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T H E ROOTS OF POLYNOMIALS WHICH SATISFY 
CERTAIN LINEAR DIFFERENTIAL EQUA­

TIONS OF THE SECOND ORDER. 

BY PROFESSOR MAXIME BÔCHER. 

(Kead before the American Mathematical Society at the Meeting of De­
cember 29, 1897.) 

I N volume 6 of the Acta Mathematica, Stieltjes has given a 
remarkable method for showing in how many different ways 
certain parameters in an important class of linear differen­
tial equations of the second order can be so determined that 
the equation shall have a polynomial solution, and in the 
course of the work the position of the roots of these poly­
nomials is determined. I t sometimes happens that the an­
swer to the first part of the problem here referred to can be 
obtained more easily or more naturally by other methods. 
For instance in the case of the hypergeometric differential 
equation the forms in which solutions can be expanded in 
series show us at once in what cases we have a polynomial 
solution ; and in the case of Lame's equation the theorem 
of oscillation leads us most naturally (from some points of 
view) to the result.* There still remains the second part 
of the above problem, viz. : the determination of the posi­
tion of the roots of the polynomials. The method of 
Stieltjes is connected with a problem in the equilibrium 
of particles on a straight line. By generalizing these con­
siderations so as to bring in particles lying in a plane, we 
can, as I have shown,f obtain a theorem concerning the 
position of the roots of the polynomials, which, though in 
itself less far reaching (in some respects) than that of 
Stieltjes, gives us in the cases above referred to the infor­
mation we want. I should like here to emphasize three 
points : 

1. This method enables us to avoid the determination of an 
upper limit to the number of determinations of the param­
eters which give polynomial solutions. 

2. I t enables us to go beyond the cases considered by 
Stieltjes inasmuch as the singular points of the differential 
equation may now be complex. 

3. Owing to the relatively small result we wish to attain 
* Cf. mv book: Ueber die Reihenentwickelungen der Potentialtheoiie, 

Leipzig, Teubner, 1894. See pages 210-213. 
t See pages 215-216 of the book just referred to. 
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it is possible to throw the proof into purely algebraic form ; 
whereas Stieltjes's method involving, as it does, an existence-
proof depends upon transcendental considerations. 

I will now state the theorem and give its proof in the 
algebraic form to which I have referred, mentioning how­
ever, for the sake of brevity, only the case in which the 
singular points of the differential equation are real. 

Let <p (x) = (x — x^^x — x2) ••• (x — xu) be a polynomial 
which satisfies the differential equation : 

ax \x — ex x — e2 x — en / ax 

+ tl*l y = 0 
( * - O 0 * - * » ) • • • ( * - O 

in which 4> 0*0 is a polynomial. Let ev e2, •••, en be real and un­
equal {ex < e2 ••• < en). Then if av a2? •••, an are real and greater 
than zero the roots xv x2J •-, xk of <p (x) must all be real and 
must lie in the interval e1~x=: en. 

I t is evident at once from the elements of the theory of 
multiple roots that <p (#) can have no multiple root which is 
not equal to one of the quantities eve2,—,en. Let #xbe any 
root of <p (x) different from ev e2, •••, ew. Then if we substitute 
<P (x) in the differential equation and let x = xx we get : 

<?" w + ( ̂  + ^ + - + ^ ) * <*>> - ° > 
or dividing by <p' (xj (which is not zero since xx is not a 
multiple root) : 

2 2 2 «, «0 

+ + - + + —-1— + *— + -/y» _ _ /y ry ___ /y rp , p ry> , 

a ^ i 

_| n __ 0* 

Now if <p (x) has complex roots with positive pure imagin­
ary part let xx be that one (or one of those) whose pure 
imaginary part is greatest. Then the above equation in­
volves a contradiction for the pure imaginary part of each 
term is negative or zero, and not all of them are zero since 
the a's are not zero. 

* T h e first member of this equation is a quantity (perhaps complex) 
whose conjugate gives both in magnitude and in direction the force act­
ing upon the particle xx in the mechanical problem just referred to. The 
equation therefore gives the condition of equilibrium. The mechanical 
meaning of the following proof is obvious. 
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In a similar way we see that <p (x) can have no complex 
root whose pure imaginary part is negative. 

xv x2J —,xk are, therefore, all real. Suppose one of them 
were greater than en. Call this one (or, if there are more 
than one, the greatest of them) xv Then the above equa­
tion again involves a contradiction since no term is nega­
tive or zero. 

In the same way we see that no root can be less than ev 
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I N F L E X I O N A L LINES, TEIPLETS, AND TEIANGLES 
ASSOCIATED W I T H T H E PLANE CUBIC CUEVE. 

BY PROFESSOR HENRY S. WHITE. 

(Read before the American Mathematical Society at the Meeting of 
February 26, 1893. ) 

T H E configuration of the nine inflexions of a nonsingular 
plane cubic and the twelve lines containing them three-and-
three would seem too well known to merit discussion. I t 
is the uniform mode, in such compends as I have seen, to 
show first that every line joining two inflexions meets the 
cubic again in a third inflexion ; second, that through the 
nine inflexions there must lie in all twelve such lines ; and 
thirdly, that three lines can be selected which contain all 
nine inflexions. These three lines are termed an inflex­
ional triangle, and the entire twelve are thought of as con­
stituting four inflexional triangles. But there is another 
arrangement of the nine lines remaining after the erasure 
of one inflexional triangle, which I have not happened to 
find mentioned, which yet seems the easiest and most 
natural mode of access to the inflexional triangle itself. 

I t shall be presupposed known that there are nine inflex­
ional points, and that every line joining two of them con­
tains also a third. Select two inflexional points A, B, and 
any third G not collinear with the first two. Call these three 
an inflexional triplet. Join them by three lines, and produce 
BC, GAjABto meet the cubic in a second inflexional triplet, 
in the points Av Bv Gx respectively.* 

Repeating the process upon these three, determine a third 
triplet A2, B2, Cr From these, determine similarly a fourth 
triplet. Since its points cannot be additional inflexions, 
nine having been included already ; and since they cannot 
be the points of the second triplet (as is evident from the 
figure) unless certain inflexions coincide, they must be the 

*It is easily seen that Al9 Bx, Cl} and again A2i B2) C2, are not collinear. 


