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J ' on m — 1 indices (a simple group if m — 1 > 2) by the 
simple icosahedral group of degree 60. 

The lowest orders of the simple groups J and Jx are seen 
to be as follows : 

&/ = 60, fl,' = 26 • 34 • 5, 
a / = 212 - 3* - 5 • 7 • 17, ÖB' = 220 • 36 • 52 • 7 • 13 -17, 

QStl = 2 6 - 3 2 ' 5 ' 7 = i-8!, ^ x = 2 1 2 . 3 5 ' 5 2 . 7 , 
flM = 2 2 0 - 3 5 - 5 2 - 7 - 1 7 ' 3 1 , ^3,2==212-34-52. 7-17, 

flM == 224 • 35 - 54 • 7 -13 -172, ÖM = 218 - 34 - 5 - 73 • 13 - 73. 

Denote by (m, ?i, jp) the order of the simple* group of 
linear fractional substitutions of determinant unity on 
m — 1 indices in the GF[pn~]. We thus find 

ÛM = (4, 1, 2) = (3, 2, 2) , ÛM = (4, 2, 2) . 

U N I V E R S I T Y OF CALIFORNIA, 
J/arcA 8, 1898. 

ON THE HAMILTON GROUPS. 

BY DR. G. A. MILLER. 

( Read before the American Mathematical Society at the Meeting of April 
30, 1898.) 

ACCORDING to Dedekind a Hamilton group is a non-Abelian 
group all of whose subgroups are self-conjugate.f If the 
order of such a group i sp^p^p* 3 — (pv p^ pv •• being prime 
numbers) it must be the direct product of its subgroups of 
orders p ^ p / s , p^3, ••• since each of these subgroups is self-con­
jugate and no two of them can have any common operator 
except identity. J Each of these subgroups is either Abelian 
or Hamiltonian. We proceed to prove that one of the given 
prime numbers must be 2 and that every subgroup whose 
order is a power of any other prime number must be Abe­
lian. 

Suppose that G represents a Hamilton group of order pn, 
p being an odd prime number. We may evidently select 
a in such a manner that all the operators of G whose orders 

* Dickson : Annals of Mathematics, 1897, p . 136. 
f Mathematische Annalen, vol. 48 (1897), p. 549. 
J Cf. Dyck : Mathematische Annalen, vol. 22 (1883), p. 97. 
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do not exceed p**1 (a > 1) are commutative to every oper­
ator of G but that there are some operators of order pa which 
do not possess this property. Let s1 be one of the latter 
operators and let s2 be an operator of G that is not commu­
tative to 8V S± and 82 representing the cyclical groups gener­
ated by these operators respectively. "We shall first suppose 
that s2 is also of order pa ; $x and 82 must contain at least p 
common operators since 81 and s2 are not commutative. 

81 and the subgroup of order p*-1 which is contained in 
82 generate an Abelian group whose order is equal to the 
order divided by p of the group generated by sv s2. This 
Abelian group must therefore contain all the operators of 
the latter group whose orders are less than pa. By hypoth­
esis S J V I - 1 = s/, where p differs from unity. Hence 

p = xpo—1 + 1 where x is one of the p — 1 numbers, 1, 2, 
3, - • , jp — 1 . 
Hence 

— — = ^ ' ~pa-1 mod pa. 

From this it follows that if sx remains fixed while s2 takes 
all its possible values in 82 the orders of some of the oper­
ators of the form s2s, must be less than pa. As this is im­
possible every operator of order pa must be commutative to 
every other operator of this order. 

I t remains to consider the case where the order of s2 ex­
ceeds pa. In this case 82 and the subgroup of order p"—1 

which is contained in 8X generate an Abelian group. The 
order of each of the operators of the group generated by 
sv s2 which is not contained in the Abelian group must 
exceed p"—1. Since the subgroup of order pa which is con­
tained in 82 has at least p operators in common with $x it 
follows that the product of s1 into some operator of order 
pa contained in 82 must be of an order which does not ex­
ceed p0—1. Hence every operator of order pa that is con­
tained in G is commutative to every operator of G provided 
every operator of order p"—1 has this property, i. e., there is 
no Hamilton group of order pn, p being an odd prime number. * 

* This result could have been derived directly from the fact that the 
order of the commutator of two operators of a Hamilton group cannot 
exceed 2, which has been proved by Dedekind, loc. cit., p. 557. It 
seemed desirable to give an independent proof of it since this proof pre­
pares the way for what follows. 
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Hamilton groups of order 2a. 

By definition every operator of order 2 that is contained 
in such a group H m self-con jugate. We proceed to prove 
that every operator of order 4 that is contained in H is com­
mutative to every operator whose order exceeds 4. If this 
is not the case we select an operator sx of order 4 that is 
not commutative to some operator s2 of order 2^ ( £ > 2 ) 
and we let Sv S2 represent the cyclical groups which these 
two operators generate respectively. S1 and S2 have two 
common operators, otherwise each operator of the one would 
be commutative to every operator of the other. Hence the 
order of the subgroup generated by sv s2 is 2^ + 1. For con­
venience we shall call 82 the head of this subgroup and its 
remaining 2^ substitutions we shall call its tail. Since the 
head is an Abelian group each of its operators must be 
either commutative to every operator of the tail or it must 
transform all the operators of the tail according to some 
regular substitution. 

If s1 and s2
2/3-2were commutative there would be some op­

erators of order 2 in the tail of the given group. This is 
impossible since none of these operators is commutative to 
s2. Hence s2 must transform all the operators of this tail 
according to a regular substitution of order 2&-1. As this 
tail includes s1 the order of this substitution cannot exceed 
2. Hence this is impossible, i. e., an operator of order 4 
that is contained in H must be commutative to every oper­
ator whose order exceeds 4 if such operators can occur at 
all. 

Suppose H contains two non-commutative operators 
sv s4 of order 2^ (/5> 2) and that all the operators of this 
order are commutative to every operator of a lower order. 
83, $4 will be used to represent the groups generated by s3, s4 
respectively. These groups have at least two common ope­
rators. The Abelian group generated by #4 and s3

2 will be 
called the head of the group generated by s8, s4 and its re­
maining operators will be called the tail. This tail can evi­
dently contain no operator whose order is less than 2^. We 
may suppose that s3s4ss

-1 = s y where y differs from unity. 
Hence 

2/3 — 1 __ 

(«A)23-1=v,v - v*"-1-v"-1 - «r^^V -1 

where 

r = 2^1 + l 
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r — i 2^ 

Hence the order of s4s3 does not exceed 2^_1. As this oper­
ator occurs in the tail SB and #4 must be commutative if they 
occur in H. 

Suppose that s3 is non-commutative to an operator s5 
whose order exceeds 2^. The Abelian group generated by 
s6 and s3

2 will be called the head of the group generated by 
sB, s6. Since s3 is commutative to the subgroup of order 2^ 
contained in the group generated by s5 and since the 2^ ~1 

power of s3 is contained in this subgroup the tail of the 
group generated by ss, s6 would contain operators whose 
order is less than 2^. Hence we see that if H contains any 
operators whose order exceeds 4 each of these operators is 
commutative to every operator of H. 

H must, therefore, contain some operator s6 of order 4 
that is not commutative to each one of its operators. The 
operators which are commutative to s6 will be called the 
head of H and the rest of its operators will be called its 
tail. All the operators of the tail are of order 4 and the 
square of each one is equal to a6

2, otherwise such an oper­
ator would be commutative to s*. The given head of H 
contains some operators that are commutative to every 
operator of H. These form a subgroup which includes all 
the operators of order 2. We proceed to prove that this 
subgroup does not include any operator of order 4. 

If it included an. operator of order 4, the group of 
order 16 generated by s6 and this operator of order 4 would 
contain operators of order 4 that are not commutative to 
the operators of the tail of H and whose squares would 
differ from the squares of s6. This is clearly impossible. 
Hence H does not include any operator whose order exceeds 4 nor 
does it contain any operator of order 4 that is commutative to all 
its operators. 

We have seen that all the operators in the given tail of JET 
have the same square. From what has j ust been proved each 
operator of order 4 may occur in a tail. Hence we see that 
the square of every operator of order 4 that is contained in H is 
equal to the square of a given one, i. e., all of these operators 
have the same square. This operator generates the com­
mutator subgroup of H. 

If we multiply s6 by the subgroup which contains all the 

* Dyek : loo. cit. 
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operators of order 2 we obtain an Abelian group which con­
tains all the operators that are commutative to s&. If this 
were not the case let s7 be some other operator that is com­
mutative to s6. Since s7 has the same square as s6 its prod­
uct into sQ gives an operator of order 2. As this is impos­
sible, the order of the given subgroup which contains all 
the operators of H that are commutative to every one of its 
operators must be 2a ~2. Hence H is completely determined 
when its order is given. If we add an operator of order 2 
that is commutative to every operator of a Hamilton group 
of order 2a to such a group we clearly obtain a Hamilton 
group of order 2 a + 1 . Hence there is one and only one 
Hamilton group of order 2a whenever a exceeds 2. I t is 
the direct product of the Abelian group of order 2 a~3 which 
contains no operator whose order exceeds 2 and the quater­
nion group. 

Summary, 

1. The order of every Hamilton group is even. 
2. A Hamilton group of order 2ap1

a p2
a*/~ (pv p2, — being 

prime numbers) is the direct product of its subgroups of 
orders 2a, p^, p2

a*, •••. The first one of these subgroups is 
Hamiltonian and all the others are Abelian. The entire 
group may be represented as an intransitive substitution 
group in which each of these subgroups is represented by a 
distinct set of letters. 

3. There is one and only one Hamilton group of order 
2a (a > 2) . This group contains 2a~2 operators of order 2. 
The rest of its operators are of order'4 and the squares of 
all of these operators are equal to each other. Every oper­
ator of order 4 is commutative to just one-half of all the oper­
ators of the group. The group is isomorphic to the 4-group 
with respect to the given subgroup of order 2a~2. 

4. If we multiply a Hamilton group of order 2a by any 
Abelian group of an odd order all of whose operators are 
commutative to every operator of the given Hamilton 
group, the product will be a Hamilton group and every pos­
sible Hamilton group can be constructed in this manner. 

5. If two operators of a Hamilton group are not commu­
tative they may be represented as two substitutions in 
which the cycles whose orders are divisible by 4 are of order 
4, transform each other into their 3d powers, and belong to 
the subgroup of order 2a. The letters which are found in 
these cycles do not occur in any of the remaining cycles of 
these two substitutions. The remaining cycles of these 
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substitutions are commutative. Hence the commutator of 
two such operators is of order 2.* 

6. A Hamilton group of order 2a contains 22ct""6 quater­
nion groups as subgroups. All of theëe have the commu­
tator group of the entire group in common, f 

CORNELL UNIVERSITY, 
April, 1898. 

NOTE ON T H E INFINITESIMAL PROJECTIVE 
TRANSFORMATION. 

BY PROFESSOR EDGAR ODELL LOVETT. 

(Read before the American Mathematical Society at the Meeting of April 
30, 1898.) 

I T is proposed here to find the form of the most general 
infinitesimal projective transformation J of ordinary space 
directly from its simplest characteristic geometric property. 
Geometrically, infinitesimal projective transformations of 
space are those infinitesimal point transformations which 
transform a plane into a plane, i e., which leave invariant 
the family of oo3 planes of ordinary space. Analytically, 
then, the most general infinitesimal projective transforma­
tion is the point transformation 

Uf= *(*, y,*)% + V (*, y, a) g + C(a, y, z) §£ (1) 

which leaves invariant the partial differential equations 

*Cf. Dedekind: loc. cit. 
fCf. Miller: Comptes Rendus, vol. 126 (1898), pp. 1406-1408. 
% In a note on the general projective transformation, Annals of Mathe­

matics, vol. 10, No. 1, the forms of the finite projective transformations of 
ordinary space and those of w-dimensional space are found directly from 
the conditions for the invariance of the equations y" — 0, z" = 0, which 
expresses the geometric property that straight line is changed into straight 
line by these transformations. The form of the general infinitesimal pro­
jective transformation of ordinary space is deduced from the finite trans­
formation by the method of Lie. In this derivation three steps are made 
to intervene, two of which are removed and the other replaced by a simpler 
one by the method of the present note : 1° two intersecting planes 
producing the straight line and its property of invariance ; 2° the ordinary 
differential equations of the straight line and the conditions for their 
invariance ; 3° the finite forms of the transformation. 


