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F()= }:a"z"z, (lal<1),

is single-valued, provided |« | is not too large.
The proof is as follows. Evidently
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Hence lf(z) —f(Z')1 >0, q. e. d.
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Ir we put with Professor S. Newcomb*

€Y E=ev, + 6™, + v, + -

(2) p —log a=ep, + &0, + p, + -

where E stands for the equation of the center and p = logr,
then v, and p; will be of the form

(3) in, = 35k sin j2,
(4) ipe= 3k cos j%,
=1t 1—2, i—4, - ,—1),

* ¢ Development of the perturbative function,’’ Astronomical Papers
prepared for the use of the American Ephemeris and Nautical Almanac,
vol. 5, part I., p. 12.
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the coefficients £® and »® being rational numerical frac-
tions subject to the conditions

(1) — (). ) — (@)
O = —k_ hO=h_o

‘We propose to give in this note formulas by which these
coefficients can be computed for any value of < and j.
If we put

(5) E ="=§:‘}Ii sin 4%,
(6) p—loga=3}A4, +1§°Ai cos %,
i=1
then the comparison with formulas (1)-(4) gives
7 H m=wki(i+2”0 i 2m
M =2 T eme
8 A m=whi(l+2m) am
® E-REE Ty

On the other hand it can be shown* that
2V1—¢ e (e \T!
(9) H}=—’i-jz§a (5) N—M.q

where j and q assume all integral positive values (zero in-
cluded) such that

jAg=i, i+2, i+4,-
It we develop +/1 —¢? and put

X4

(10) Hem =35 5N (—i+j+q=2m),
7q!
then formula (9) becomes

2 [e\im== g\ . -
1) E ) o

1.8 (2m—3)2mHo]_

m!

Comparing this formula with (7) we conclude that

* Tisserand: Mécanique Céleste, vol. 1, p. 243.
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" t 4+ 2m 1 m e
(12) Ic,“+’)=( i ) [H‘“)—2H‘<2 ?)

7 21+2m—1

_lopgoen—s_ . _13-(@m=3) QmH_O] )
21 i m! i
By this formula the computation of the coefficients k® is
reduced to the computation of Cauchy’s numbers for which
the author has given a general formula.*

In order to obtain a similar expression for the coefficients
h® we must first derive a development in powers of the
eccentricity for the coefficients 4, To this end we remark
that

do__dlogr dr 1 (ay 1—¢ ja\’
de  de _;cﬁ_e(;) e (7)
On the other hand we have T

i=ow
;‘é=1+2 > J,(ie) cos it
i=1

2 1
(a) Vi + EG“)cosz
where J,(i¢) is a Bessel’s function and
, ¢ fe\ITe . L. .
(18) G0 =233 1(5) Nuw GHo=ii+2,i+dm).

Hence we may write that
dp _1— vVi-é
de e

Now, it follows from (6) and (8) that

+ le i=§ [2Jt(ie) —(1—=¢) Gf’]cos .
t=1

%e + 2 —E ¢mh, 0 cos 15

i=1 m=0
which, compared with the preceding formula, shows that
2J,(ie) — (1 — &) G® =m§“;i+2mhi(s+zm)
m=0

and we only need to find the coefficient of ¢+’ in the left
hand side to obtain the required expression for h,%*™,

* Annals of Mathematics, vol. 10, p. 1
1 Tisserand, Mécanique Céleste, vol. 1, pPp. 224 and 242.
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From (9) and (13) follows that
1—e)@®=1ivVi—é H,
i = m
=2(2) a—e s H(E
2(2)<1 “) 2 (2)
e = e 2m
—_ @m) ___ (am—3) 2
=2 (5) Z v — e (3)

so that the coefficient of ¢+ in (1 — ¢*) G® is found to be

1 i
e LHO — 4H (0]

while the coefficient of the same power of ¢ in 2J,(ie) is
" 1 Qitam
(=D g TGy T
Hence, we conclude that

1 . ( —_— 1) m,I:H-Zm
@m—i) _ 2m) ——
gy | £H00 — H + L]

(14) horm=

which is the desired expression for the coefficients A,®.

To conclude we will express the coefficients 4% by means
of the k® To this end we multiply formula (7) by
v/1 —¢ and develop the right hand side in powers of e-
Thus we obtain

- m=w ; k‘(i+2m) 1 ki(ial- 2m —2)
— ¢ H .= +2m v Y e - ..
Vi—dH= 3¢ [i+2m (2)i+2m—-2

_ 13- (2m—38) (l)"‘l_cf_]
m ! 2] 3
d, therefore,

gy t+m
2(—1) (§) iki(i+2m) 1 ,iki(i+2m—2)

(i+2m) — —

W =G T " itom TIitom—2
1 (l)? ik m— 1.3 (2m — 3)(5)"*@'10;
oi\g)ixem—a T m] 3) T

which formula enables us to compute the values of the 4,
directly from the k.

NEwW YORK,
July 4, 1898.



