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CONCERNING J O R D A N ' S L I N E A R GROUPS. 

Presented to the American Mathematical Society, August 28, 1895. 

BY ELIAKIM HASTINGS MOORE. 

Introduction. 

I PRESENT to the AMERICAN MATHEMATICAL SOCIETY to-day 
a continuation of the paper # presented last November, entitled 
The group of holoedric transformation into itself of a given 
group. To recall briefly : The given (abstract) group Gn of 
order n has the elements sx = identity, s2, . . sn. The substi
tution-group Tn of transformation of Gn into itself is the 
substitution-group on the n letters s1} . . sn which leaves inva
riant the multiplication-table for Gn. Letters s which are con
jugate with one another under Tn must as elements of Gn have 
the same period. Thus, sx = identity is invariant, and Tn is 
really J™ -1 on the n — 1 letters s2, . . sn. 

We are to consider to-day the case that rn~l is transitive on 
the n — 1 letters s2, . . sn. Then the n — 1 elements s2, . . sn 

of Gn have the same period, which must then be a prime p. 
Hence Gn has the order n = pn'. Every group Gn=pn- has, in 
accordance with an important (Sylow's) theorem, f at least one 
element different from identity commutative with every ele
ment of the group. This property of the element may be read 
out of the multiplication-table for Gn=pn-, and is hence invariant 
under rn~l. But rn~l is transitive on the n — 1 letters s2, . . sn. 
Hence every element of Gn=pn- is commutative with every other 
element. Our given group Gn is then the Abelian Gpn-, or rather, 
omitting the ', Gpn with n generating elements, each of order p, 
and commutative with one another. I t will cause no confusion 
if we refer to it hereafter simply as the Abelian Gpn. 

* Bulletin of the American Mathematical Society, ser. 2, vol. 1, pp. 
61-66, Dec. 1894. 

Mr. HOLDER explained this notion of the group of holoedric transfor
mations into itself of a given group, for use in his memoir : Die Cfruppen 
der Ordnungen p8, pq2, pqr, p* (Mathematische Annalen, vol. 43, pp. 301-
412 ; see pp. 313, 314), which bears the date March 28, 1893. We, 
however, hit on the notion independently of each other ; see the foot-note 
(**) of p. 6Q of my former paper. 

t SYLOW : Mathematische Annalen, vol. 5, p. 588. 
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§ 1. 

The group r^(pn) °f holoedric transformation into itself of the 
Abelian group Gpn is Jordan7s linear homogeneous substitution-
group of degree pn, LHG^pn). 

Eor the Abelian Gy» we take the n generators 

(1) at (i = 1,2, . . n) 

with the complete system of generating relations. 

(2) af = 1, a&j = a/it (i, j = l,2, . . n) 

and have as the general element 

(3) SK = 8^..^ = ax*<h*È. .afn = T}aft (* = 1, 2, . . w) 

where the suffixes and exponents k are integers taken modulo 
p, and where iTis a symbol standing for Qc1,Jc2, . . kn). 

The general multiplication equation is 

( 4 ) SKX
SK2

 = S£3 ? \ i , *ij, ..kln'
 Sk21, k22,. . km = = S * 3 i , *32, • • *3n? 

where 

(5) K. + K^K,, ku + 7c2i = k8i. (i = l , 2 . . n ) 

I t turns out that the general substitution cr<̂  of i"7^^ re-
replaces sx = sxit X2i.. Xn by ax, = v l t ^ .. „n, where 

(6) X'=GX, x't=ZgvXj ( |^|^=0) &. /= 1,2,. . n), 

where Ér is a symbol for the matrix 

(7) G=(gv) (i,j = l,2,..n) 

whose elements gtJ are integers taken modulo p. [To follow 
the customary notation we should write congruences (modulo 
p) everywhere instead of equations. But in group-theoretic 
applications such as the present, it is much better to breathe 
the spirit of the congruence once for all into the definitions of 
the symbols and operations.] Hence, indeed, r^pn) is Jordan7s 
linear homogeneous substitution-group * of degree pn, LHG*n

(pn), 
of order f 
(8) O (pn) = (qn - 1) (qn - q) (qn - q2) . . (qn - (f"1). 

* JORDAN : Traite des substitutions, p. 92, 1870. 
f JORDAN : loc. cit., p. 97. 
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This identification of the r^pn) of the Abelian Gpn with the 
LHG^l

{pn) I obtain first by holding the Gpn as an abstract 
group ; I omit the details of this identification. We may how
ever take the Gpn concretely as the regular Abelian substitution-
group Gpl on the pn letters sx = sXli ̂ . . Xn ; the general element 
(3) sK = skli ft2,.. K then (4. 5) replaces sx by sx,, where 

(9) X' = X+K, x\^xi + Tci (i = l,2,..n). 

We thus win direct contact with Mr. Jordan's work. The 
Gpl (9) is within the symmetric substitution-group on the pn 

letters sx self-conjugate under the linear non-homogeneous 
group LGp

pn^pn) of degree pn and of order pnÜ{pn), whose 
general substitution <TG K replaces sx by sx, where 

(10) X'=GX+K, x'^lgw+k, Qgv\*0) {i,j=l,2,..n). 

<TG,K replaces sKl, %2, s^.by 8K-1} sK,2, s^ where 

K\ = GK^ + K, K'2 = GK2 + K, K'S = GK3 + K, 

so that 

hence under <T^K of the LGp
pnü,n) (10) a multiplication equation 

of the Gpn sKlsK2= sK8= sKl+K2 (4, 5) is preserved, that is, 

SK't
 SK'2

 = SK'& = = SK'i+K'2> 

if and only if K= (0) = (k19 k2,.. kn) = (0, 0 , . . 0), that is, if 
and only if the substitution <r#, K of the LGp

pnçi{pn) (10) is a 
substitution o-# 0 = o-G of the LHGp*{pn) (6). We have then 
this (second) identification of the r*" M, of the Abelian Gnn with 
theLHGp;(pny 

The group r ^ s M f f ^ (6) is transitive on the pn-l 
letters sx(X^z(0)). For _p = 2 it is doubly transitive on the 
pn — 1 = 2n — 1 letters. Eor p > 2 it is simply transitive and 
imprimitive ; the letter sx = sXli ^ . . ^ belongs to and by the 
ratios of its n suffixes X = (x1:x2: • • : xn) determines the system 
of imprimitivity containing the q—1 letters * six(l=l, 2, • -p—1); 
in the Ĝ ,» the elements sÏXand the identity s0x= $(0) constitute 
the cyclic group Gp\sx] determined by s^ say the GPiX. Thus, 

* X=(Xu ' • Xn), lX = (lXi, • • Zxn). 
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the r£„ ESLHGÇ^ permutes first the (f - l ) / (p - 1) Gp of 
Gpn, and afterwards fixes the elements within the various 
groups. The self-conjugate sub-group which keeps every Gp 
fixed is of order p — 1 : 

(11) {X = IX, 0', = te<(*==l,2,-.*% 

The quotient-group, which is a substitution-group on the 
(pn — l ) / 0 — 1) Gp9 has the order 0(pn)/(p — 1). Analyti
cally, it is the LHG^(pn) taken fractionally ; that is, the linear 
fractional group f ^ ^ ^ o ^ ^ ^ l l j , whose general substitution 
(TQ replaces the GP,xby the GP,x, where 

(12) X' = <?X,* 

.ƒ=» i = » 
: < = ^gyXji 2g2jXj:-

j^n y=w 

§ 2. 

î%ree tactical configurations : 

LOflp"l LHOftr-11 LFCMp«-l)/(p-l)y. 

connected with the Abelian Gpn are defining invariants respec
tively for the three linear groups : 

T rvpn T TTÇi Pn o r Pn"~1 j 7/T/nr(i?n-i)/(i?-l) 

The notion configuration I transfer to tactic from geometry t ; 
for the proof and ultimate statement of the theorems about to 
be stated with utmost brevity, this notion must be used to its 
full content; to-day, however, the term tactical configuration 
shall be merely a name. 

The linear configuration LCf[_pn'] inpn letters. 

The jpw letters of the LCf [pw] are the pn elements sx of the 
Abelian Gpn. The Gpn contains (pn — l)/(p — 1) sub-groups, 

* JORDAN : loc. cit., p. 228. In my notation the two subscript dots (..) 
are the ratio dots (:), and are to call to mind that we may without chang
ing anything replace X = (xu . . xn), X' = (x'i, • • xf

n), G = (gi3) by 
lX=(lxi, • • lxn), VX'=(l,xf

ll • • Vx'n), mG = (m##), respectively, 
where I, V, m are any integers taken modulo p , but ?=#=(), V =£ 0, m =£ 0. 

t See, for instance, EEYE : Das Problem der Gonflgurationen (Acta-
Mathematica, vol. 1, pp. 92-96, 1882). 
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Gpn-i. With respect to each sub-group Gpn-i the pn elements 
sz of the Gpn are exhibited as a certain rectangular array of p 
lines with p71*1 elements in each line ; the order of the lines 
and the order of the elements in each line are immaterial ; one 
line contains the pn _ 1 elements of the Gpn~i itself. We sepa
rate every array into its constituent lines, and have before us 
in the system of (unordered) p(pn — l)/(p — 1) lines or com
binations of pn~x letters each the linear configuration in pn 

letters, LCf\_pn~\. 
This LCf[_pn*] for n^2 defines, as the maximum substitu

tion-group on the pn letters sx leaving it invariant, exactly the 
LG£u»> ( s 1 (10))-

The linear homogeneous configuration LHCf\_pn — 1] 
in pn — 1 letters. 

The pn - 1 letters of the LHCf\_pn - 1 ] are the pn - 1 ele
ments sx(X=£(Q)) of the Abelian Gpn9 the identity s,0) excepted. 
The LHCf[pn - 1] is obtained from the LCf [pn] by omitting 
every line or combination containing the discarded letter s(0). 
The LHCf\_pn — 1] consists, then, of a system of pn — 1 lines 
or combinations of p71"1 letters each. This LHCf\_pn — 1] is 
tactically self-reciprocal,* that is, we can distribute a notation 
s'x to the pn — 1 lines in such a way that the LHCf\_pn — 1] 
on the pn — 1 letters sx as grouped by the pn — 1 lines szdif
fers only in the priming (') from the LHCf\_pn — 1] on the 
f)n — 1 lines s % as grouped by the pn — 1 letters sx. 

This LHCf [_pn — 1] f or n > 2 serves as a defining invariant 
for exactly the LHG^lf'1 (§ 1, (6)). The self-reciprocity of 
the LHCf \_pn — 1] establishes an holoedric isomorphism of the 
LHG^~^ with itself. This isomorphism is (at least for 
n I> 3) not * that arising from a transformation of the LHG^^ 
through one of its own elements. 

The linear fractional configuration LFCf\_(pn •— l)/(p — 1)] 
on (pn — l)/(p — 1) letters. 

The (pn - l)/(p - 1) letters of the LFCf[(pn - l)/(p - 1 ) ] 
are the (pn — ±)/(p — 1) cyclic groups Gq; x of the Abelian Gpn. 
The LFOf[(pn - l)/(p - 1 ) ] is obtained from the LCf\_pn~] by 

* Notice the particular case (g = 2, w = 3) in § 2 of my paper cited 
above. The LHCf [28 — 1 = 7] and the A7 are, so to say, complementary. 
Indeed, for q = 2, w = any, the LHCf [2W — 1] determines uniquely a 
A2«-i, from which the LHCf [2n — 1] is likewise uniquely determined. 
This A2rc_i serves as a denning invariant for the LUG211-1. 
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omitting every line not containing the identity letter s,0)f that 
is, by retaining the lines corresponding to the (pn — ï)/(p — 1) 
sub-groups * Gpn-i, and then in every such line by omitting the 
s(0) and replacing every set of p — 1 letters slx(l = 1, 2, . . q—1) 
by the letter Gq; x. The LFCf[(pn - T)/(p - 1 ) ] on 

(Pn-1)/(P-1) 

letters consists then of a system of (pn — l ) / ( p — 1) lines of 
(p*-1- ï)/(p - 1 ) letters each. This LFGf\_(pn~- ï)/(p - 1 ) ] 
is tactically self-reciprocal. 

This LFCf[(pn — l)/(p — 1)] for 7i > 3 serves as a defining 
invariant for exactly the LFG^/^ (§ 1, (12)). The self-
reciprocity of the LFCf\_(pn — l)/(p - 1)] (n ^ 3) establishes 
an holoedric isomorphism of the LFG^))^^ (n ^ 3) with 
itself. This isomorphism is not that arising from a transfor
mation of the LFG{^~ny(p

p~^ through one of its own elements. 
In § 4 I give these various tactical configurations for certain 

low values of p and n. 

§3. 

Utility of the Galois-field theory in the investigation of 
linear groups. 

The results given in § 2 depend for their proof largely upon 
the fact that the group F^^ = LHG^^ contains a substitution 
o-# which permutes the pn — 1 letters sx(X =£ (0)) in one cycle of 
period pn — 1. Any such o-# answers the purpose. That one 
such exists we know from the Galois-field theory, f 

* This linear fractional configuration might also be called the sub-group 
configuration of the Abelian G-pn. 

t GALOIS: Sur la théorie des nombres {Bulletin des Sciences Mathé
matiques de M. Ferussac, vol. 13, p. 428, 1830 ; reprinted, Journal de 
Mathématiques pures et appliquées, vol. 11, pp. 398-407, 1846.) 

SERRET : Algèbre supérieure, fifth edition, vol. 2, pp. 122-189. 
JORDAN : Traité des substitutions, pp. 14-18. 
MOORE : A doubly infinite system of simple groups (§ 3 is an abstract 

formulation of the Galois-field theory). {Proceedings of the Chicago Con
gress of Mathematics ; in abstract, Bulletin of the New York Mathemati
cal Society, vol. 3, Dec. 1893.) 

Addendum of Oct. 15, 1895. I have found within a week that 
MATHIEU in Chapter III, pp. 275-304, of his Mémoire sur Vétude des 
fonctions de plusieurs quantités, sur la manière de les former et sur les 
substitutions qui les laissent invariables (Journal de Mathématiques 
pures et appliquées, ser. 2, vol. 6, pp. 241-323, 1861), working from the 
Galois-field standpoint, defines and investigates two substitution-groups, 
which are (otherwise expressed) the groups LG^ n) and LHG1^ n). 
This seems to be the source from which Mr. Jordan's linear groups (1870) 
were drawn. Mathieu gives two rational integral functions of the pn 
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Suppose that the pn marks £ of the G-alois-field GF\_pn~\ 
of order pn are exhibited explicitly in terms of n linearly 
independent marks rji, TJ2, • • rjn in the form 

i—n 

(1) £ = 2 a ^ , 

where the a?/s are integral marks, or integers taken modulo 
p. W e make through the X = (œ1? • • xn) a 1.1 correspondence 
between the letters sx and the marks £• I n fact the GF\_pn~\ 
qua additive-group is a concrete Abelian Gry*. Now in the 
GF[_pn~\ additions are invariant under the multiplication-sub
stitution cry on the pn — 1 marks £ (£ =£ 0), 

(2) É ' = y è ( y =*<)), 
tha t is, when every mark of the field is multiplied by the 
same mark y. Hence this <ry interpreted on the sx is a substi
tution a a of the i ^ J n j = LHG^(~ly If y is a primitive root of 
the GF[pn~], <ry permutes the pn — 1 marks £(£=£0) in one 
cycle, and, similarly, o-# permutes the pn — 1 letters sx(X=f= (0)) 
in one cycle, and is then the substitution sought. 

The results of § 2 constitute for the linear groups sweeping 
generalizations of Mr. Noether's definition * of the group P / œ 

by the triple system A7 in seven letters. 

§ 4. 

Tables^§ of the tactical configurations : 
LCfW], LHCftp* - 1 ] , LFCMp* - l)/(j> - 1 ) ] , 
for cases pn = 22, 32, 52, 72, l l 2 ; 23, 38, 53, 73; 24, 3* 54; 25; 26. 

The table for a particular case [pw] gives first a primitive 
root y of the Galois-field GF\_pn~\ and its fundamental equation 

letters sx, each of which serves as denning invariant for the LG*£( Qn)t 
These functions are closely related to our LCf[pn~\. In explaining my 
researches in detail in a subsequent paper I shall point out the exact 
points of contact with MATHIEU's results. 

It should be added that several weeks ago Mr. Dickson and I came 
upon a substitution-group on the pn marks of the GF\_pn~] which Mr. 
Dickson then identified as another expression of Mr. Jordan's LHGP" w) ; 
this was exactly MATHIEU's expression of the group. p 

* See § 2 of my paper cited above. 
t The theory of the linear fractional configuration I introduced in my 

course Groups, during the last spring quarter at the University of Chicago, 
and in connection with the members of that course, Messrs. Brown, 
Dickson, Joffe, and Slaught, worked up the linear fractional configura
tions § for the cases given above, except pn = 26. I take this opportunity 
to thank them for their cooperation, and especially Mr. Dickson, who 
quite recently completed the tables as given above. 

§ I add the tables for pn = 22, 32, 52, 72, ll2 , whose linear fractional 
configurations are trivial. Sept. 10, 1895. 
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of degree n. The pn elements of the abstract Gpn have the 
index-notation* derived from the pn marks of the GF\_pn~\ (as 
a concrete Gpn, § o) : mark £ = 0, index # ; mark £ =fc 0, £ = y\ 
index i (i = 0, 1, . . y* — 1) ; i is an integer taken modulo pn—1. 

The i<y|j>M] consists (§ 2) of the lines found in certain 
(pn — l)/(p — 1) arrays. Each array has p lines \ each line 
has pn~x indices. Only the first array is given; the others 
are obtained from it by repeated applications of the cyclical 
substitution 

i' = i + l, (i=0,lr - ^ = 1 ) , 

which leaves # fixed. The first line of the first array is the 
additive sub-group Gpn~\ of the GF\_pn~] qua additive Gpn9 
which contains the n — 1 marks y°, y1, • • yn~2. The second 
line is obtained by adding the mark yw"~' to the marks of the first 
line. Of course the lines one and two must be expressed in 
the index-notation. The following lines are derived from the 
second at once by repeated additions of (pn — l)/(jp — 1) to 
the indices of the second line. 

The LHCf[pn-l'] and the LFCf \_(pn - l)/(p -1)] are 
easily derived from the LCf[_pn~\ (§ 2). The LCf[p*] and 
the LHCf[pn — 1] are tabulated together. 

TABLES.t 

GF[22] Primitive root y where y2 = 1 -f y. 
LCf [22] 4 indices * 0 1 2. 
LHCf[Z2 - 1] 3 indices 0 12. 

[* 0]a [1 2]a § 

6r.F[32] Primitive root y where 72 = 1 + 2y. 
LCf [S2] 9 indices * 0 1 . . 7. 
LHCflP - 1] 8 indices 0 1 . . 7. 

[# 0 4]8 [1 6 7]3 [2 3 5]3 

G-F\b2~\ Primitive root y where y2 = 2 + 2y. 
£C/[52] 25 indices * 0 1 . . 23. 
LHCf(& - 1] 24 indices 0 1 . . 23. 

[* 0 6 12 18]s [13 4 8 17]s [7 9 10 14 23]6 [5 13 15 16 20]6 
[2 11 19 21 22]s 

* The sx notation for the elements can be recovered if necessary. 
i The LFCf [@^—t] for n = 2 is trivial and hence is not tabulated. 

Lp — U 
§ Every line [ ] has a suffix indicating the number of indices lying 

within. 

lPn = 22] 

[p» = 32] 

[pn = 52] 
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[pn = 72] GF[722 Primitive root y where 72 = 2 + 2 y. 
XO/[72] 49 indices * 0 1 . . 47. 
LHCf\_72 - 1] 48 indices 0 1 . . 47. 

O 0 8 16 24 32 40]7 
[1 6 18 20 21 27 31] 7 [9 14 26 28 29 35 39] 7 [17 22 34 36 37 43 47] 7 

[3 7 25 30 42 44 45]7 [2 4 5 11 15 33 38]7 [10 12 13 19 23 41 46]7 

[pn = l l 2 ] G i ^ l l 2 ] Primitive root 7 where 72 = 9 + 47 . 
Z,C/[112] 121 indices * 0 1 . . 119. 
LHCf [ l l 2 - 1] 120 indices 0 1 . . 119. 

[* 0 12 24 36 48 60 72 84 96 108] n 

[1 27 55 58 65 66 71 80 98 100 117] n 

[Second line] + 1 2 ; 24; 36; 48; 60; 72; 84; 96; 108 = the 
respective remaining lines. 

[ptt = 28] 6rJP[23] Primitive root 7 where 7 s = 1 + 7. 
LCf\2*] 8 indices *, 0, 1, . . 7. 
LHCf [2* - 1] 7 indices 0, 1, . . 7. 

[ * 0 1 3 ] 4 [2 4 5 6]4 

LFCf[(2* - l ) / ( 2 - 1)] 7 indices 0 , 1 , . . 7. 

[0 1 3 ] 3 

[p^ = 38] #JF[38] Primitive root 7 where 78 = 2 + 7. 
£C/ [3 8 ] 27 indices *, 0, 1, . . 25. 
LHCf\& - 1] 26 indices 0, 1, . . 25. 

[* 0 1 3 9 13 14 16 22]9 
[2 4 6 7 10 11 12 18 21]9 
[15 17 19 20 23 24 25 5 8] 9 

LFCf[(3* - l ) / ( 3 - 1)] 13 indices 0, 1, . . 12. 

[0 1 3 9 ] 4 

[pw = 58] #.F[58] Primitive root 7 where 78 = 3 + 2 7. 
XC/[58] 125 indices *, 0, 1, . . 123. 
LHCf 16s - 1] 124 indices 0, 1, . . 123. 

[# 0 1 3 10 14 26 31 32 34 41 45 57 62 63 65 72 76 88 93 94 96 103 

107 119]25 
[2 9 13 15 28 29 30 35 38 39 48 53 56 68 80 82 98 104 105 109 112 

114 116 117 120] 25 

[Second line] + 31 ; 62 ; 93 = the respective remaining 
lines. 

LFCf[(& - l ) / ( 5 - 1)] 31 indices 0, 1, . . 30. 

[0 1 3 10 14 26]6 
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78] GF[7*~] Primitive root 7 where ys = 5 + 7. 
Z<7/[78] 343 indices *, 0, 1, . . 341. 
LHCf[7* - 1] 342 indices 0, 1, . . 341. 

[* 0 1 3 13 32 36 43 52 57 58 60 70 89 93 100 109 114 115 117 127 

146 150 157 166 171 172 174 184 203 207 214 223 228 229 231 241 

260 264 271 280 285 286 288 298 317 321 328 337] 49 

[2 4 6 9 14 16 26 33 35 41 44 45 46 50 56 64 75 78 82 86 99 133 134 

142 148 168 181 186 194 195 201 202 218 219 222 240 245 265 267 

268 277 281 283 290 293 296 307 312 323] 49 

[Second line] + 57 ; 114 ; 171 ; 228 ; 285 = the respective 
remaining lines. 

LFCftÇI* - l ) / (7 - 1)] 57 indices 0, 1, . . 56. 
[0 1 3 13 32 36 43 52]8 

24] GrF[2±~] Primitive root 7 where 74 = 1 + 7. 
£C/[24] 16 indices *, 0, 1, . . 14. 
LHCf[2* - 1] 15 indices 0, 1, . . 14. 

[* 0 1 2 4 5 8 10]8 [3 6 7 9 11 12 13 14]8 

LFCf'[(2* - l ) / (2 - 1)] 15 indices 0, 1, . . 14. 
[ 0 1 2 4 5 8 10] 7 

34] G F [34] Primitive root 7 where 7*=1+7+2 y2+2 73. 
Z<7/[34] 81 indices *, 0, 1, . . 79. 
LHCf\& - 1] 80 indices 0, 1, . . 79. 

[* 0 1 2 5 12 18 22 24 26 27 29 32 33 40 41 42 45 52 58 62 64 66 

67 69 72 73]27 

[3 7 15 17 20 21 30 31 37 38 44 46 48 49 50 51 53 54 56 59 63 65 

68 74 75 76 79]27 

[Second line] + 40. 
LFCfl^ - l ) / ( 3 - 1)] 40 indices 0, 1, . . 39. 

[0 1 2 5 12 18 22 24 26 27 29 32 33] is 

54] GF'[54] Primitive root 7 where 74 = 2 + 7 + 7s2. 
ZC/[54] 625 indices *, 0, 1, . . 623. 
LHCf[& - 1] 624 indices 0, 1, . . 623. 

[* {0 1 2 7 18 19 23 36 43 44 46 47 55 57 61 64 70 76 77 84 86 89 

92 94 96 108 119 122 143 148 152} -f 0, 156, 312, 468] 125 

[3 4 5 10 17 21 22 29 31 37 39 41 42 59 63 68 74 88 95 99 104 107 

109 110 127 130 134 141 146 153 162 165 168 169 181 186 189 190 

191 194 196 207 208 216 218 221 222 225 229 231 237 239 241 261 

262 269 270 271 272 276 277 279 281 285 287 288 289 291 294 300 

305 306 323 328 332 336 338 361 362 365 366 379 383 390 399 402 

405 410 412 413 415 424 430 438 440 451 454 467 476 482 483 495 

496 500 513 516 524 526 540 547 548 550 559 565 570 579 585 592 

604 605 608 613 615 619 622]125 

[Second line] + 156 ; 312 ; 468 = the respective remaining 
lines. 

LFCf[(& - l ) / ( 5 - 1)] 156 indices 0, 1, . . 155. 
[The { } of first line above]3i 
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[pn = 25] GF[25] Primitive root y where y5=1+y+y2+ys. 
Z,<7/[25] 32 indices *, 0, 1, . . 30. 
LHCf\2*> - 1] 31 indices 0, 1, . . 30. 

[* 0 1 2 3 5 8 10 12 13 14 18 24 25 27 28]i6 
[4 6 7 9 11 15 16 17 19 20 21 22 23 26 29 30]i6 

LFCf[(2& - l ) / ( 2 - 1)] 31 indices 0, 1, . . 30. 

[0 1 2 3 5 8 10 12 13 14 18 24 25 27 28] 15 

[ pn = 26] G F [26] Primitive root 7 where yQ — 1 + 7 + 7 s J- -v4. 
i O / [ 2 6 ] 64 indices *, 0, 1, . . 62. 
LHCf[2Q - 1] 63 indices 0, 1, . . 62. 

[* 0 1 2 3 4 6 13 14 16 18 20 21 22 25 26 31 35 37 40 42 43 46 49 

50 51 53 54 56 57 58 59]32 
[5 7 8 9 10 11 12 15 17 19 23 24 27 28 29 30 32 33 34 36 38 39 41 
44 45 47 48 52 55 60 61 62]32 

LFCf[(2Q - l ) / ( 2 - 1)] 63 indices 0, 1, . . 62. 

[First line above, omitting the *]gi 

T H E UNIVERSITY OF CHICAGO, 
August 25, 1895. 

ELEMENTARY PROOF OF THE QUATERNION 
ASSOCIATIVE PRINCIPLE* 

BY PROFESSOR ARTHUR S. HATHAWAY. 

THE variety of demonstrations that Hamilton has given of 
the associative principle of quaternion multiplication, and the 
remarks that he has made upon such demonstrations, show that 
he considered an elementary proof of this principle as very 
desirable. Only two of Hamilton's proofs have been generally 
employed by subsequent writers — the direct proof by spheri
cal conies, and the indirect one depending upon the assumed 
laws of i,j, k — and the proof that he considered the most ele
mentary has been entirely ignored, probably because of its 
deviation from fundamental ideas. On page 297 of the Ele
ments, Hamilton calls attention to another method, as follows : 
" The associative principle of multiplication may also be proved 
without the distributive principle, by certain considerations of 
rotations of a system, on which we cannot enter here." 

It is, of course, easy to see that such a proof is possible; 
but the details of it could not have presented themselves to 
Hamilton in an elementary form, or he would have seen that it 

* Presented to the AMERICAN MATHEMATICAL SOCIETY August 28,1895. 


