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EEMAEKS ON THE PEOGEESS OE CELESTIAL 
MECHANICS SINCE THE MIDDLE OF THE 
CENTUEY. 

PRESIDENTIAL ADDRESS DELIVERED BEFORE THE AMERICAN" 
MATHEMATICAL SOCIETY, DECEMBER 27, 1895. 

BY DR. G. W. HILL. 

THE application of mathematics to the solution of the prob­
lems presented by the motion of the heavenly bodies has had 
a larger degree of success than the same application in the case 
of the other departments of physics. This is probably due to 
two causes. The principal objects to be treated in the former 
case are visible every clear night, consequently the questions 
connected with them received earlier attention ; while, in the 
latter case, the phenomena to be discussed must ofttimes be 
produced by artificial means in the laboratory ; and the discov­
ery of certain classes of them, as, for instance, the property of 
magnetism, may justly be attributed to accident. A second 
cause is undoubtedly to be found in the fact that the applica­
tion of quantitative reasoning to what is usually denominated 
as physics generally leads to a more difficult department of 
mathematics than in the case of the motion of the heavenly 
bodies. In the latter we have but one independent variable, 
the time; while in the former generally several are present, 
which makes the difference of having to integrate ordinary 
differential equations or those which are partial. Thus it hap­
pens that, while the science of astro-mechanics is started by 
Newton, that of thermal conductivity receives its first treat­
ment, at the hands of Fourier, more than a century later. In 
addition to these two causes, ever since the discovery of the 
telescope the application of optical means to the discovery of 
whatever might be found in the heavens has always had a 
fascination for mankind. And, as the ability to co-ordinate and 
correlate the facts observed much enhances the enjoyment of 
scientific occupation, it has resulted that many who began as 
observers ended as mathematical astronomers. Thus our science 
has had relatively a large number of cultivators. 

A thoroughly satisfactory history of our subject is yet to be 
written. We have only either slight sketches of the whole, 
or elaborate treatments of special divisions of the science, and 
none of them coming down to recent times. Among the for­
mer may be mentioned Gautier's Essai historique sur le pro-
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blême des trois corps, which appeared in 1817. Also Laplace's 
historical chapters in the last volume of the Mécanique Céleste. 
Todhunter's History of the theories of attraction and the figure 
of the earth is an example of the latter class. Such books as 
Todhunter's — of which Delambre has given an earlier example 
in his Histoire de VAstronomie — can hardly be regarded as his­
tory ; they resemble rather extensive tables of contents of the 
literature examined, accompanied by short comments. How­
ever, in many cases, they are more useful to the student than 
formal histories would be, as, when judiciously compiled, they 
may, as epitomes in our libraries, take the place of a large mass 
of scientific literature. The History of Physical Astronomy, 
by Robert Grant, is a book that comes down to 1850, and 
professedly covers the whole of our subject. But only one 
third of this book is devoted to astro-mechanics, the rest deal­
ing with what is really observational and descriptive astronomy. 
Moreover, the author indulges so much in diffusive veins of 
writing, that but a small fraction of the 200 pages is really 
given to purely historic statement. A s far as the Lunar Theory 
is concerned, the third volume of M. Tisserand's Traité de 
Mécanique Céleste constitutes a fair history. But it must be 
borne in mind that the author's plan is to notice only the 
disquisitions having a first-class importance ; hence his history 
is incomplete in this respect. 

In America we are not well situated for investigations of 
this character,' on account of the meagreness of our libraries. 
Of no inconsiderable number of memoirs and even books, hav­
ing at least some importance in our subject, there exist no 
copies in the United States. Hence, should an American be 
inclined to undertake the task of writing the history of our 
subject, he must at least perform some of the work abroad. 

In the present discourse it is proposed to touch very lightly 
the more important steps made since the middle of the cen­
tury, the time at our disposal not admitting fuller treatment. 

And first we will take up Delaunay's method, proposed for 
employment in the lunar theory, but quite readily extended to 
all classes of problems in dynamics. The first sketch of this 
method, given of course by the author himself, appeared in the 
Comptes Rendus of the Paris Academy of Sciences, in 1846. 
I t professes to be merely an extract from a memoir offered for 
publication in the collections of the Academy, which must, how­
ever, have been afterwards withdrawn to make place for the 
two volumes of the Théorie du Mouvement de la Lune. When 
this extract is compared with the earlier chapters of the latter 
work, it is perceived that Delaunay has, to some extent, mod­
ified and improved his method in the interim between 1846 and 
1860. In this long period nothing appeared from the author 
on this subject. He must have been profoundly engaged in 
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applying his method to the motion of the moon. Tisserand's 
exposition of this method is somewhat more brief than the 
author's own. But when the necessary modifications are intro­
duced into Delaunay's procedures, to make them applicable to 
the more general case of the motion of a system of bodies, the 
establishment of the formulas can be rendered still more brief. 

There is one point in reference to Delaunay's method which, 
as far as I am aware, has escaped notice. This method consists 
in a series of operations or transformations, in each of which 
the position of the moon in space is defined by six variables, 
the number three being doubled in order that the velocities, as 
well as the co-ordinates, may be expressed without differentials. 
The aim of the transformations is to make one half of these, 
which Poincaré has called the linear variables, continually 
approach constancy, while the other half, named the angular 
variables, continually approach a linear function of the time. 
But at any stage of the process the position of the moon, as 
well as its velocity, is definitely fixed by the six variables pro­
duced by the last transformation, provided that the proper 
degree of variability is attributed to them, just as, before any 
transformation was made, the six elements of elliptic motion, 
usually denominated osculating, defined them ; the point of 
difference to be noticed being that the more the transforma­
tions are multiplied, the more complex becomes the character 
of the expression of the former quantities in terms of the 
latter. But, however great may be the number of transforma­
tions, the series evolved have always one consistent trait, viz., 
that the angular variables are involved in them only through 
cosines or sines of linear functions of these variables, the linear 
functions being formed with integral coefficients. Now, as in 
all this work we are obliged to employ infinite series, the ques­
tion of their convergence is an extremely important one. The 
inquiry in this respect may be divided into two parts, mainly 
independent of each other. These are, convergence as respects 
the angular variables, and convergence as respects the linear 
variables. The first part is much the more simple. Eegarding 
each of the coefficients of the series we employ as a whole, that 
is, representing it by a definite integral, it is quite easily per­
ceived that the said series are both legitimate and convergent 
when, giving the angular variables the utmost range of values, 
still no two of the bodies can occupy the same point of space. 
In the contrary case the series are evidently divergent. This 
condition affords certain limiting conditions for the values of 
the linear variables. Could we trace these limiting conditions 
through all the transformations, and obtain by comparison the 
formulas to which these tend when the number of transforma­
tions is made infinite, we should be in possession of the condi­
tions of stability of motion of the system of bodies. The second 
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part of the inquiry relates to the expression of the mentioned 
coefficients by infinite series proceeding according to powers 
and products of certain parameters which are functions of the 
linear variables. It is well known that, in the case of elliptic 
elements, Laplace and Cauchy almost simultaneously showed 
that the series are convergent when the eccentricity does not 
exceed a fraction which is about two-thirds. The determina­
tion of the conditions of convergence, after certain transforma­
tions have been made in the signification of the elements, is 
undoubtedly a more complex problem ; nevertheless, it seems 
to be within the competency of analysis as it exists at present. 

The discovery of the criterion for the convergence of series 
proceeding according to powers and products of parameters is 
due to Cauchy, and is a most remarkable contribution to the 
science of mathematics. Supposing that the parameters begin 
from zero values, this criterion amounts to saying that the 
moment the function, which the series is to represent, ceases 
to be holomorphic, or becomes infinite, that moment the series 
ceases to be convergent. Consequently, if a space, having as 
many dimensions as there are parameters in the case, be con­
ceived, and a surface be constructed in it formed by the consen­
sus of all the points where the considered function ceases to be 
holomorphic, then, provided the values of the parameters define 
a point within this surface, that is, on the same side where lies 
the origin, the series will be convergent. Generally this sur­
face will be closed, and, within it, the function will not take 
infinity as its value. 

Without any mathematical reasoning the propriety of the 
principle just enunciated may be perceived. Since it is possi­
ble for the series in powers and products to give only one value 
for the function, the moment the latter may have any one of 
several values, the series fails to give them all ; and, as there 
is no reason why any particular value should be selected, the 
conclusion must be that it does not represent any of them. 
Also, it is easy to see that, when the function takes infinity as 
its value, the series fails to represent it. 

In applying this principle to the series involved in the treat­
ment of the problem of many bodies by Delaunay's method, it 
appears, at first sight, as if we must have some finite represen­
tation of the coefficients in question in order to discover the 
particular points at which they cease to be holomorphic, such, 
for instance, as is given by an algebraic or transcendental equa­
tion. But this is not imperative, as it is often possible to make 
this discovery from certain recognized properties of the func­
tion considered, without being in possession of its form explic­
itly or implicitly. I t appears probable that, in the class of 
cases considered, the mentioned coefficients can be represented 
by multiple definite integrals, all taken between the limits 0 
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and 7T, the independent variables being those which have been 
denominated angular. Such functions are always holomorphic, 
provided that the expressions under the signs of integration 
are themselves holomorphic between the mentioned limits. If 
the statement just made be admitted, although it may be impos­
sible to write explicitly the mentioned expressions, we may, 
nevertheless, be certain that they remain holomorphic, pro­
vided that the linear variables, which may be the same as the 
parameters considered, are so restricted in their range of values 
that no matter what values the angular variables receive, no 
distance between any two bodies of the system can vanish. 
Or, in other words, that the R of Delaunay must never become 
infinite. Thus it seems probable that the conditions of con­
vergence for Delaunay's series are precisely identical with those 
for the stability of motion of the system. 

The series arising in Delaunay's method, as applied to the 
moon, contain five parameters ; the number would be six were 
the moon's mass not neglected. We should also have six in the 
application of the method to two planets moving about the sun ; 
however, should we employ the well-known functions b8

{i) of 
Laplace, the number would be reduced to five. It ought to be 
possible, therefore, after the performance of a limited number 
of operations, to assign limiting values to these parameters, 
below which the series would certainly be convergent. This 
also involves the possibility of finding limits to the errors com­
mitted by truncating the series at a certain order of terms. 
Again, provided the time is limited to a certain interval, the 
capacity of these truncated series for representing the co-ordi­
nates of the planets could be shown by giving superior limits 
to the errors necessarily involved. 

One more remark may be made before we leave Delaunay's 
method. In every operation or' transformation half the inte­
grals are obtained without the intervention of the time, and 
from these solely are obtained the ranges of values for all the 
linear variables. As no integrating divisors appear in their 
expressions, it follows that the question of stability is not 
affected in any way by the vanishing of these. Moreover, the 
presence of a libration in the angle of operation does not neces­
sitate any change in the procedure. The integrating divisors 
which appear in the expressions for the angular variables, 
obtained through quadratures, may cause difficulty, but this 
can generally be removed by a modification of the parameters 
employed in the development of the coefficients in series. 
Beyond this it does not seem necessary to attend particularly 
to the terms which Professor G-yldén has designated as critical. 

To give a succinct idea of the scope of this method, it may 
be said that it is applicable whenever, in the system, the planets 
maintain their order of succession from the sun. In systems 
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where that undergoes change, as is the case with the group of 
minor planets, supposing their action on each other is sensible, 
it is not applicable. 

Delaunay's method has not yet received all the developments 
and applications it is susceptible of. 

The treatise of Hansen on the shortest and most ready 
method of deriving the perturbations of the small planets was 
published in the interval 1857-1861. But as the principles on 
which it is founded had been elaborated and communicated to 
the public some years earlier, it is, perhaps, more properly to 
be assigned to the first half of the century. In consequence, I 
pass it over with this slight mention. 

Perhaps the most conspicuous labors in our subject, dur­
ing the period of time we consider, are those of Professor 
Gyldén and M. Poincaré. We will limit our attention, for 
the remainder of this discourse, to the consideration of these 
investigations. 

Professor Gyldén began work with the methods of Hansen 
and was gradually led to modifications of them looking towards 
their use for indefinite lengths of time. This quality has lat­
terly become imperative with him, and he has recently pub­
lished the first volume of what is evidently intended to be a 
lengthy work entitled Traité Analytique des Orbites Absolues 
des Huit Planètes Principales. To show the drift of Professor 
GyldéVs investigations, we cannot do better than give an 
analysis of this volume. At the outset the author introduces 
a class of curves he names periphlegmatic, that is, curves which 
surround a flame. The definition of this sort of curve is that 
it describes continually the space between two concentric 
spheres, and, at every point, turns its concavity towards the 
intersection of the radius vector with the inner sphere. In an 
application to the solar system, the sun is supposed to occupy 
the common centre of the spheres. The investigation is at 
first limited to the case where this curve is plane. A differen­
tial equation of the second order is derived which the radius 
vector of this curve satisfies, the independent variable being 
the angle described. The perpendicular distance between the 
spheres is called the diastem. The spheres are supposed to 
be drawn so that they touch the curve at the points where the 
radius becomes a maximum or minimum. Thus, in some cases, 
the spheres are regarded as fixed, in others, as movable. In 
the latter case, however, the sum of their radii is supposed to 
remain constant. Thence we have two groups of periphleg­
matic curves; those with constant and those with variable 
diastems. The author gives examples of both these groups, in 
most cases of which the line of apsides is variable, and con­
siders the situation and density of the points of intersection 
of these curves with themselves. 
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The idea of an absolute orbit of a planetary body is this : 
an oval symmetrical with regard to an axis movable in space. 
While the axis remains constant in length (the half of it is 
called the protometre), the velocity of its motion may vary, 
and the diastem may also vary. Professor Gyldén, however, 
admits into the expressions of these variations only terms 
whose period would become infinite did the planetary masses 
vanish. These terms he calls elementary. But elementary 
terms in the diastem and the longitude of the perihelion can 
produce terms in the co-ordinates having periods which differ 
but little from the time of revolution of the planet. These 
are also called elementary terms. But the two classes are dis­
tinguished, the first as being of the type (A), and the second 
as of the type (B). In all the formulas relative to this matter 
the author insists on keeping the arc described by the radius 
as the independent variable. 

The co-ordinates are only approximately given by the pre­
ceding apparatus of expressions. They must then have certain 
complements added to them ; these, however, are all composed 
of terms which would vanish with the planetary masses. 

In deriving the elementary terms in the radius of a planet 
through the integration of a linear differential equation of the 
second order, Professor Gyldén attaches much price to his 
method of establishing the convergence of the series formed by 
the successive terms. As the latter are obtained through divi­
sion by divisors of the order of the planetary masses, it might 
be feared that some of them would turn out to be very large. 
But the author prevents this by retaining in the coefficient of 
the dependent variable in the differential equation a quantity 
equivalent to the sum of the squares of all the coefficients in 
the integral. This is named the horistic or limiting function. 
I t is plain such an expression could be introduced in the men­
tioned coefficient, provided that the linear equation is the trun­
cated form of an equation containing the cube of the variable. 
And in the problem of planetary motion the approximations 
may always be so ordered that this shall be the case. 

With regard to the co-ordinate which exhibits the departure 
of the planet from a fixed plane, Professor Gyldén does not 
greatly deviate from the procedure of Hansen in following the 
displacement of the instantaneous plane of the orbit. Only here, 
as in the preceding treatment of the radius, he would sharply 
distinguish the elementary and non-elementary terms. 

At this point is introduced certain new nomenclature. As 
before we had diastem now we have anas tern to denote the prod­
uct of the radius and the sine of the inclination ; and what has 
generally been called the true argument of the latitude is here 
called the anastematic argument. Any angular magnitudes 
which are constantly moving through the circumference are 
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astronomic arguments; and when they have the same mean 
velocity of rotation they are isokinetic; and isokinetic argu­
ments are homorhythmic when, in each revolution through the 
circumference, they always retake together the same corre­
sponding points. In like manner, the true anomaly is the 
diastematic argument, and we have diastematic and anaste-
matic coefficients and moduli. It will be seen from this that 
Professor Gyldén does not shrink from imposing on us the 
labor of learning new terms. 

Thus far we have been engaged in deriving the equations of 
the path followed by a heavenly body ; it remains to show how 
we may find the point on that path occupied by the body at a 
given moment. There is then necessary an equation between 
the time and the variable assumed as independent, that is, the 
orbit longitude, or, more properly, the amount of angle described 
by the radius vector. If we suppose the absolute orbit to be 
described by the planet so that equal areas are passed over by 
the radius in equal times, it is plain that, on the attainment 
of a given longitude, a definite amount of time must have 
elapsed since the epoch. This is what Professor Gyldén calls 
the reduced time ; and he computes the difference between it 
and the actual time required by the theory of gravity for the 
planet to arrive at the stated direction. This mode of proceed­
ing does not differ from Hansen's except in the point that the 
absolute orbit is substituted for a fixed ellipse. 

But this gives us correctly only the orbit longitude ; for the 
radius and the latitude, which correspond in the absolute orbit 
to this reduced time, are not quite those which the planet has 
at the actual time. Consequently, Professor Gyldén proposes 
to compute two corrections, the one to be applied to the product 
of the eccentricity into the cosine of the true anomaly, the 
other to the sine of the latitude. Also the reduction of the 
orbit longitude to the plane of reference must be manipulated 
so that it comes out correctly. 

The employment of the orbit longitude as independent vari­
able throughout all the integrations necessitates a mass of very 
intricate transformations of terms from one shape into another. 
Also the integrations which bear on elementary terms must be 
kept distinct from those which bear on non-elementary terms. 
A degree of complexity is thus imparted to the subject, which 
makes it difficult to see when one has really gathered up all 
the warp and woof of it. Professor Gyldén has nowhere re­
moved the scaffolding from the front of his building and 
allowed us to see what architectural beauty it may possess ; it 
is necessary to compare a large number of equations scattered 
through the volume before one can opine how the author means 
to proceed. 

The advantages claimed for the method are that it prevents 
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the time from appearing outside the trigonometrical functions, 
and that it escapes all criticism on the score of convergence. 
The first is readily conceded, but many simpler methods 
possessing this advantage are already elaborated, and it is not 
so clear that the second ought to be granted. 

No completely worked out example of the application of 
this method has yet been published. The great labor involved 
will naturally deter investigators from employing it. 

In 1890 was published the memoir of M. H. Poincaré, en­
titled Sur le problème des trois corps et les équations de la 
dynamique, and which obtained the prize of the King of 
Sweden. Most of the results of this memoir were worked 
over and presented anew with greater elaboration and clear­
ness by their author in Les Méthodes Nouvelles de la Mécanique 
Céleste. Here we find a large number of new and very inter­
esting theorems. 

First is to be noted the class of particular solutions in the 
problem of the motion of a system of material points which 
are now named periodic solutions. The initial relative positions 
and velocities of the several points are so adjusted that, after 
the lapse of a definite time, the latter retake them. Hence is 
evident a method which may be employed to elaborate this 
special case of motion, viz., by the tentative process with me­
chanical quadratures. M. Poincaré has divided this sort of 
solutions into three classes, of which, however, the second and 
third are not essentially different. He has shown that, in the 
latter classes, the values of the arbitrary constants of the 
problem must be so adjusted that no secular inequalities, or, 
as Professor Gyldén calls them, elementary terms, may arise. 
The number and variety of these particular solutions is far 
greater than one would at first sight imagine. 

We come now to a second class of particular solutions named 
by the author asymptotic. I t arises from the consideration of 
solutions differing very little from periodic solutions. Here 
we have to deal with linear differential equations having peri­
odic coefficients. The integrals of these contain in their terms 
exponential factors, and on the nature of the exponents of 
these factors depends the quality of the resulting solutions. 
M. Poincaré has named these exponents characteristic. They 
are roots of an algebraic equation of a degree equal to the 
number of dependent variables involved in the question. If 
any of these roots are imaginary with real portions or wholly 
real, we are in presence of asymptotic solutions. The algebraic 
equation mentioned contains the unknown only in even powers; 
hence the characteristic exponents are in pairs having the 
same absolute value, but with contrary signs. In all the cases 
presented by astronomy, where, on account of the near ap­
proach to circular motion, a periodic solution can be taken as 
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a first approximation, it appears that the squares of the 
characteristic exponents are all real and negative. Thus, 
there is no call here to consider this sort of solution, and 
this fact must much diminish the interest of the astronomer 
in it. M. Poincaré has, however, elaborated it with great 
pains, showing how the effect of higher powers of the devia­
tions from the periodic solution may be taken into account. 
The series resulting are, nevertheless, divergent, as in other 
cases. 

The second volume of the Méthodes Nouvelles is devoted to 
the elaboration and consideration of various processes for de­
veloping the integrals of planetary motion according to the 
powers of a small parameter. The chief of these are due to 
Professor Newcomb and MM. Lindstedt and Bohlhr; but M. 
Poincaré has augmented the number of them by introducing 
modifications of his own. All involve the principle of recur­
rence ; that is, the first step is the only one which is indepen­
dent, the following depend on all that precede. These methods, 
in their general aspect, do not differ from the old developments 
in powers of the disturbing force, except the operations are so 
adjusted that the time never escapes from the trigonometric 
functions. This is accomplished by greatly augmenting the 
number of the elementary arguments, and by supposing that 
the rate of motion of each of these is developable according to 
integral powers of the before-mentioned parameter, or, in some 
cases, of its square root. 

When there is more than one elementary argument, the 
series obtained in all these ways are pronounced to be generally 
divergent in the rigorous sense of the word. M. Poincaré 
brings forward several methods of proof of this. The first de­
pends on the presence of small divisors in the expressions of 
the coefficients. However, when we do not insist on develop­
ments in powers of a parameter, this method of proof has no 
application. Another method is derived from the principle 
that two characteristic exponents vanish for every uniform 
integral that exists. But the integrals which necessitate this 
conclusion must not only be uniform, they must be valid for 
every possible case of the problem. Now the integrals known 
as those of the conservation of living forces and of areas are 
of this nature; but the integrals derivable from the series of 
Delaunay, Newcomb, and Lindstedt are valid only for a limited 
range in the values of the linear variables. For instance, in 
the problem of the three bodies, if the deformation of the tri­
angle formed by these bodies is such that we cannot find any 
two sides, one of which sustains to the other an invariable 
relation of greater to less, we cannot apply the mentioned 
series. And here it is well to note that the defect of con­
vergence does not arise from the application of the processes 
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of integration, but already exists in the development of the 
perturbative function before integration commences. Thus 
Delaunay's development of this function at the beginning of 
his lunar theory is divergent and illusory, unless we have the 
lunar radius in apogee always less than the solar radius in 
perigee, and that without regard to the mode of expressing the 
coefficients. Some of the particular integrals, relied upon by 
M. Poincaré to establish the vanishing of all the characteristic 
exponents in case we accept M. Lindstedt's series as valid, lie, 
so to speak, on the boundary of the domain in which these 
series are convergent. 

In the third place an appeal is made to the alleged non­
existence of analytic and uniform integrals beyond those already 
known. Were this non-existence clearly established it would 
decide the question on the side where M. Poincaré has placed 
himself. But, at least as far as the non-existence of integrals 
of this nature in a limited domain for the linear variables is 
concerned, the proof given for it is quite defective. This proof 
consists in ascertaining how these integrals, supposing them to 
exist, would behave, should we attempt to derive periodic solu­
tions from them. I t is difficult to present this matter without 
the assistance of algebraic formulae; nevertheless, it may be 
attempted. Let there be a number of equations whose left 
members are formed by the product of two factors. When we 
pass to a periodic solution, one of these factors becomes zero. 
What conclusion can we draw from each of the thus modified 
equations ? Evidently one of two things : either the remaining 
factor of the left member is infinite and the right member 
indeterminate, or it is finite and the right member a vanishing 
quantity. Now in case we are obliged to accept the first con­
clusion, were it only but once, M. Poincaré has demonstrated 
the non-existence of integrals ; but, granting that it is proper 
in every case to accept the latter conclusion, the demonstration 
fails. Now he declines to consider the latter alternative, saying 
that he does not believe that any problem of dynamics, pre­
senting itself naturally, occurs where the right members of the 
mentioned equations would all vanish. But it should be borne 
in mind that, while they do not vanish in the general equations, 
the adjustment of the values of the linear parameters required 
by the passage to a periodic solution may bring about their 
vanishing. Thus, in the lunar theory, a periodic solution is 
brought about by making e = 0, e' = 0, and y = 0, the result 
is the vanishing of every coefficient having any of these quan­
tities as a factor. 

M. Poincaré appeals in another place to the fact that the 
Lindstedt series, if convergent, would establish the non-existence 
of asymptotic solutions. But this observation is irrelevant for 
the reason that the domains of the two things are quite distinct. 
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In any case where Lindstedt series are applicable there are no 
asymptotic solutions, and, where there are asymptotic solutions, 
Lindstedt's series would be illusory. 

We owe much to M. Poincaré for having commenced the 
attack on this class of questions. But the mist which over­
hangs them is not altogether dispelled; there is room for 
further investigation. 

KEONECKEE'S LINEAE EELATION AMONG MINOES 
OF A SYMMETEIC DETERMINANT. 

BY PROFESSOR HENRY S. WHITE. 

AMONG the minors of any determinant there exist well-
known identical relations ; those of lowest order, the quadratic 
relations, being readily obtained by the expansion of a deter­
minant in which at least one pair of rows or of columns are 
identical. If, however, the original determinant is symmetri­
cal, there are identities of a lower order than the quadratic, the 
linear identities first formally noticed by Kronecker in 1882.* 
These linear relations, published with no hint as to the man­
ner of their discovery, are suggestive of a certain formula in 
such constant use as to have become a commonplace in the 
transformations of the Theory of Invariants of linear substitu­
tions. The latter formula, however, relates to products of two 
determinant-factors, while Kronecker's is linear; but the latter 
uses double indices for the constituents, and herein lies the 
resemblance. By virtue of the ordinary process of multiplica­
tion of two determinants, Kronecker's theorem is easily proved 
to be a consequence from the other identity. Both are equally 
general, hence it seems likely that the earlier may have been 
the source of the later. This theory I will develop inductively, 
using for the sake of brevity determinants of three rows, and 
obtaining a typical linear relation among three-rowed minors 
of a six-rowed symmetric determinant. 

Form an array of three rows of six constituents each : 

&1 &2 &Q Ct± Ct$ G/Q 

bx b2 b3 b± b5 b6 

Ci Cg CQ C± C5 C(J 

* Sitzungsberichte der Berliner AJeademie, 1882, p. 824. See also 
C. Runge : Die linearen Relationen zwischen den verschiedenen Subde-
terminanten symmetrischer Système. Jour. für r. u. a. Math., vol. 93 
(1882), pp. 319-327. 


