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ON AN" EXTENSION OF SYLOW'S THEOREM. 

BY DR. G. A. MILLER. 

(Read before the American Mathematical Society at the Meeting of Feb­
ruary 26, 1898. ) 

SINCE we shall employ Cauchy's theorem * in what follows 
it seems desirable to give a simple proof of it. I t may 
be stated as follows : A group G whose order g is divisible by a 
prime number p contains an operator of order p. 

We shall first suppose that G is Abelian. If it is generated 
by a single operator 8 of order np, we have #w=4=l and 
(SnY = 1. Hence 8n is the required operator. If G can­
not be generated by a single operator we may represent a 
set of generating operators by 8V Sv —,Sr. Since these 
generators are commutative the order of the group which 
any number of them generate cannot be divisible by any 
prime number that is not contained in the order of at least 
one of the generators. Hence the order of at least one of 
the given generators of G must be divisible by p, and some 
power of this generator must be the required operator of 
order p. 

We may now suppose that G is a non-Abelian group of 
order np, and that our theorem is proved for all Abelian 
groups and for all non-Abelian groups whose orders are less 
than np. Let gx be the order of the largest subgroup of G 
that transforms a given operator into itself ; g -f- g1 is the 
number of conjugates of this operator. Hence 

g-1 + l + ...+l- (A) 
9i 92 9k 

k being the number of systems of conjugate operators and 
9v 9it *'* -> 9k t>eing * n e orders of the largest subgroups that 
transform one operator of each system into itself. The 
operators for which #a = # form an Abelian subgroup of G. 
If the order of this subgroup is not divisible by p some gp < g 
must be divisible by p, since the second member of (A) 
must be divisible by this number. The main features of this 
method of proof are due to Frobenius. 

THEOREM I . If a group G contains r (r > 0) subgroups 
Gu öa, - , Gr of order p[a pf pj ... (pv p2, pv ... being different 

*Cauchy : Exercises d' analyse, I I I (1844),p. 250. Cf. Jordan : Traité 
des substitutions (1870), p . 26. 
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prime numbers) and if G contains no subgroup whose order may 
be obtained by merely increasing the power of any of these prime 
numbers, then will each of these r subgroups transform all the 
others according to a substitution group 8 whose degree is ex­
actly r — 1 and which is isomorphic to the transforming group. 
Hence r = 1 + \ px + \ p2 + \ p3 + ••• (Jov k2, ... being posi­
tive factors of pY

a ptf pjt • •. ) . 
If the degree of each of the transitive constituents of every 8 is 

divisible by the same prime factor, say pv the r given subgroups 
are conjugate, and the order of G is divisible by px

a but is not 
divisible by px

a+1. 
If all the operators of one of the given r subgroups Gx 

transformed another one of them into itself this second sub­
group and an operator of GY that is not contained in the 
second would generate a group whose order could be ob­
tained by merely increasing the power of one or more of 
the factors of the order of Gv As this is contrary to the hy­
pothesis each one of the given r subgroups must transform 
all of the others according to some isomorphic substitution 
group of degree r — 1. When G is a simple group this 
isomorphism must be simple. The degree of each of the 
transitive constituents of S must be a divisor of the order 
of this constituent and hence it must also be a divisor of the 
order of 8. This proves the first part of the theorem. 

When the degree of each of the transitive constituents of 
any one 8 is divisible by pv r = 1 mod px according to the 
preceding paragraph. We proceed to prove that G trans­
forms the given r subgroups according to a transitive sub­
stitution group 8V whenever the transitive constituents 
of each of the r #'s satisfy the given condition. If S1 were 
intransitive, any one of the given or subgroups that did 
not correspond to an element of a given transitive constitu­
ent of S1 would transform the elements of this constituent 
in sets containing multiples of p± and such transforming 
subgroups could be found for each of the transitive constit­
uents of Sv This is impossible since r is not divisible by 
pv Hence 8X is transitive, i. e., the given r subgroups are 
conjugate when the degree of each of the transitive con­
stituents of every 8 is divisible by the same prime number. 

We shall now consider the largest subgroup that trans­
forms one of the given subgroups, say Gv into itself. The 
order q of its quotient group with respect to Gx cannot be 
divisible by a factor of the order of Gv otherwise there 
would be a subgroup whose order could be obtained by 
merely increasing the order of one or more of the prime 
factors of the order of Gv The order of the largest sub-
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group that transforms G1 into itself must therefore be 
9 Pi" P<f Psy '" a n (^ 9 m u s t be the product of this order and the 
number of conjugates of G1; i. e., 

When the given condition is satisfied rq is prime to pv 
hence pf is the highest power of p1 that divides g. 

COROLLARY I. When the order of a group is divisible by pP but 
not by pP+1 the group contains 1 + hp subgroups of this order. 
All these subgroups are conjugate. 

In the preceding theorem we may let p = pv and 1 = p2 = 
j?3 = •••, for Cauchy's theorem assures the existence of a sub­
group of order pa, a > 0, when j3 > 0. Since 8 is isomorphic 
to a group of order pa the degree of each of its transitive con­
stituents must be a power of p, i. e., r = 1 + hp and a = /5. 
This is known as Sylow's theorem. By restricting ourselves 
to this special case in the proof of the above theorem we 
obtain a simple method of proving the fundamental theorem 
of Sylow. The steps are as follows : (1) We observe from 
Cauchy's theorem that there is a subgroup of order pa, 
« > 0. (2) If pa is the highest order of such a subgroup 
the number of the subgroups of this order is = 1 mod p. 
(3) All these subgroups are conjugate. (4) pa is the high­
est power of p that divides the order of the group, i. e., 
a = 13. 

I t will be observed that the order of these steps is differ­
ent from that adopted in the recent works on groups. I t 
seems that this method of proof would be more desirable 
than the one generally given since it is not less simple and 
it gives due credit to Cauchy's important contribution to 
the theorem which bears the name of Sylow. 

COROLLARY I I . If one of the given r subgroups transforms all 
the others according to a simply isomorphic substitution group each 
of them has this property. 

For if an operator of one of these subgroups transforms 
all the others into themselves it must be contained in each 
of them. 

The value of r can clearly not exceed the quotient ob­
tained by dividing the order of G by that of Gy This 
elementary condition, combined with the given form of r, is 
sometimes sufficient to restrict the value of r to a small 
number of values, e. g., if a group of order 105 contains a 
subgroup of order 21 the number (r) of these subgroups 
must satisfy the relations r = 1 + 7 &x + 3 &2, r < 6. Hence 
r = 1 or 4. 
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As a simple illustration of the given theorem we may con­
sider the subgroups of order p1p2 that are contained in a 
substitution group of degree pv px > p2, that does not con­
tain any subgroup of order p1p2

a, « > 1. If any one of these 
subgroups, Gv had a substitution of order pl in common 
with another, G2, these two subgroups would generate a 
metacyclic group of order p1p2

2. As this is contrary to the 
hypothesis the number of these subgroups must = 1 mod p} 
and all of them must be conjugate. 

THEOREM I I . If any group G of order g contains a sub-
group of order paq&, p and q being any prime 'numbers, the 
number of its subgroups of this order is of the form 1 + kp + lq, 
k and I being positive integers. 

We may assume that «, /3 > 0 since it is known that k = 0 
when a = 0 * and that k and I = 0 when a and p = 0. We 
may also assume that the order of G \&pa\qP\, for if g con­
tained a prime factor besides p and q, G contained a sub­
group of order paqb where a and b are both maxima. This 
subgroup would transform all the subgroups of order paq& that 
are not included in it according to an isomorphic substitu­
tion group. Hence the number of the latter subgroups 
would be axp + bq (ax and bx being positive integers) and it 
would only be necessary to prove that the number of these 
subgroups in the group of order paqh is 1 + a% p + b2q. In 
what follows we shall therefore assume a, /9 > 0 and g= p a\q . 

As the theorem is evidently true when ax = /9X = 1 we 
may assume that it is true with respect to every group 
of order pa'q&' when pa\q$\ -^-pa'q^ is an integer which ex­
ceeds unity. The subgroups of orderp aqP may be represented 
Gv Ga, •••, Gr and we may assume that these r subgroups 
generate G. If some one of them transforms each one of 
the others into a different group the theorem is evidently 
true. In general, we multiply a sufficient number of them 
together so that the product transforms each one of the sub­
groups of the given order that is not contained in it. This 
product may be G itself. At least one of the given sub­
groups Ga is self-con jugate in this product. 

We now consider the number of the given subgroups 
which have more than one operator in common with Ga in 
the given product. The number of all those in which 
the total number of common operators do not form a self-
conjugate subgroup of Ga is evidently ap + bq, a and b 
being positive integers. If we exclude Ga itself we may 
readily show that the number of those in which the total 
number of common operators is a self-con jugate subgroup of 

*Frobenius, Berliner Sitzungsberichte (1895), p. 988. 
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Ga is of the same form. Hence it remains only to consider 
the number of those which have no operator besides identity 
in common with Ga. 

All these subgroups may be divided into two classes, viz : 
(1) those which are transformed into themselves by Ga, and 
(2) those which are transformed into different groups by 
the operators of Ga> The number of the former class may 
evidently be written in the form ap + bq, a and b being 
positive integers. If a group of the latter class occurs, all 
its operators must be commutative to every operator of 
Ga * and hence r > p ( g — 1). In this case the given theo­
rem is evidently true. I t may be observed that the number 
of sel f-con jugate subgroups of G is not necessarily of the 
given form, e. #., the direct product of two non-commuta­
tive groups of order 21 contains only two self-conjugate sub­
groups of this order. 

CORNELL UNIVERSITY, 
February, 1898. 

NOTE ON THE TETEAHEDEOID. 

BY DR. J . I . HUTCHINSON. 

(Read before the American Mathematical c ociety at the Meeting of Feb­
ruary 26, 1898. ) 

I N a brief paper, " A special form of a quartic surface," 
Annals of Mathematics, vol. 11, p. 158, I have called atten­
tion to an interesting special form of the locus of the vertex 
of a cone passing through six points. I wish to point out 
in this note the connection between this special surface and 
the tetrahedroid. 

Given six arbitrary points in space 1, 2, 3, 4, 5,6. These 
determine a system of GO 3 quadric surfaces each of which 
pass through the six points. Denote this configuration by ]£• 

Choose any arbitrary point P and consider the polar planes 
of P with respect to the system of quadrics. There are de­
termined in this way oo3 planes forming a configuration £ r 

To a quadric in V corresponds a plane in 2 r The vertices of 
the cones of 2 have for locus a surface iTof the fourth order. 
The planes of Xi corresponding to the cones of 2 envelope 
a Kummer surface. The point in each plane corresponding 
to the cone vertex is the point of tangency. 

* Dyck, Mathematische Annalen, vol. 22, p . 97. 


