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EXAMPLE OF A SINGLE-VALUED FUNCTION 
W I T H A NATUEAL BOUNDARY, WHOSE 

INVERSE IS ALSO SINGLE-VALUED. 

BY PROFESSOR W. F . OSGOOD. 

(Read before the American Mathematical Society at the Meeting of April 
30,1898.) 

THAT functions exist which are analytic within the unit 
circle, have the unit circle as a natural boundary, and take 
on no value more than once, can be readily shown. 

Let T be a region of the u + vl-plane bounded by a single 
curve, the tangent of which turns continuously as the point 
of tangency trace: out the curve ; then there exists, even in 
this case, which is more general than the cases considered 
by Schwarz and Neumann, a Green's function belonging to 
T,* so that the interior of T can be mapped conf ormally f on 
the interior of the unit circle. Furthermore, the boundary 
of T will, even in this case, go over into the boundary of the 
circle in such a manner as to render the transformation of 
the region consisting of T and its boundary on the region 
consisting of the circle and its boundary one-to-one and 
continuous. J 

Let the curve which bounds T be represented by the equa
tions 

where y>, <P denote continuous functions having the prim
itive period unity, so that, when t increases from t0 to t0 + 1, 
the point (u, v) describes the boundary once. The corre
sponding point (x, y) will then describe the unit circle once 

V and the angle 0 = tan - 1 — will be a single-valued, continuous 
x 

function of t ; t, a single-valued, continuous function of 0. 

* Poinearé's solution of the boundary value problem is sufficiently gen
eral to cover this case. Cf. Poincaré : " S u r les équations aux dérivées 
partielles de la physique mathématique," Amer, Jour, of Math., vol. 12 
(1890) ; Paraf's Thesis : " Sur le problème de Dirichlet et son extension au 
cas de l'équation linéaire générale du second ordre," Paris, 1892, and 
the Toulouse Annales, vol. 6. An account of these papers is given in 
Picard's Traité d'Analyse, vol. 2, ch. 4. 

t Inaugural Dissertation, §21 ; Göttingen, 1851. 
X Cf. Painlevé : " Sur la théorie de la représentation conforme," Comptes 

Rendus, vol. 112 ( 1891 ), p . 653. This paper is based in part on his Thesis : 
" S u r les lignes singulières des fonctions analytiques," Paris, 1887, and 
the Toulouse Annales, vol. 2 (1888). Painlevé points out that even on the 
boundary angles are preserved. 
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Let <p(f) be chosen as an analytic, <p(t) as a non-analytic 
function of t. Then the function u + vi will have the unit 
circle of the x + yi- plane as a natural boundary. For, other
wise, at some point a + bi of the boundary of the unit circle, 
u + vi would be analytic and thus u and v would each be 
analytic functions of 6 near a + bi along the arc. Thus t, 
being an analytic function of u, would have to be an analytic 
function of 6 in this neighborhood, and hence v, being an 
analytic function of 0, would be an analytic function of t. 

The unit circle of the x + 2/i-plane is then a natural 
boundary for the function u + vi. The inverse function, 
x + yi, is single-valued and analytic throughout T, but can
not be continued beyond T. For, if it were analytic at any 
point on the boundary of T, its inverse, u + vi, would be 
analytic at, or near, the corresponding point on the unit 
circle of the x + yi-plane. 

The existence proof just given is wholly satisfactory as 
regards motif ; and it is rigorous. Nevertheless, it may not 
be without interest to give a simple explicit example of a 
function of this kind. Such an example is afforded by the series 

^ = z + (a+ 1)0 +2) + (a2+l)(a2 + 2) + "' ' 

where a denotes an integer greater than unity. 

The function 

?0O = za + z«2 + za* + ». = f saW, 
i 

where a denotes an integer greater than unity, is analytic 
within the unit circle and has the circle as a natural boun
dary. Exceedingly simple proofs for this example have 
been given by Hadamard * and by Stâckel. f 

The function ƒ(z)9 of which <p(z) is the second derivative, 
will also have the unit circle as a natural boundary. Both 
the series defining ƒ(z) and the series representing its de
rivative : 

• W - I + Î T M + ^ + . — I + S J F + Ï 
converge uniformly throughout the unit circle inclusive of 

* " Essai sur l'étude des fonctions données par leur développement de 
Taylor," Liouville, 4th ser. vol. 8 (1892), p. 115. The proof is well pre
sented in Harkness and Morley's Theory of Functions, | l 04 . 

f Greffe, vol. 113 (1892), p. 262. 
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the boundary, and hence ƒ(») and ƒ (2) are continuous 
throughout this domain. Furthermore, when | z | = 1, 

> 1 * _ l \ + \ + ..) = 1 * __ X > 0 . 
a + 1 \a2 a3 / a + 1 a ( a — 1 ) 

Hence the neighborhood of any point z lying within the unit 
circle is transformed conformally on the neighborhood of 
the corresponding point w, and thus the image in the w-
plane contains no branch-points. This is, of course, not 
enough to justify the conclusion that the inverse func
tion z(w) is single-valued ; for the image in the w-plane 
might overlap itself. To show that this is not the case, it 
is sufficient to prove that, (p, <p) denoting the polar coordi
nates of the point (u, v) that corresponds to the point 0 = 

tan - 1 - on the unit circle, (1) /> always remains positive; (2) 

<P always increases when 0 increases ; and (3) <p advances only by 
2n when 0 increases by 2TT. For then, to a given point (/>, <p) 
on the curve in the w-plane, there can correspond but one 
point 0 = 0 < 27T on the unit circle, and all of the conditions 
of the theorem* are fulfilled which says : Let f{z) be a fune-
tion of z single-valued and continuous throughout a simply con
nected region inclusive of the boundary ; and let f(z) be analytic 
throughout the interior of the region. Furthermore, let a value 
that f (z) takes on in one point of the boundary never be assumed 
in a second point of the boundary. Then to the boundary curve in 
the z-plane will correspond a closed curve in the w-plane that does 
not cut itself, and the region of the w-plane thus bounded will, to
gether with its boundary, correspond in a one-to-one manner and 
continuously to the region of the z-plane above mentioned, the 
transformation being eonformal in the neighborhood of any pair of 
corresponding interior points. 

I t remains then only to give the proofs of (1), (2), and 
(3). The values of u, v when r = 1 are 

u = cosd + C(0), v=$in6 + S(0), 

where 

r m = cos(q + 2)fl cos (a2 + 2)fl 
K ; (a + 1) (a + 2) + (a2 + 1) (a2 + 2) + '" 

* Picard: Traité d'Analyse, vol. 2, p. 280. 
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_ sin (o + 2)6 sin ( a2 + 2)0 _ 
° ^ ; ( a + l ) ( a + 2 ) ~ h ( a 2 + l ) ( a s + 2 ) " t ' 

The derivatives of C(6), S(6) are 

p i n ( a + 2)0 sin (a*+ 2)0 l 

cos(a + 2)fl , cos(a2 + 2)fl , 
5 (*) = a + 1 + a2 + l + "" 

Since ce = tan - 1 —, 
u 

7 wc?v — vdu 
d<P== u> + v> ' 

-udv — vdw = [1 + {S'(0) cos 0 — C"(0) sin 0} 

+ \C(0) cos0 + £(0) sin0} + {C(0)£'(0) - C(0>S(0){]d0, 

^2 + v2 = 1 + 2 J C(0) cos 0 + S(0) sin 0{ + C2(0) + S\0). 

A simple trigonometric reduction yields the formulas 

£ ' (0)cos0 — C"(0)sin0 

— cos ( a + 1)0 , cosQ2 + 1)0 
~~" a + 1 a2 + l *' 

C(0) cos 0 + S(0) sin 0 

cos (a + 1)0 , cos ( a 2 + 1 ) 0 
_ + - i w , » , ON + •"• (a 4-1) ( a + 2) ' (a2 + 1) (a2 + 2) 

Now C(0), S(0), C(0) cos 0 + S(0) sin 0 do not exceed nu
merically the value of the series 

i 1 

(a + 1) ( a + 2) ' ( a 2 + l ) ( a 2 + 2 ) 

' a - a a2-a2 a2 — 1 

and (7(0), # '(0), £'(0) cos 0 — C"(0) sin 0 do not exceed nu
merically the value of the series 

1 1 1 1 1 

+ _ — + . . < - + -+...<• a + 1 a2+ 1 a a2 a 
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Proof of (1) 
| 2 fC(0 )cos0 + £ ( 0 ) s i n ^ + C\0) + S\0)\ 

V - l ' ( a 2 - l ) 2 ' ( a 2 - l ) 2 

The largest value this expression can have is that corre
sponding to a = 2, i. e., f, and thus (1) is established. 

Proof of (2), (3). Similarly the coefficient of da can
not become negative if a > 2, for it is surely greater than 

- 2 - * - 2 - X 

a — 1 a2 —1 " ( a —1) (a2 — 1) ' 
i. e., than J. For such a value of a, 

1 1 1 
1 + T + T, -, + 2 

d9 < « - i ^ - i 1 («-D(q'- i ) ^ 

and if a > 3, ^ < 2d0, so that ^ö== 27r < 4?r. 
The proof is now complete for all values of a greater than 

3. For these values of a the requisite analysis was very 
simple. For the values a = 2 and a = 3, however, the above 
approximations are not close enough for (2) and (3). For 
these cases (3) may be established as follows : 

<P= Ce4>(o) F(e)do, 

where 0(0) = [u2 + v2]-1 

, r,//JX du dv 
and W = „__„_ 
By a well known law of the mean 

X27T 

F(â)dO, 0<«1<2* 

But # w<r^-2V333<^ 
as appears from the closer approximation for 

| C(0) cos 0 + S(B) sin 0 ! 
given on the next page, and 

*F(d) de= 2TT + 0 + 0 + *, £ 
X27T 

\C(0)S' (0) - C' (»)S(0)\dd 
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< r*\— + 1 1 r -
^Jo L« + l «(«—l)JL(« + l)(a + 2) 

Hence <Pe=2*< V° [ 1 + T \ ] 2 7 r < 4 * 

I t remains then only to give the proof of (2) when a ~ 2. 
This can be done as follows : 

| # w cos 0 - a (*) sin 0 | < | + | + | + TV + ^ 

+ ^ T ) < - 7 6 5 

| C(0) cos 0 + S(0) sin 0 | < T i ¥ + ^T + ¥iir 

+ 2 6 ( 2 2 - l ) < - 1 3 8 

To get a sufficiently close approximation for the remaining 
parenthesis, multiply out the series for C(o) and #'(#); let 
the result be written as 

2 « n C O B ^ C O S ^ 
n= 1 

where pn, qn are positive integers or zero. Now the series 
— G'(0) and S(0) when multiplied out give 

2 « n s i n ^ s i n g / . 
n = l 

Hence it follows that 

I C(0)S'(0) - C (0)8(0) | < 2 «n< -765 x .133, 

and since .765 + .133 + .765 x .133 < 1 the proof is com
plete. 

I have thought it worth while to call attention to the ex
istence of functions of the kind have treated, because they 
are useful in theoretical investigations. To cite a single 
instance : The theorem that an analytic function of an 
analytic function is an analytic function is true im Kleinen, 
but not necessarily im Grossen. The nature of the restric
tions that are necessary for the truth of the theorem is 
readily demonstrated ad oculos by the aid of the above ex-
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ample. Begin by drawing in the 2-plane a circle of unit 
radius with its centre in the point z = 1 + i, and let @(z) be 
any function analytic within this circle, but not capable of 
analytic extension beyond it — for example 

Next, let a3 = z'. The circle is then transformed confor
mally on a region not including the origin, lying wholly 
within the first, second and third quadrants, and tangent 
to the axis of reals in the point zf = 1, to the axis of imag-
inaries in the point zf = — i. Let 

0(3) = JF(2' ) . 

Then F(z) (the accent being dropped) is single-valued and 
cannot be continued analytically beyond this region. Now 

draw a circle passing through the point z = 0 and including 
the points z = 1, z = — i in its interior — for definiteness, 
let its centre be at the point z = 1 — i ; its radius will then 
be equal to </2. The function 

will map this circle conformally on the region of the w-plane 
above considered, and z will be a single-valued analytic 
function of w. 
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Consider those values of w that yield values of z for which 
F(z) is defined, and for which then F(z) is a function of w. 
These values of F(z) do not constitute an analytic function 
of w ; for the domain of values of w consists of two sepa
rate continua. Thus the theorem, unrestricted, would be 
false in this case. * 

HAEVAED UNIVERSITY, 
April, 1898. 

NOTE ON POISSON'S INTEGRAL. 

BY PEOFESSOE MAXIME BÔCHEE. 

(Eead before the American Mathematical Society at the Meeting of April 
30, 1898.) 

T H E following treatment of Poisson's integral in two 
dimensions seems to the writer to have at least one advan
tage over the treatments ordinarily given ; viz., that it in
volves no artifice. 

Given a function V(x, y) which within and upon the cir
cumference of a certain circle C is a continuous function of 
(re, y) and within C is harmonic (i. e., has continuous first 
and second derivatives and satisfies Laplace's equation). 
By a well-known theorem of Gauss the value of V at the 
centre (x0J y0) of C is the arithmetic mean of its values on 
the circumference.f That is, if we denote by Vc the values 
of V on the circumference and by <p the angle at the centre, 

(1) V^y^-^-J^V^. 

This theorem may be immediately generalized by the 
method of inversion, if we remember on the one hand that 
a harmonic function remains harmonic after inversion, and 
on the other hand that angles are unchanged by inversion 
and that circles invert into circles. We thus get the theo
rem : 

* Burkhardt has given simple examples of multiple-valued functions 
for which the unrestricted theorem is false. See his book : '* Einführung 
in die Theorie der analytischeu Functionen einer complexen Verânder-
lichen," vol. 1, Leipzig," 1897 ; p. 198. 

t An elementary proof of this theorem will be found in a paper by the 
writer on p. 206 of the BULLETIN for May, 1895. 


