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OK T H E COMMUTATOR GROUPS. 

BY DB. G. A. MILLEE. 

(Read before the American Mathematical Society at its Fourth Summer 
Meeting, Toronto, Canada, August 17, 1897.) 

T H E operator s'H^st has been called by Dedekind the 
commutator of s and t. When s and t are commutative this 
commutator is identity and vice versa. Since s^t^st = 
(^_1s~1^)-1, the inverse of a commutator is a commutator of 
the same two operators and may be obtained by merely inter­
changing the operators of the given commutator. Hence s 
and t have, in general, two commutators, the one being the 
inverse of the other. These two commutators are identical 
only when their order is 2 or 0. 

When s and t represent successively all the operators of a 
group (G) their commutators generate a subgroup ( G J of 
G. Since G, contains all the conjugates of any one of these 
generators multiplied into its inverse, these products being 
commutators of G, it must also contain all the given conju­
gates. Hence it is a self-con jugate (invariant) subgroup 
of G. 

The quotient group of G with respect to Gx is isomorphic 
to G and of order g -f- gv g and g1 being the orders of G and 
G1 respectively. Since the commutators of the correspond­
ing operators in these isomorphic groups must correspond, 
all those of the quotient group must be identity ; that is, this 
quotient group is an Abelian or commutative group. If G 
has any other Abelian quotient group its self-conjugate sub­
group which corresponds to identity in this quotient group 
must include Gx since the commutator subgroup of an Abe­
lian group is identity. 

G1 is a characteristic* subgroup of G, for the latter has 
only one commutator subgroup. If we represent the com­
mutator subgroup of Gx by G2, that of G2 by G3, etc., it fol­
lows that each of the following groups 

G, Gv G2, G8, ••• 

is not only a characteristic subgroup of the one which im­
mediately precedes it, but also of all those which precede 
it. Following Lie's notation, we may call Gv G2, G8,-* the 
first, second, third, ••• derived of G; the first derived and 
the commutator subgroup being equivalent terms. 

*Cf. Frobenius, Sitzunysberichte der Berliner Akademie^ 1895, p. 183. 
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Let Ga represent the first of these groups which satisfies 
the equation 

O a = ftli 

I t must then be identical with all those which follow it in the 
given series. We may therefore suppose that it terminates 
this series. If it is not identity it cannot be solvable, for its 
factors of composition must include composite numbers. In 
this case G is not solvable.* When Ga = 1, G is evidently 
solvable.f Hence the necessary and sufficient condition that a 
group is solvable is that we arrive at unity by forming its successive 
derived subgroups. J 

When a group, like Ga, is identical with its commutator 
subgroup it has been called by Lie a perfect group. The 
necessary and sufficient condition that a group is perfect is 
that is not isomorphic to any Abelian group. Hence every 
simple group of a composite order must be perfect. The 
composite group formed by the product of any number of 
such simple groups is clearly also perfect. 

Suppose that G' is the smallest self-con jugate subgroup of 
G which contains the commutators obtained by using for s 
and t every pair of non-commutative operators in any sys­
tem of generators of G. The quotient group of G with re­
spect to G' is generated by its operators that correspond to 
the given generators of G. The commutators of all these 
operators must therefore be equal to identity. Hence 
G' = Gv As a group may generally be generated by a small 
number of its operators this is a convenient method to find 
the commutator subgroup of a given group. 

For instance, if it is required to find the commutator sub­
group of the symmetric group of order 24, we may use for 
s and t the two operators which may be represented by the 
substitutions abc and ad respectively. As these two sub­
stitutions generate the symmetric group their commutator 
and its conjugates must generate the commutator subgroup. 
From 

s'H^st = acb.ad.abc.ad = adb 

it follows that this subgroup is the alternating group of 
order 12. 

While a group may have a large number of self con jugate 
subgroups and even a large number of characteristic sub­
groups, yet it can have only one commutator subgroup. 
This is therefore not only a very special selfconjugate sub-

* Jordan : Traité des substitutions, p. 387. 
t Cf. Ibid., p . 395. 
J Cf. Lie : Continuierliohe Gruppen, p. 548. 
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group, but it is also a special characteristic subgroup. I t is 
therefore to be expected that we can prove theorems in re­
gard to it which do not apply to the more general types of 
subgroups. Some of these have been incidentally noticed 
above. They may be summarized as follows : 

THEOREM I . When a group ( G) is isomorphic to an Abelian 
group its commutator subgroup (G^) is of a lower order than G. 
When this condition is not satisfied it is of the same order and 
hence identical to G. 

THEOREM I I . The quotient group of G with respect to Gx is 
the largest Abelian group to which G has an a, 1 isomorphism. 

THEOREM I I I . Every selfconjugate subgroup of G with respect 
to which it is isomorphic to an Abelian group must include Gv 

THEOREM IV. Gl is a characteristic subgroup of G ; i. e., it cor­
responds to itself in every simple isomorphism of G to itself 

THEOREM V. The necessary and sufficient condition that G is 
solvable is that we arrive at identity by forming the successive de­
rived subgroups of G. 

THEOREM VI . G1 is the smallest selfconjugate subgroup of G 
which contains a commutator of each pair of non-commutative gen­
erators in any system of generating operators of G. 

To these theorems we shall add a few which seem to be 
more special. 

THEOREM VI I . If a group of order p\ is not isomorphic to any 
Abelian group of order ps it contains only one selfconjugate sub­
group of order pa~2. 

Since a group of order pa contains at least one selfconju­
gate subgroup of order p&, fi < a, the given group must con­
tain at least one selfconjugate of order pa~2. AVith respect 
to this it is isomorphic to a group of order p2. All groups of 
this order are Abelian. As the given group cannot be iso­
morphic to any Abelian group of a larger order its selfcon­
jugate subgroup of order pa~2 must be its commutator 
subgroup. Hence it contains only one selfconjugate sub­
group of this order. 

COROLLARY I . If a group of order jp3 contains more than one 
selfconjugate subgroup of order p it is Abelian. 

COROLLARY I I . Every selfconjugate subgroup whose order is 
obtained by dividing the order of a group by p or p2, p being any 
prime number, includes the commutator subgroup of the group. 

THEOREM V I I I . If a commutator is commutative to one of its 
two operators its a power is the commutator of the a power of this 
operator and the first power of the other operator. 

First suppose that s~x £_1 st is commutative to t. Then 
(s-1 r 1 st)2 = s-1 t-'st s"1 t-'st = s-1 t-hs'11-1 st2 = s'11~2 sf 
(s-H-'sty^s-1 r2 sf s-11-1 st^s-11~2 ss~l t-L sf = s-1 r3 st9 
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0" 1 t~'st)a=s~1 r « + 1 st*-1 s~l r1^=s~1 t~a+1 ss-1 t~lsta 

= s - 1 t~a sta. 

When s~~l t~x st is commutative to s we obtain in a similar 
manner 

(s-H^sty = s-Pt-1sPL 

Suppose that the operators of G are arranged in rows, 
each row containing all those that are conjugate to each 
other and no others ; i. e., each row contains one and only 
one set of conjugate operators. When G is commutative 
each row consists of a single operator and vice versa. All the 
operators of a row may be obtained by multiplying one of 
them into certain operators of G. Since all of these last 
operators are commutators of G the order of G1 cannot be 
less than the number of operators that are conjugate to any 
operator of G. 

If we let s represent successively all the operators of a 
given row while t represents all those of G for each value 
of s, then will s""1*""1^̂  = 1 for g sets of values of s and t. 
Hence gk of the g2 commutators of G are equivalent to 
identity, k being the number of the given rows. By writing 
after each operator all the different factors which make it 
equivalent to all the operators of the row in which it occurs, 
we obtain a system of factors which includes all the differ­
ent commutators of G. All these factors are commutators 
and g of them are equal to identity. 

I t should be observed that the factors which occur after a 
given operator are conjugate to those which occur after any 
other operator of the same row. Hence we obtain at least 
one from each set of conjugate commutators by finding the 
factors into which we have to multiply one operator from 
each row in order to obtain all the other operators of the 
same row. Since the conjugates of a commutator are com­
mutators of the same group, either all or none of the opera­
tors of a given row are commutators. This is another proof 
of the theorem that the commutator subgroup is self con ju­
gate.* 

When one of the given rows contains the square of one 
of its operators, all its operators are evidently commutators. 
In general, if one of these rows contains both of the opera­
tors s± and s^ then will sf1 and s / - " be included among the 
given factors. Hence these must be commutators of (?. 
From the equation 

Ci " i^ i "•""• 8-, O I C, o-jC-iö, —" S, 

* Frobenius, Sitzungsberichte der Berliner Akademie, 1896, p . 1348. 
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we have 

(rVl*^1) ^ = *rV*A~* = sifa~1)/3 

Under the given conditions all the powers of sf"1 must 
therefore be commutators. 

Suppose that G is a transitive substitution group of de­
gree p,p being any prime number. According to Sylow's 
theorem G contains kp+1 (k being some positive integer) 
conjugate subgroups of order p and its order is ap (kp + 1) 
(a being an integer > 0 ) . The number of elements in all 
i ts substitutions of order pis p(p—1) (kp+1). This is the 
total number of elements in all the substitutions of G when 
a = l . * Hence a exceeds 1 whenever k exceeds 0. 

The ap substitutions which transform one of the given 
subgroups of orders into itself form a group whose commuta­
tor subgroup is of order 0 or p as a is 1 or greater than 1. If 
we observe yet that the quotient group with respect to any 
selfconjugate subgroup of G, except identity, is cyclical and 
that all the substitutions of order p generate a simple self-
conjugate subgroup of (?, we obtain the following : 

THEOREM IX . The commutator subgroup of a transitive group 
of degree p is simple, and it includes all its substitutions of order 
p when the given transitive group is not regular. 

From this theorem we have directly that a transitive gronp 
of degree p is solvable when it contains only one subgroup 
of order p and that it is insolvable whenever it contains 
more than one such subgroup. 

I t may be well to add two important theorems in regard 
to the commutator groups which have been published within 
the last year, the one by Frobenius and the other by Dede-
kind. For the proof of these theorems we refer to their 
articles. 

THEOREM X. The number of linear factors of the group de­
terminate of G is g -r- gr\ 

THEOREM XI . When G is a Hamilton group its commutators are 
of order 2 or 0. J 

A N N ARBOR, 
July, 1897. 

* Frobenius, Orelle, vol. 101, p. 287. 
t Sitzungsberichte der Berliner Akademie, p. 1349. 
% Dedekind, Mathematische Annalen, vol. 48, p. 557. The theorem 

given as a foot note in the same article, p. 553, was previously published, 
Quarterly Journal of Mathematics, vol. 28, p. 266. 


