discontinuity is at c, then a function Y exists and c an be found by the 
method above used which with its first n — 1 derivatives is single valued 
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In order to prove this we will take as a first approximation 

r0 = / ( * - c ) , 
and form the functions Yv Ya, ••• by means of the formulae 
(2), p. 26. The first of the two integrals in (2) is now not 
obviously convergent since q has at c a discontinuity up to 
which we cannot in general integrate. In order to prove 
this integral convergent it is clearly sufficient to prove that 

Yn = (x - c) <pn(x) 

where <pn(x) is continuous at c. This formula holds when 
n = 0, for then we have <pQ = /. If then, assuming that it is 
true for a given value of n, we can prove it true for the next 
larger value the convergence of our integral will be estab­
lished. We will then assume the formula true when we 
give n the value n — 1. Then Yn' is a continuous function 
of x when a = x = b, and the same is therefore true of Yn. 
Remembering that Yn(c) = 0 we have by the law of the 
mean 

where \x — c | < | # — c\. We have therefore <pn(x) = Yn' (a?), 
and since Yn' is continuous at c and FM'(c) = 0 we see that 
<pn(x) approaches the limit zero as x approaches c. If then 
we define <pn(x) to have the value zero when x = ewe see 
that <pn is continuous at c as well as elsewhere. 

Having thus justified the definition of the quantities Yn 
the next step is to prove that the series (3) and (4), p. 26 are 
uniformly convergent. For this purpose we need a few in­
equalities. 

In the first place it is clear that we can find a positive 
quantity M such that at all points of ab (other than c) 

\p\<M\x — c I — % \x — c\\q\ <M\x— cl~*. 

We then establish by mathematical induction (the reason­
ing being almost identical with that used in the analogous 
case on p. 27) the following inequalities 

and continuous throughout àb, which at every point of ab except e satis­
fies the differential equation: 

and which at c vanishes together with its first n — Jc — 1 derivatives while 
dn — ky dn~~1V 

the derivatives *, '" -j-^zri n a v e arbitrarily prescribed values at c. 
(XX uX 
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n\ \ 1 — i / 

where as before we have let | x — c I = t. By means of these 
inequalities the uniform convergence of (3) and (4) is estab­
lished at once as on p. 27, and as there it is shown that (3) 
therefore represents a function y1 of the kind desired. Our 
theorem is thus proved. 

A few simple facts about these functions yx must be noted 
before we go further. In the first place it is clear that 
if f = 0 yx is identically zero. Apart from this trivial case 
it is clear that y1 cannot have an infinite number of roots in the 
interval ab, for these roots could (by (E) Th. of Osc. i , p. 
297) have no other point than c as a limiting point, and this 
would clearly require the vanishing of ^/(c). 

In the second place we can write 

yx(x) = (x-c)E(x), 

where E(x) is single valued and continuous throughout ab and 
E(c) = y\ For E{x) will of course be continuous every­
where in ab except at c. In order to prove our theorem it 
is therefore sufficient to show that 

lim E(x) = /. 

This follows at once from the law of the mean which tells 
us that yx(x) = (# —• c) yx(x) where \x — cI < |a? — c\. We 
have then E(x) = y/(aO, so that 

lim E(x) = lim yx(x) = /. 

I t is clear that the solutions yx so far obtained are 
linearly dependent, differing only in the value of the con­
stant factor y'. "We proceed to prove that any solution of (1) 
linearly independent of the solutions yx just obtained approaches a 
finite limit different from zero as x approaches c. 

In order to prove this let us remember that if x0 is a point 
so near to c that 2/x =4=0 when | x — c I ^ I x0 — c I 

J s*x ~rx
pdx 
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is a solution of (1) linearly independent of yv Writing as 
above yx = (x — c) E(x) we have 

/ pdx 

y = (# — c)E(x) C- i -JJIJ—-_cfc . 
yi K J K Vx0 {x-cy\_E(x)Y 

Now we will write 

where iTis a constant different from zero and F(x) is single 
valued and continuous while F(c) = 0. We then get 

y, = - JEE(*) + KE{x) ^ + (* - c)E{X)£-{^^dx. 

As a; approaches c it is clear that the first of these three 
terms approaches a finite limit different from zero, while the 
second approaches zero. By (E) the third also approaches 
zero. y2 therefore approaches a limit different from zero. 
Now every solution of (1) linearly independent of yx may 
be written in the form : y = Cxyx + C2y2 where C2 4

s 0 so 
that the truth of our theorem is evident.* 

The functions y% with which we have been dealing may of 
course be extended continuously throughout larger intervals 
where p and q have other discontinuities than e provided 
that these discontinuities are of the kind described in (A). 
We are thus led to the following theorem : 

I I . If in the interval a^x = b, p and (x — c)q (where a ~ 
e ^b)are functions of the kind described in (A), there exists one 
and except for a multiplicative constant only one, function yx which 
together with its first derivative is single valued and continuous 
throughout ab, satisfies the differential equation (1) at every point 
of ab except at the points of discontinuity of p and qy and van­
ishes when x = c. 

We have so far regarded the coefficients p and q as func­
tions of x only. We shall, however, in what follows be 
obliged to regard them as involving also a parameter L 

Let us first suppose that when a^x^b, X2^X^XV p and 
q are functions of the kind described in (B). We begin as 
before with the case in which there is only one value x = c 
for which p or q is discontinuous, and apply the method of 

* It may be added that the derivatives of solutions linearly indepen­
dent of y1 will not in general approach finite limits at c. 
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successive approximations regarding y and y' as constants.* 
In the analysis of pp. 26-28 we have merely to consider the 
nature of the dependence upon X of the quantities which 
appear. Thus M may be taken as independent of X. Yn 
and Yn' will be by (C) continuous functions of (x,X). The 
analysis moreover proves that (3) and (4) are uniformly 
convergent not merely with regard to x but with regard to 
(x,X) so that y and y' are continuous functions of (x,X). 
This result we state as follows : 

III. If when a^x^b and X2^X^X1 p and q are functions 
of the kind described in (B), the solution of (1) which together 
with its first derivative is constant for an arbitrarily given value 
x=x0 (a^x0^b), is together with its first derivative a con­
tinuous function of (x,/-) when a^x^b, X2^X^XV 

Finally we come to the case of differential equations in 
which p and (x — c)q are functions of the kind considered 
in (B), concerning which the following theorem may be 
stated : 

IV. If when a~x = b and X2 = X~Xvp and (x — c)q (where 
a = c = b) are functions of the kind described in (B), the solution 
of (1) which vanishes when x = c and whose derivative has at this 
point a constant value is when a = x = b and X2^X^Xl together 
with its first derivative a continuous function of (#,A). 

The proof here is almost precisely the same as for theorem 
I I I . The only point which presents any difficulty is the 
proof that YJ is a continuous function of (x,X). In order 
to prove this'let us write as on p. 30 

so that 
Yn(X>X) = — J, [PF'n-l + O — <0^«-,] *B. 

If then we can prove that the functions <pn are continuous 
functions of (x,X) when x = c (they are obviously continuous 
for other values oî x) we could as before infer that the func­
tions Yn' are continuous functions of (#,X). We shall of course 
here again use the method of mathematical induction : not­
ing that <p0 = y' is continuous, then assuming that <pv<p2, —, 
<pn„! are continuous. From this it follows that Yn' is a con­
tinuous function of (x,X). Now we have (seep. 30) 

?.(V) = r„W) 
where \x — c\ <.\x ~— c\, whence the continuity of <pn when 
x = c follows at once. 

* The result and the method of proof would remain the same if y and 
y' were any continuous f unctions of X 
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§ 2. Extension of Results of Previous Papers to Equations with 
Discontinuous Coefficients for which the Boundary 

Conditions may Remain General, 

Leaving for the next section equations for which we 
should have to base our results on Theorems I I and IV of 
the last section, we consider in the present section exten­
sions of our previous results based on Theorems I and I I I . 
Here we may state at once the theorem 

V. All the theorems stated in Th. of Osc. 1, §§ 1, 2, and Th. 
of Osc. 2, § I, remain true for differential equations whose coeffi­
cients instead of being continuous functions of x or (x, A) are 
functions of the kind described in (A) or (B).* 

The truth of this statement is at once obvious when we 
refer to the proofs of the theorems in question. These 
proofs would require only a few modifications which, in 
view of the results of the last section, are so obvious that it 
does not seem necessary to dwell upon the matter further. 

There remain then to be generalized the results contained 
in Th. of Osc. #, §2 . We start here from the differential 
equation (1) in which 

?0O = *(*) + <*0*0 [<V + c»-!**-1 + - + C0 ; 
and where p, / , and <p are independent of the parameters 
Co> '"? Ok. We have to consider the k + 1 finite intervals 
a0b0J a]bv •••, akbk such that 

% < b0 ^ ax < bx g a2 < b2 < i w =ak< bk, 

and the k + 1 points £0, $v •••, $k such that a. < £, < be We 
will now assume first that each of the functions 

rx 

*i=9i r*~ ^ dx+ft (*=°> h •••> *) 
JU 

(where g{ is any constant not zero and f any constant) is a 
continuous function of x throughout the interval a. ^ x ^ b{. 
This will of course be the case if p is a function of the kind 
described in (A), but it will also be true in some other 
cases which we shall find important, f This first assump-

* In fact, in Th. of Osc. i, Theorem VIII, and Th. of Osc. 2, Theorem 
III, it is not necessary that 0(JC, a) should be a function of the kind de­
scribed in (B) for the whole interval L > A > I. It is sufficient that this 
should be the case for every interval \ =̂j h ̂  \ contained in the interval 
just mentioned. 

tC£. for instance p. 37. 



1 8 9 8 . ] THE THEOREMS OF OSCILLATION. 3 5 

tion makes the interval a. b. of the #-axis correspond in a 
one to one manner to a finite interval <r. r. of the tt axis. 

Secondly we will assume that 

t/pdx t/pdx 

/e & a n d ^ e f t (i = 0, 1, —, k) 
are throughout the interval ai r. (including the ends) func­
tions of t of the kind described in (A) ; and 

Thirdly that 0(#) does not change sign in any one of these 
intervals or have an infinite number of roots in them. 

Under these circumstances we have the following 
theorem 

VI. There is one and only one real determination of the par­
ameters C0, Cv-"y Ck for which the equation (1) has k + 1 solu­
tions y0, yv •••, yk such that y. (i = 0, 1, •••, k) has just m. roots in 
the interval a. < x < b. and satisfies the conditions 

<»,c«.)-,[!;L-o, 
A'»W-ft[^]„-o. 

Here the quantities m. are any integers positive or zero, 
and a., a/, /5., /3/ are any real quantities subject only to the 
restriction that at and a/ are not both zero and that pt and 
P( are not both zero. 

The proof of this theorem is practically identical with 
the proof of Theorem IV., Th. of Osc. 2* so that we will 
omit it here. I t should be noticed that this theorem in­
cludes as special cases Theorems IV and V of Th. of Osc. 2. 

An important application of Theorem V I is to the gen­
eral linear differential equation of the second order which 
is everywhere regular 

d2y / 1 — xJ — x/' 1 — x ' — x " v dy 
dx2 \ x — ex x — en / dx 

*/*,"ƒ(O x 'x "f(e ) (7) +*\&Z£L + ...+ 
f(x) I x-e, 

where /(a?) = (x — ex) (x — e2) - (x — e J. 

* The greatest difference comes in in (a) Th. of Osc. 2, p. 373, where we 
must now prove <pk to be not a continuous function of (/*, Ck) but a func­
tion of the kind described in (B) . 
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At this point we will define a term which we shall find it 
convenient to make use of in what follows. By the funda­
mental solutions of (7) corresponding to the singular point e{ we 
shall understand the solutions of (7) which can be developed about 
e{ in the form* 

Va) = (* - 0 * [ 1 + &'(* - et) + 9l'(x - e{y + • • • ] , 

y™ - (x - e , K [ l + &"(* - O + 9*"(* - O ' + - ] • 

If we have occasion to distinguish between these two solu­
tions we shall do so by speaking of the first as correspond­
ing to the exponent */ the second to */'. Moreover if we 
recall that a non-siogular point c of (7) may be regarded as 
having exponents 1 and 0 we see that it will be natural to 
understand by, the fundamental solutions of (7) corresponding to a 
non-singular point c the solutions which can be developed about c 
in the forms 

tf» =(x~c) + g<(x - cY + g^x - c)3 + - , 

y{2) = i + &"(* - cy + g>>( x - c)3 + .... 

We assume as before that the coefficients of (7) are real 
for real values of x (Cf. Th. of Ose. 2, p. 375 (a) — (d)); 
and letting k = n — 2 wre consider the h + 1 intervals 
a. = x = b.(i = 0, 1, -, h) where 

a0 < b0 ^ ax < bx ^ a2 < 62 < &4_! ^ ak < 6ft. 

If no singular point lies in any of these intervals it is clear as 
stated in Th. of Osc. 2, p. 375, that the simple form of Klein's 
theorem of oscillation is at once applicable. Let us now en­
quire how it is if one of the intervals a.bi just reaches up 
with one of its ends'to one of the real singular points of (7). 
Let us say for the sake of distinctness ai = ev There are 
two cases to consider : 

1. The case in which the exponents */, */' are conjugate 
imaginaries. Here it is at once obvious from the form of 
development about ex that every real solution of (7) has an 
infinite number of roots in the neighborhood of ex so that the 
theorem of oscillation cannot be extended to this case. We 
need then merely to consider : 

2. The case in which x/, */' are real. We will at first 
consider here only the special case (to which, however, as 

* In case /e/ — /c// is an integer, that one of these series into which the 
smaller of the exponents enters would have to be replaced by a more 
complicated expression which, however, we shall not have occasion to use. 
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we shall see presently the general case can be reduced*) in 
which x/' = 0 while */ > 0. Here 

_rx Tl—KV 1 —«2'—«2" l—Kn'—Kn"-\ 

= (x^el)^
fE(x) + <TiJ 

where E(x) is continuous throughout the interval ex=. x~bi 
and E(el) =)=0. The condition of continuity of t4 is there­
fore satisfied since by hypothesis */ > 0. 

A relation which we shall need in a moment can at once 
be deduced from the value of tt just obtained, viz : 

1 

where Ex is a single valued and continuous function of t{ 
throughout the interval airi including the ends, and 

Going a step further we have 

Kx)=WY 
where f(x) = (x — ej(x —- e2) ••• (x —• en), and finally 

e 2^iPdx=1c(x - eLy-2*i (x - e,)»-*8»'-*8»" - (a? - 02-2*«'-2/c«" 

where A; is a constant different from zero. We may there­
fore write, using the value of x —- el in terms of tt above ob­
tained 

2/pdx 1 

X(x)e% = (x - e ^ - ^ ' J » = (*4 - «r>7 -» ^ f t ) , 

^(*)e *• = (* - e.y-^'F^x) = (*4 - «r̂ Tx. # , ( 0 , 
Except the case of equal exponents which as we shall see is excluded. 
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where Fx and F9 are both continuous throughout the in­
terval e1 = x = bv and #x and $2 are both continuous through­
out the interval <riri including the ends. The functions 

2/pdx 2/pdx 

x(x)'e%i and ^(#)-e £ 

are therefore functions of tt of the kind described in (A) 
provided that 0 < x/ < 1. If this last inequality holds theorem 
VI may therefore be applied. Moreover it is evident that in­
stead of allowing one of the points a0, b0, av bv ••• to coincide 
with a singular point of (7) we might have allowed any 
number of them to do so provided that one of the exponents 
of each of the singular points thus involved is zero while 
the other is real, greater than zero, and less than one. 

The conditions to which the solutions y{ are subjected at 
the points atbt may be stated in the cases with which we are 
now concerned in a very simple form if we use the concep­
tion of the fundamental solutions corresponding to these 
points. Suppose for instance that the singular point ex is 
one of the points ai9 then yi satisfies the condition 

Now yt can be written ha)y{1) + ¥2)y{2) where ¥l) and ¥2) are 
constants and y{1) and y{2) are the fundamental solutions corre­
sponding to the exponents x/ and 0 respectively at ev Sub­
stituting this value of y< into the above condition we readily 
see, when we use the explicit expression for tt in terms of 
x, that the condition reduces to 

where K is a constant different from zero and independent 
of the parameters C. Now since a/ and a% can be chosen as 
any two constants not both zero we see at once that the con­
dition can be expressed by saying that yt is to be proportional to an 
arbitrarily chosen linear combination of the fundamental solutions 
corresponding to ev 

The condition y'y(c) — yy\c) = 0 at a non-singular point 
may also be stated in this form, for letting y = k(1)y(1) + 
¥2)y{2), where y{l) and y{2) are the fundamental solutions cor­
responding to c, we see at once that our condition reduces 
to y'¥2) — y¥l) = 0, and this is equivalent to requiring that 
y be proportional to an arbitrarily chosen linear combination 
of y{1) and y{2\ 
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So far we have merely considered the case in which one 
of the exponents of each of the singular points with which 
we have to deal is zero. Let us now consider the more 
general case in which the exponents x/ and x/' of these 
points are any real quantities where x/ > x/'. "We will let 
x/ — x/' = xf ; and denote hj JJ(x — e,)*'" the product of the 
expressions (x — e{)

Ki taken for all the singular points which 
coincide with any of the points at or bit Now let 

V — IK*—*)"*" -y 

and we get as the differential equation satisfied by y an 
equation differing from (7) in only two respects : 

1st, the exponents of the points et Which coincide with 
points at or bt are now x{ and 0 instead of x/ and x/'. 

2d, the parameters 00, ~CV ••• 0n_2of the transformed equa­
tion are connected with the parameters 00, Cv •••, Ow_2of the 
original equation by relations of the form : C< = 0< + kt where 
the constants kt are independent of the O's. 

We may therefore determine the parameter 0 by applying 
the theorem of oscillation to the transformed equation pro­
vided that 0 < x{ < 1 ; and the 0?s being thus determined 
the O's are uniquely determined. I t remains then merely 
to show that we can so arrange the conditions of the theo­
rem of oscillation when we apply it to the transformed 
equation as to give any desired conditions for the original 
equation. 

In the first place it is clear that the roots of a solution 
yt in an interval a{ < x < 6< are precisely equal to those of 
the corresponding solution yt in this interval, and therefore 
in particular that y{ and yt have the same number of roots 
in this interval. Moreover if y{l) and y{2) are the fundamen­
tal solutions of (7) corresponding to a point c (whether this 
point be singular or non-singular is immaterial) ya) and y{2) 

although not themselves the fundamental solutions of the 
transformed equation differ from them only by the same 
constant factor. We may then state the following theorem : 

VII . If the coefficients of equation (7) are real for real values 
of x and if the k + 1 intervals (k~n — 2) a0b0, aj)v •••, akbk are 
so situated that 

1st, a0 < b0 ^ a1 < bx ^ a2 < b2 < bk_x ^ak<bk; 

2d, no singular point of (7) lies in any of the intervals 

a.<x< b.(i = 0, 1, ••• , k) ; 
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3d, the points at and bt themselves, so far as they are singular 
points of (7), have unequal real exponents whose difference is nu­
merically less than 1 ; 

Then, the quantities mi being any integers positive or zero, 
there is one and only one real determination of the parameters 
C0, Cv •-•, Ck for which (7) has h + 1 solutions y0, yv ~- , yk such 
that y{ has just m* roots in the interval a* < x < b{ and at each ex­
tremity of this interval is proportional to an arbitrarily chosen linear 
combination of the fundamental solutions corresponding to this ex-
tremity. 

§ 3. Extension of Results of Previous Papers to Equations with 
Discontinuous Coefficients for which the Boundary 

Conditions must be Specialized. 

We will begin here by considering equations of the form : 

where the coefficient <p is such that throughout the interval 
a=x~b, (x—a)<p is a function of the kind described in 
(A) or (B). Here we see by Theorems I I and IV that 
we can no longer require of solutions y that they shall sat­
isfy the conditions y (pi) = «? y'(a) = a' where a and a' are 
arbitrarily given, but that we must now restrict ourselves 
to the boundary condition y (a) = 0 . With this restriction, 
however, many of the results of the previous papers may 
be extended to the case now before us by methods practically 
identical with those there given. We may say : 

VIII. All the theorems contained in Th. of Osc. 1, § 1, 2 as 
well as Theorem III, Th. of Osc. 2 remain true if instead of <p 
being a continuous function of x or (x, X), (x — a)<p is a function 
of the kind described in (A) or (B), provided we let a = 0 in 
these theorems. 

Theorems almost identical with these would of course 
hold if the points a and b were interchanged (Cf. Th. of 
Osc. 1, §2, last paragraph). 

The methods used in the previous papers are not, how­
ever, applicable to the case in which <p becomes infinite both 
at a and at b more strongly than the functions described in 
(A) or (B). We shall, therefore, need a somewhat new 
method to prove the following theorem of oscillation : 

IX . If when a ~ x = b and L > A > Z,* (x — a)(x — b)<p(x, A) 
is a function of the hind described in (B), and if when a=xl=b 

* We may have L— -\- cc orZ = — ooor both L and I may be infinite. 
Cf. also the first footnote on p. 34 which applies here. 
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and L > X' > A" > ly <p{x1 A') iË $p(#, A") ;f tj, moreover 

lim #>(#, A) = + GO and lim £>(#, A) = — GO 

except perhaps for a finite number of values of x in the interval 
a=x = b; then there will be one and only one value of X in the inter­
val L > A > I for which (8) has a solution which has just m roots 
(m being any integer positive or zero) in the interval a < x <C b 
and which vanishes when x = a and when x = b. 

In order to prove this let us take a point c so that 
a < c < 6. Let us denote by yx and y2 solutions of (8) 
which vanish at a and b respectively. I t will be convenient 
to speak in the following proof of the aggregate number of 
roots of yx and y2 in ab meaning thereby the integer obtained 
by adding to the number of roots of yx in the interval a < &<c 
the number of roots of y2 in the interval c < x < b and 
increasing this number by 1 if yx or y2 (or both) vanish 
at c. Our theorem will clearly be proved if we can show 
that there is one and only one value of A in the interval 
L > A > I for which yx and y2 are linearly dependent while 
this aggregate is m. For if yx and y2 are linearly dependent 
they can be made equal by multiplying one of them by a 
suitable constant. 

Now we see from V I I I (and Th. of Osc. 2, theorem I I I ) 
that there is one and only one value of A in the interval 
L > A > /, say Xm ', for which yx(x, Xm ') has mx roots in the 

interval a < x < c while ^(c , Xm ') = 0 . There is also one 
and only one value of A in the interval L > A > Z, say Am ", 
for which y2(x,Xm ") has m2 roots in the interval c < x < 6 
while y2(c, Aw") = 0 . Let us consider the two sequences 

V? V? V» '"? a n (^ V? V'? V> '"• Each of these sequences is 
arranged in order of decreasing magnitude. Let us now 
arrange the terms of the two sequences in a single sequence 
A0, Xv A2, •••, in order of decreasing magnitude ; it being un­
derstood that if A.' = XJ' these two terms shall be represented 
by only one term in the new sequence. Let us denote by 
fj.k the aggregate number of roots of yx(x, Xk) and y2(x, Xk) in 
ab. Then it is clear that in general fjLW = ixh + 1, the only 
exception being that if ^(c, Xk) = y2(c, Xk) = 0, /^+1 = ^ + 2. 
In the sequence of integers fi0, nv •••, one at least of the two 
integers m and m — 1 must, therefore, be present. Let us 

fThis inequality need not of com se hold for the points of discontin­
uity of (j>. Moreover, there must be some points (besides these poinst 
of discontinuity; where the equality sign does not hold. 
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give to h the value which makes fxk = m if this is possible, 
and if not the value which makes f*k = m — 1. 

One case we can dispose of at once, viz., that in which 
fik = m and ^(c, Xk) = y2(c, Xk) = 0. "When A > Xk the aggre­
gate number of roots of y1 and y2 in aô is less than m, when 
A < Xk it is greater than m. Accordingly when A = Xk and 
for this value only is the aggregate equal to m. Moreover, 
for this value y1 and y2 are linearly dependent since they 
both vanish when x = c. In this case then our theorem is 
proved. 

Apart from this case, which we now exclude, it is clear 
that X = Xk is not the value of X we are seeking. Leaving 
aside this value then we see that the aggregate number of 
roots of yx and y2 in ab is equal to m when and only when 
AA> A> Xk+1. I t remains then to prove that in this range 
of values of X there is one and only one value for which yx 
and y2 are linearly dependent, i. e. (since ^(c, A)=|=0 and 
& ( M ) + °) f o r which yl'(c,X)/yl(c,X) = y2\e1X)ly2(c,X). 
This follows at once from Th. of Ose. i , theorem I I for as X 
decreases from Xk to Xk+1 2//(c, A)/t/1(c, A) will be decreasing 
continuously while y2(e, A)/?/2(c, X) is increasing continu­
ously. Moreover we must have either ^(c , Xk) = 0 or 
&(c> ;*) = ° a n d either ^(c , AA+1) = 0 or y,(c, A,+1) = 0. Ac­
cordingly when A = Xk and also when A = Afc+1 one of the two 
ratios y'/y just considered is infinite. There are four possi­
bilities here, viz.: 1st, yx'lyx decreases from + oo to — oo ; 
2d, y1

,/y1 decreases from + GO to a finite limit while y2/y2 
increases from a finite limit to + oo ; 3d yx'/yv decreases 
from a finite limit to — oo while y2/y2 increases from — oo 
to a finite limit ; 4th, y2/y2 increases from — oo to + oo . 
In any case, however, it is clear that the two ratios become 
equal once and only once, as was to be proved. 

In this proof we have tacitly assumed that m =)= 0. The 
changes necessary in the case m = 0 are however so slight 
and so obvious that it does not seem necessary to dwell 
upon them.* 

The generalization of Klein's theorem of oscillation fol­
lows now so readily that we merely give the result : 

X. Theorem VI still holds if we drop at some or all of the 
points a{ and bi(i = 0, 1, •••, k) the requirements that 

2rx 2rx 
y tPdx yt pdx 

X - e l and <p • e l 

* Were it not for this case m = 0 we might have followed a slightly 
simpler method analogous to that used by Picard in a somewhat similar 
case. Cf. Traité d'Analyse, vol. 3, p. 122. 
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he functions of the kind deserihed in (A) and merely require that 
these functions when multiplied hy x — a* (or hy x — ht) are func­
tions of the kind deserihed in (A) PROVIDED, that at the points 
at and hi just mentioned we require that a{ = O and A = 0. 

If we apply this theorem to equation (7) we get 
XI . Theorem V I I still holds if we allow some or all of the 

points at and h{ to he singular points with unequal real exponents 
whose difference is no longer restricted to being numerically less than 
1, PROVIDED that at each of these points we require that the cor­
responding solution yt should he proportional to the fundamental 
solution corresponding to the greater exponent of this point. 

Theorems V I I and X I include all the eases for which 
Klein has discussed the theorem of oscillation in his litho­
graphed lectures : Lineare Differentialgleichungen der 
zweiten Ordnung, 1894, or for which he has there expressed 
the opinion, based on analogy with simpler cases, that the 
theorem is probably true. 

We close by noting two slight generalizations : 
1st The proof of theorems V I I and X I would not be in 

the least affected if instead of the polynomial 

Cn.2x»~* + -. + C0 

which enters equation (7) we had a polynomial of degree 
greater than n — 2, in which case the point x = oo would be 
an irregular point. The number k + 1 of intervals ai h{ might 
of course then be correspondingly increased. 

2d Theorems V I I and X I still remain true, the proofs not 
being essentially affected, if several of the points eve2, —,en 
coincide, provided that none of the intervals atbt reaches up 
to such a " multiple ,? point, which will obviously in general 
be an irregular point. 

[Note added Sept. llf, 1898 : I t was not until the present 
paper was in print that I noticed that some of the theorems 
contained in it had been proved for a particular differential 
equation and in somewhat restricted form in a paper by 
Van Vleck " On the Polynomials of Stieltjes " in the June 
number of the BULLETIN. There is even an analogy of 
method between the proof of Van Vleck7 s Theorem IV and 
that of my Theorem IX. I t may therefore be well to state 
that I was in possession of all the results and methods of 
the present paper last February (Cf. a remark in the mid­
dle of p. 365 Th. of Osc. 2) and was prevented from work­
ing them out in detail only by press of other work.] 
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