CONCERNING JORDAN'S LINEAR GROUPS.

Presented to the American Mathematical Society, August 28, 1895.

BY ELIAKIM HASTINGS MOORE.

Introduction.

I present to the American Mathematical Society to-day a continuation of the paper* presented last November, entitled The group of holoedric transformation into itself of a given group. To recall briefly: The given (abstract) group G_{n} of order n has the elements $s_{1}=$ identity, $s_{2}, \ldots s_{n}$. The substi-tution-group Γ^{n} of transformation of G_{n} into itself is the substitution-group on the n letters $s_{1}, \ldots s_{n}$ which leaves invariant the multiplication-table for G_{n}. Letters s which are conjugate with one another under Γ^{n} must as elements of G_{n} have the same period. Thus, $s_{1}=$ identity is invariant, and Γ^{n} is really Γ^{n-1} on the $n-1$ letters $s_{2}, \ldots s_{n}$.

We are to consider to-day the case that Γ^{n-1} is transitive on the $n-1$ letters $s_{2}, \ldots s_{n}$. Then the $n-1$ elements $s_{2}, \ldots s_{n}$ of G_{n} have the same period, which must then be a prime p. Hence G_{n} has the order $n=p^{n^{n}}$. Every group $G_{n=p^{n^{\prime}}}$ has, in accordance with an important (Sylow's) theorem, \dagger at least one element different from identity commutative with every element of the group. This property of the element may be read out of the multiplication-table for $G_{n=p^{\prime}}$, and is hence invariant under Γ^{n-1}. But Γ^{n-1} is transitive on the $n-1$ letters $s_{2}, \ldots s_{n}$. Hence every element of $G_{n=p^{n^{\prime}}}$ is commutative with every other element. Our given group G_{n} is then the Abelian $G_{p^{n}}$, or rather, omitting the ', $G_{p^{n}}$ with n generating elements, each of order p, and commutative with one another. It will cause no confusion if we refer to it hereafter simply as the Abelian $G_{p}{ }^{n}$.

[^0]
§ 1.

The group $\Gamma_{\Omega\left(p^{n)}\right.}^{p^{n}}$ of holoedric transformation into itself of the Abelian group $G_{p}{ }^{n}$ is Jordan's linear homogeneous substitutiongroup of degree $p^{n}, L H G_{\Omega\left(p^{n)}\right.}^{p^{n}}$.
For the Abelian $G_{p^{n}}$ we take the n generators

$$
\begin{equation*}
a_{i} \quad(i=1,2, \ldots n) \tag{1}
\end{equation*}
$$

with the complete system of generating relations.

$$
\begin{equation*}
a_{i}^{p}=1, \quad a_{i} a_{j}=a_{j} a_{i} \quad(i, j=1,2, \ldots n) \tag{2}
\end{equation*}
$$

and have as the general element

$$
\begin{equation*}
s_{K}=s_{k_{1}, k_{2}, \ldots k_{n}}=a_{1}^{k_{1}} a_{2}^{k_{2}} \ldots a_{n}^{k_{n}}=\prod_{i} a_{i}^{k_{i}} \quad(i=1,2, \ldots n) \tag{3}
\end{equation*}
$$

where the suffixes and exponents k are integers taken modulo p, and where K is a symbol standing for ($k_{1}, k_{2}, \ldots k_{n}$).

The general multiplication equation is

$$
\begin{equation*}
s_{K_{1}} s_{K_{2}}=s_{K_{3}}, \quad s_{k_{11}, k_{12}, \ldots k_{1 n}} \cdot s_{k_{21}, k_{22}, \ldots k_{2 n}}=s_{k_{33}, k_{32}, \ldots k_{3 n}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{1}+K_{2}=K_{3}, \quad k_{1 i}+k_{2 i}=k_{3 i} . \quad(i=1,2 \ldots n) \tag{5}
\end{equation*}
$$

It turns out that the general substitution $\sigma_{\boldsymbol{G}}$ of $\Gamma_{\Omega\left(p^{n)}\right.}^{p^{n}}$ rereplaces $s_{X}=s_{x_{1}, x_{2}, \ldots x_{n}}$ by $s_{x^{\prime}}=s_{x^{\prime}, x^{\prime}, \ldots x_{n}^{\prime}}$, where
(6) $\quad X^{\prime}=\boldsymbol{G} X, \quad x_{i}^{\prime}=\sum_{j=1}^{j=n} g_{i j} x_{j} \quad\left(\left|g_{i j}\right| \neq 0\right) \quad(i, j=1,2, \ldots n)$,
where \boldsymbol{G} is a symbol for the matrix

$$
\begin{equation*}
\boldsymbol{G}=\left(g_{i j}\right) \quad(i, j=1,2, \ldots n) \tag{7}
\end{equation*}
$$

whose elements $g_{i j}$ are integers taken modulo p. [To follow the customary notation we should write congruences (modulo p) everywhere instead of equations. But in group-theoretic applications such as the present, it is much better to breathe the spirit of the congruence once for all into the definitions of the symbols and operations.] Hence, indeed, $\Gamma_{\Omega\left(p^{n}\right)}^{p^{n}}$ is Jordan's linear homogeneous substitution-group* of degree $p^{n}, L H G_{\Omega\left(p^{n}\right)}^{p^{n}}$, of order \dagger

$$
\begin{equation*}
\boldsymbol{\Omega}\left(p^{n}\right)=\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{n-1}\right) \tag{8}
\end{equation*}
$$

[^1]This identification of the $\Gamma_{\Omega\left(p^{n}\right)}^{p^{n}}$ of the Abelian $G_{p^{n}}$ with the $L H G_{\Omega\left(p^{n}\right)}^{p^{n}}$ I obtain first by holding the $G_{p^{n}}$ as an abstract group; I omit the details of this identification. We may however take the $G_{p^{n}}$ concretely as the regular Abelian substitutiongroup $G_{p^{n}}^{p^{n}}$ on the p^{n} letters $s_{x}=s_{x_{1}, x_{2}, \ldots x_{n}}$; the general element (3) $s_{K}=s_{k_{1}, k_{2}, \ldots k_{n}}$ then (4,5) replaces s_{X} by $s_{X^{\prime}}$, where

$$
\begin{equation*}
X^{\prime}=X+K, \quad x_{i}^{\prime}=x_{i}+k_{i} \quad(i=1,2, \ldots n) \tag{9}
\end{equation*}
$$

We thus win direct contact with Mr. Jordan's work. The $G_{p^{n}}^{p^{n}}(9)$ is within the symmetric substitution-group on the p^{n} letters s_{X} self-conjugate under the linear non-homogeneous group $L G_{p^{n} \Omega\left(p^{n}\right)}^{p^{n}}$ of degree p^{n} and of order $p^{n} \Omega\left(p^{n}\right)$, whose general substitution $\sigma_{\boldsymbol{G}, E}$ replaces $s_{\boldsymbol{X}}$ by $s_{\boldsymbol{X}}$, where

$$
\begin{equation*}
X^{\prime}=\boldsymbol{G} X+K, \quad x_{i}^{\prime}=\sum_{j=1}^{j=n} g_{i j} x_{j}+k_{i} \quad\left(\left|g_{i j}\right| \neq 0\right) \quad(i, j=1,2, \ldots n) \tag{10}
\end{equation*}
$$

$\sigma_{\boldsymbol{G}, K}$ replaces $s_{K_{1}}, s_{K_{2}}, s_{K_{8}}$, by $s_{K_{1}^{\prime}}, s_{K_{2}^{\prime}}, s_{K^{\prime}}$, where

$$
\boldsymbol{K}_{1}^{\prime}=\boldsymbol{G} K_{1}+\boldsymbol{K}, \quad \boldsymbol{K}_{2}^{\prime}=\boldsymbol{G} K_{2}+\boldsymbol{K}, \quad \boldsymbol{K}_{3}^{\prime}=\boldsymbol{G} \boldsymbol{K}_{3}+\boldsymbol{K},
$$

so that

$$
K_{1}^{\prime}+K_{2}^{\prime}-K_{3}^{\prime}=\boldsymbol{G}\left(K_{1}+K_{2}-K_{3}\right)+K
$$

hence under $\sigma_{G, K}$ of the $L G_{p p_{\Omega\left(p^{n}\right)}}^{p^{n}}(10)$ a multiplication equation of the $G_{p^{n}} s_{K_{1}} s_{K_{2}}=s_{K_{3}}=s_{K_{1}+K_{2}}(4,5)$ is preserved, that is,

$$
s_{K_{1}^{\prime}} s_{K^{\prime}, 2}=s_{K^{\prime} ;}=s_{K_{1}^{\prime}+K^{\prime}, 2},
$$

if and only if $K=(0)=\left(k_{1}, k_{2}, \ldots k_{n}\right)=(0,0, \ldots 0)$, that is, if and only if the substitution $\sigma_{\boldsymbol{G}, \boldsymbol{K}}$ of the $L G_{p^{n} \Omega\left(p^{n)}\right.}^{p^{n}}$ (10) is a substitution $\sigma_{\boldsymbol{G}, 0}=\sigma_{\boldsymbol{G}}$ of the $L H G_{\Omega\left(p^{n}\right)}^{p^{n}}(6)$. We have then this (second) identification of the $\Gamma_{\Omega\left(p^{n}\right)}^{p^{n}}$ of the Abelian $G_{p^{n}}$ with the $L H G_{\Omega\left(p^{n}\right)}^{p^{n}}$.

The group $\Gamma_{\Omega\left(p^{n}\right)}^{p^{n}} \equiv L H G_{\Omega\left(p^{n}\right)}^{p^{n}}(6)$ is transitive on the $p^{n}-1$ letters $s_{x}(X \neq(0))$. For $p=2$ it is doubly transitive on the $p^{n}-1=2^{n}-1$ letters. For $p>2$ it is simply transitive and imprimitive; the letter $s_{X}=s_{x_{1}, x_{2}, \ldots x_{n}}$ belongs to and by the ratios of its n suffixes $\underset{X}{X}=\left(x_{1}: x_{2}: \cdots: x_{n}\right)$ determines the system of imprimitivity containing the $q-1$ letters $* s_{l X}(l=1,2, \cdots \overline{p-1})$; in the $G_{y^{n}}$ the elements $s_{l X}$ and the identity $s_{0 X}=s_{(0)}$ constitute the cyclic group $G_{p}\left\{s_{x}\right\}$ determined by $s_{\bar{x}}$, say the $G_{p, \underline{x}}$. Thus,

$$
* X=\left(x_{1}, \cdots x_{n}\right), l X=\left(l x_{1}, \cdots l x_{n}\right) .
$$

the $T_{\Omega\left(p^{n}\right)}^{p^{n}} \equiv L H G_{\Omega\left(p^{n}\right)}^{p^{n}}$ permutes first the $\left(p^{n}-1\right) /(p-1) G_{p}$ of $G_{p^{n}}$, and afterwards fixes the elements within the various groups. The self-conjugate sub-group which keeps every G_{p} fixed is of order $p-1$:

$$
\begin{gather*}
\left\{X^{\prime}=l X, \quad x_{i}^{\prime}=l x_{i}(i=1,2, \cdots n)\right\} \tag{11}\\
(l=1,2, \cdots \overline{p-1})
\end{gather*}
$$

The quotient-group, which is a substitution-group on the $\left(p^{n}-1\right) /(p-1) G_{p}$, has the order $\Omega\left(p^{n}\right) /(p-1)$. Analytically, it is the $L H G_{\Omega\left(p^{n}\right)}^{p^{n}}$ taken fractionally; that is, the linear fractional group $\dagger L F G_{\Omega\left(p^{n}\right) /(p-1)}^{\left(p^{n}-1\right) /(p-1)}$, whose general substitution $\sigma_{\underline{G}}$ replaces the $G_{p, X}$ by the $G_{p, X^{\prime}}$, where

$$
\begin{equation*}
X^{\prime}=\boldsymbol{G} X,{ }^{*} \tag{12}
\end{equation*}
$$

$$
x_{1}^{\prime}: x_{2}^{\prime}: \cdots: x_{i}^{\prime}: \cdots: x_{n}^{\prime}=\sum_{j=1}^{j=n} g_{1 j} x_{j}: \sum_{j=1}^{j=n} g_{2 j} x_{j}: \cdots: \sum_{j=1}^{j=n} g_{i j} x_{j}: \cdots: \sum_{j=1}^{j=n} g_{n j} x_{j} .
$$

§ 2.

Three tactical configurations:

$$
L C f\left[p^{n}\right], \quad L H C f\left[p^{n}-1\right], \operatorname{LFCf}\left[\left(p^{n}-1\right) /(p-1)\right]:
$$

connected with the Abelian $G_{p^{n}}$ are defining invariants respectively for the three linear groups:

$$
L G_{p^{n} \Omega\left(p^{n}\right)}^{p^{n}}, L H G_{\Omega\left(p^{n}\right)}^{p^{n} \text { or } p^{n-1}}, L F G_{\Omega\left(p^{n}\right) /(p-1)}^{\left(p^{n-1) /(p-1)}\right.}
$$

The notion configuration I transfer to tactic from geometry \dagger; for the proof and ultimate statement of the theorems about to be stated with utmost brevity, this notion must be used to its full content; to-day, however, the term tactical configuration shall be merely a name.

The linear configuration $L C f\left[p^{n}\right]$ in p^{n} letters.

The p^{n} letters of the $L C f\left[p^{n}\right]$ are the p^{n} elements s_{X} of the Abelian $G_{p^{n}}$. The $G_{p^{n}}$ contains $\left(p^{n}-1\right) /(p-1)$ sub-groups,

[^2]$G_{p^{n-1}}$. With respect to each sub-group $G_{p^{n-1}}$ the p^{n} elements s_{X} of the $G_{p}{ }^{n}$ are exhibited as a certain rectangular array of p lines with p^{n-1} elements in each line; the order of the lines and the order of the elements in each line are immaterial; one line contains the p^{n-1} elements of the $G_{p^{n-1}}$ itself. We separate every array into its constituent lines, and have before us in the system of (unordered) $p\left(p^{n}-1\right) /(p-1)$ lines or combinations of p^{n-1} letters each the linear configuration in p^{n} letters, $L C f\left[p^{n}\right]$.

This $L C f\left[p^{n}\right]$ for $n \geqq 2$ defines, as the maximum substitu-tion-group on the p^{n} letters s_{X} leaving it invariant, exactly the $L G_{p^{n} \Omega\left(p^{n}\right)}^{p^{n}}(\S 1(10))$.

> The linear homogeneous configuration $L H C f\left[p^{n}-1\right]$ in $p^{n}-1$ letters.

The $p^{n}-1$ letters of the $\operatorname{LHCf}\left[p^{n}-1\right]$ are the $p^{n}-1$ elements $s_{X}(X \neq(0))$ of the Abelian $G_{p} n$, the identity $s_{(0)}$ excepted. The $L H C f\left[p^{n}-1\right]$ is obtained from the $L C f\left[p^{n}\right]$ by omitting every line or combination containing the discarded letter $s_{(0)}$. The LHCf $\left[p^{n}-1\right]$ consists, then, of a system of $p^{n}-1$ lines or combinations of p^{n-1} letters each. This $L H C f\left[p^{n}-1\right]$ is tactically self-reciprocal,* that is, we can distribute a notation s_{x}^{\prime} to the $p^{n}-1$ lines in such a way that the $L H C f\left[p^{n}-1\right]$ on the $p^{n}-1$ letters s_{x} as grouped by the $p^{n}-1$ lines s_{x} differs only in the priming (') from the LHCf $\left[p^{n}-1\right]$ on the $p^{n}-1$ lines s_{x}^{\prime} as grouped by the $p^{n}-1$ letters s_{x}.

This $L H C f\left[p^{n}-1\right]$ for $n \geqq 2$ serves as a defining invariant for exactly the $L H G_{\Omega\left(p^{n}\right)}^{p^{n}{ }^{n}-1}(\S 1,(6))$. The self-reciprocity of the $L H C f\left[p^{n}-1\right]$ establishes an holoedric isomorphism of the $L H G_{\Omega\left(p^{n)}\right)}^{p^{n-1}}$ with itself. This isomorphism is (at least for $n \geqq 3)$ not * that arising from a transformation of the $L H G_{\Omega\left(p^{n)}\right.}^{p^{n-1}}$ through one of its own elements.

The linear fractional configuration $\operatorname{LFCf}\left[\left(p^{n}-1\right) /(p-1)\right]$ on $\left(p^{n}-1\right) /(p-1)$ letters.

The $\left(p^{n}-1\right) /(p-1)$ letters of the $\operatorname{LFCf}\left[\left(p^{n}-1\right) /(p-1)\right]$ are the $\left(p^{n}-1\right) /(p-1)$ cyclic groups $G_{q ;} x$ of the Abelian $G_{p^{n}}$. The $L F C f\left[\left(p^{n}-1\right) /(p-1)\right]$ is obtained from the $L C f\left[p^{n}\right]$ by

[^3]omitting every line not containing the identity letter $s_{(0)}$, that is, by retaining the lines corresponding to the $\left(p^{n}-1\right) /(p-1)$ sub-groups * $G_{p^{n-1}}$, and then in every such line by omitting the $s_{(0)}$ and replacing every set of $\overline{p-1}$ letters $s_{l X}(l=1,2, \ldots \overline{q-1})$ by the letter $G_{q ;} ;$. The $\operatorname{LFCf}\left[\left(p^{n}-1\right) /(p-1)\right]$ on
$$
\left(p^{n}-1\right) /(p-1)
$$
letters consists then of a system of $\left(p^{n}-1\right) /(p-1)$ lines of $\left(p^{n-1}-1\right) /(p-1)$ letters each. This $L F C f\left[\left(p^{n}-1\right) /(p-1)\right]$ is tactically self-reciprocal.

This $L F C f\left[\left(p^{n}-1\right) /(p-1)\right]$ for $n \geqq 3$ serves as a defining invariant for exactly the $L F G_{\Omega\left(p^{n}\right) /(p-1)}^{\left(p^{n-1)}\right)(\S 1,(12)) \text {. The self- }}$ reciprocity of the $L F C f\left[\left(p^{n}-1\right) /(p-1)\right](n \geqq 3)$ establishes an holoedric isomorphism of the $L F G_{\Omega\left(p^{n}\right) /(p-1)}^{\left(p^{n}-1\right) /(n-1)}(n \geqq 3)$ with itself. This isomorphism is not that arising from a transformation of the $L F G_{\Omega\left(p^{n}\right) /(p-1)}^{\left(p^{n-1)} / p-1\right)}$ through one of its own elements.

In § 4 I give these various tactical configurations for certain low values of p and n.

§ 3.

Utility of the Galois-field theory in the investigation of
linear groups.
The results given in § 2 depend for their proof largely upon the fact that the group $\Gamma_{\Omega\left(p^{n}\right)}^{p^{n-1}} \equiv L H G_{\Omega\left(p^{n}\right)}^{p^{n-1}}$ contains a substitution σ_{G} which permutes the $p^{n}-1$ letters $s_{X}(X \neq(0))$ in one cycle of period $p^{n}-1$. Any such σ_{G} answers the purpose. That one such exists we know from the Galois-field theory. \dagger

[^4]Suppose that the p^{n} marks $\dot{\xi}$ of the Galois-field $G F\left[p^{n}\right]$ of order p^{n} are exhibited explicitly in terms of n linearly independent marks $\eta_{1}, \eta_{2}, \cdots \eta_{n}$ in the form

$$
\begin{equation*}
\xi=\sum_{i=1}^{i=n} x_{i} \eta_{i}, \tag{1}
\end{equation*}
$$

where the x_{i}^{\prime} s are integral marks, or integers taken modulo p. We make through the $X=\left(x_{1}, \cdots x_{n}\right)$ a 1.1 correspondence between the letters s_{x} and the marks ξ. In fact the $G F\left[p^{n}\right]$ quâ additive-group is a concrete Abelian $G_{p}{ }^{n}$. Now in the $G F\left[p^{n}\right]$ additions are invariant under the multiplication-substitution σ_{γ} on the $p^{n}-1$ marks $\xi(\xi \neq 0)$,

$$
\begin{equation*}
\xi^{\prime}=\gamma \xi, \quad(\gamma \neq 0) \tag{2}
\end{equation*}
$$

that is, when every mark of the field is multiplied by the same mark γ. Hence this σ_{γ} interpreted on the s_{x} is a substitution $\sigma_{\boldsymbol{G}}$ of the $\Gamma_{\Omega\left(p^{n}\right)}^{p^{n} 1} \equiv L H G_{\Omega\left(p^{n}\right)}^{p^{n}-1}$. If γ is a primitive root of the $G F\left[p^{n}\right], \sigma_{\gamma}$ permutes the $p^{n}-1$ marks $\xi(\xi \neq 0)$ in one cycle, and, similarly, $\sigma_{\boldsymbol{G}}$ permutes the $p^{n}-1$ letters $s_{\boldsymbol{X}}(X \neq(0))$ in one cycle, and is then the substitution sought.

The results of $\S 2$ constitute for the linear groups sweeping generalizations of Mr. Noether's definition* of the group Γ_{168}^{7} by the triple system Δ_{7} in seven letters.

§ 4.

Tables \dagger § of the tactical configurations :
$L C f\left[p^{n}\right], L H C f\left[p^{n}-1\right], \operatorname{LFCf}\left[\left(p^{n}-1\right) /(p-1)\right]$,
for cases $p^{n}=2^{2}, 3^{2}, 5^{2}, 7^{2}, 11^{2} ; 2^{3}, 3^{3}, 5^{3}, 7^{3} ; 2^{4}, 3^{4}, 5^{4} ; 2^{5} ; 2^{6}$.
The table for a particular case [p^{n}] gives first a primitive root γ of the Galois-field $G F\left[p^{n}\right]$ and its fundamental equation
letters s_{X}, each of which serves as defining invariant for the $L G_{p^{n}\left(p \Omega^{n}\right)}^{p^{n}}$. These functions are closely related to our $L C f\left[p^{n}\right]$. In explaining my researches in detail in a subsequent paper I shall point out the exact points of contact with Mathied's results.

It should be added that several weeks ago Mr. Dickson and I came upon a substitution-group on the p^{n} marks of the $G F\left[p^{n}\right]$ which Mr. Dickson then identified as another expression of Mr. Jordan's $L H G_{\Omega\left(p^{n}\right)}^{p^{n}}$; this was exactly Mathiev's expression of the group.

* See § 2 of my paper cited above.
\dagger The theory of the linear fractional configuration I introduced in my course Groups, during the last spring quarter at the University of Chicago, and in connection with the members of that course, Messrs. Brown, Dickson, Joffe, and Slaught, worked up the linear fractional configurations § for the cases given above, except $p^{n}=2^{6}$. I take this opportunity to thank them for their coöperation, and especially Mr. Dickson, who quite recently completed the tables as given above.
§ I add the tables for $p^{n}=2^{2}, 3^{2}, 5^{2}, 7^{2}, 11^{2}$, whose linear fractional configurations are trivial. Sept. 10, 1895.
of degree n. The p^{n} elements of the abstract $G_{p^{n}}$ have the index-notation* derived from the p^{n} marks of the $G F\left[p^{n}\right]$ (as a concrete $G_{p^{n}}, \S 3$) : mark $\xi=0$, index $*$; mark $\xi \neq 0, \xi=\gamma^{i}$, index $i\left(i=0,1, \ldots \overline{p^{n}-1}\right) ; i$ is an integer taken modulo $p^{n}-1$.

The LCf $\left[p^{n}\right]$ consists (§ 2) of the lines found in certain $\left(p^{n}-1\right) /(p-1)$ arrays. Each array has p lines; each line has p^{n-1} indices. Only the first array is given; the others are obtained from it by repeated applications of the cyclical substitution

$$
i^{\prime}=i+1, \quad\left(i=0,1, \cdots \overline{p^{n}-1}\right)
$$

which leaves $*$ fixed. The first line of the first array is the additive sub-group $G_{p^{n-1}}$ of the $G F\left[p^{n}\right]$ quâ additive $G_{p^{n}}$, which contains the $n-1$ marks $\gamma^{0}, \gamma^{1}, \cdots \gamma^{n-2}$. The second line is obtained by adding the mark γ^{n-1} to the marks of the first line. Of course the lines one and two must be expressed in the index-notation. The following lines are derived from the second at once by repeated additions of $\left(p^{n}-1\right) /(p-1)$ to the indices of the second line.

The $L H C f\left[p^{n}-1\right]$ and the $\operatorname{LFCf}\left[\left(p^{n}-1\right) /(p-1)\right]$ are easily derived from the $L C f\left[p^{n}\right]$ (§ 2). The $L C f\left[p^{n}\right]$ and the $L H C f\left[p^{n}-1\right]$ are tabulated together.

TABLES. \dagger

$\left[p^{n}=2^{2}\right]$	$G F\left[2^{2}\right]$ $L C f\left[2^{2}\right]$ LHCf $\left[2^{2}-1\right]$	$\begin{aligned} & \text { Primitive root } \gamma \text { where } \gamma^{2}=1+\gamma \text {. } \\ & 4 \text { indices * } 012 \text {. } \\ & 3 \text { indices } 012 \text {. } \end{aligned}$
	[* 0 $]_{2} \quad[1$	
$\left[p^{n}=3^{2}\right]$	$G F\left[3^{2}\right]$ $L C f\left[3^{2}\right]$ $L H C f\left[3^{2}-1\right]$	Primitive root γ where $\gamma^{2}=1+2 \gamma$. 9 indices $* 01 \ldots 7$. 8 indices 01..7.
	[* 044$]$	$67]_{3} \quad\left[\begin{array}{llll}3 & 5\end{array}\right]_{3}$

$\left[p^{n}=5^{2}\right]$	$\begin{aligned} & G F\left[5^{2}\right] \\ & L C f\left[5^{2}\right] \\ & L H C f\left[5^{2}-1\right] \end{aligned}$	Primitive root γ where $\gamma^{2}=2+2 \gamma$. 25 indices $* 01$. 23 . 24 indices $01 \ldots 23$.
		$\left[\begin{array}{llllll} 1 & 3 & 4 & 17 & 17 \end{array}\right]_{5} \quad\left[\begin{array}{lllll} 7 & 9 & 10 & 14 & 23 \end{array}\right]_{5} \quad\left[\begin{array}{lllll} 5 & 13 & 15 & 16 & 20 \end{array}\right]_{5}$

[^5]\[

$$
\begin{array}{lll}
{\left[p^{n}=7^{2}\right]} & G F\left[7^{2}\right] & \text { Primitive root } \gamma \text { where } \gamma^{2}=2+2 \gamma . \\
& L C f\left[7^{2}\right] & \text { 49 indices * } 01 \ldots 47 . \\
& L H C f\left[7^{2}-1\right] & 48 \text { indices } 01 \ldots 47 .
\end{array}
$$
\]

[* 0816243240] 7


```
[ p }\mp@subsup{p}{}{n}=1\mp@subsup{1}{}{2}]\quadGF[[1\mp@subsup{1}{}{2}]\quad\mathrm{ Primitive root }\gamma\mathrm{ where }\mp@subsup{\gamma}{}{2}=9+4\gamma
    LCf[112] 121 indices * 01.. 119.
    LHCf[112-1] 120 indices 01..119.
```

 [** 01224364860728496108\(]_{11}\)
 \(\left[\begin{array}{lll}12755 & 586566718098 & 100 \\ 117\end{array}\right]_{11}\)
 [Second line] \(+12 ; 24 ; 36 ; 48 ; 60 ; 72 ; 84 ; 96 ; 108=\) the
 respective remaining lines.
    ```
[p}\mp@subsup{p}{}{n}=\mp@subsup{2}{}{8}]\quadGF[[\mp@subsup{2}{}{3}]\quad\mathrm{ Primitive root }\gamma\mathrm{ where }\mp@subsup{\gamma}{}{8}=1+\gamma
    LCf[23}]\quad8\mathrm{ indices *,0,1,..7.
    LHCf[2 [ - 1] 7 indices 0,1,\ldots7.
        [**O
    LFCf[(23-1)/(2-1)] 7 indices 0,1,\ldots7.
        [\begin{array}{lll}{0}&{1}&{3}\end{array}]
[\mp@subsup{p}{}{n}=\mp@subsup{3}{}{8}]\quadGF[\mp@subsup{3}{}{3}]\quad\mathrm{ Primitive root }\gamma\mathrm{ where }\mp@subsup{\gamma}{}{8}=2+\gamma.
    LCf[38] 27 indices *, 0, 1,..25.
    LHCf[\mp@subsup{3}{}{3}-1] 26 indices 0,1,\ldots25.
        [** 0 1 3 9 13 14 16 22] ]
        [\begin{array}{llllllllllll}{246}&{7}&{10}&{11}&{12}&{18}&{21}\end{array}]9
            [lllllllll
```

 \(\operatorname{LFCf}\left[\left(3^{3}-1\right) /(3-1)\right] \quad 13\) indices \(0,1, \ldots 12\).
 \(\left[\begin{array}{llll}0 & 1 & 3 & 9\end{array}\right]_{4}\)
 | $\left[p^{n}=5^{8}\right]$ | $G F\left[5^{8}\right]$ | Primitive root γ where $\gamma^{8}=3+2 \gamma$. |
| :--- | :--- | :--- |
| | $L C f\left[5^{8}\right]$ | 125 indices $*, 0,1, \ldots 123$. |
| | $L H C f\left[5^{3}-1\right]$ | 124 indices $0,1, \ldots 123$. |

[米 013101426313234414557626365727688939496103 $107119]_{25}$
$\left[\begin{array}{lllllllllllllllll}2 & 9 & 13 & 15 & 28 & 29 & 30 & 35 & 38 & 39 & 48 & 53 & 56 & 68 & 80 & 82 & 98 \\ 104 & 105 & 109 & 112\end{array}\right.$ $114116117120]_{25}$
[Second line] $+31 ; 62 ; 93=$ the respective remaining lines.
$L F C f\left[\left(5^{3}-1\right) /(5-1)\right] \quad 31$ indices $0,1, \ldots 30$.
$\left[\begin{array}{llllll}0 & 1 & 3 & 10 & 14 & 26\end{array}\right] 6$

| $\left[p^{n}=7^{8}\right]$ | $G F\left[7^{3}\right]$ | Primitive root γ where $\gamma^{3}=5+\gamma$. |
| :--- | :--- | :--- |
| | $L C f\left[7^{3}\right]$ | 343 indices $*, 1, \ldots 341$. |
| | $L H C f\left[7^{3}-1\right]$ | 342 indices $0,1, \ldots 34$. |

[米 0131332364352575860708993100109114115117127 146150157166171172174184203207214223228229231241 $260264271280285286288298317321328337]_{49}$
[246914162633 35414445465056647578828699133134 142148168181186194195201202218219222240245265267 $268277281283290293296307312323]_{49}$
[Second line] $+57 ; 114 ; 171 ; 228 ; 285=$ the respective remaining lines.
$\operatorname{LFCf}\left[\left(7^{3}-1\right) /(7-1)\right] \quad 57$ indices $0,1, \ldots 56$.
[01131332364352] $\begin{array}{llll}0\end{array}$
$\left[p^{n}=2^{4}\right] \quad G F\left[2^{4}\right] \quad$ Primitive root γ where $\gamma^{4}=1+\gamma$.
$L \subset f\left[2^{4}\right] \quad 16$ indices $*, 0,1, \ldots 14$.
$L H C f\left[2^{4}-1\right] \quad 15$ indices $0,1, \ldots 14$.

$L F C f\left[\left(2^{4}-1\right) /(2-1)\right] \quad 15$ indices $0,1, \ldots 14$.
$\left[\begin{array}{lll}1 & 1245 & 10\end{array}\right]_{7}$
$\left[\begin{array}{ll}{\left[p^{n}=3^{4}\right]} & G F\left[3^{4}\right] \\ & L C f\left[3^{4}\right]\end{array} \quad \begin{array}{l}\text { Primitive root } \gamma \text { where } \gamma^{4}=1+\gamma+2 \gamma^{2}+2 \gamma^{3} . \\ \\ \end{array}\right.$
$L H C f\left[3^{4}-1\right] \quad 80$ indices $0,1, \ldots 79$.
[* 0125121822242627293233404142455258626466 $\left.6769727_{3}\right]_{27}$
[371517202130313738444648495051535456596365 $6874757679]_{27}$
$[$ Second line $]+40$.
$\operatorname{LFCf}\left[\left(3^{4}-1\right) /(3-1)\right] \quad 40$ indices $0,1, \ldots 39$.
[012512 1822242627293233$]_{13}$
$\left[p^{n}=5^{4}\right] \quad G F\left[5^{4}\right] \quad$ Primitive root γ where $\gamma^{4}=2+\gamma+\gamma^{2}$.
$L C f\left[5^{4}\right] \quad 625$ indices $*, 0,1, \ldots 623$.
$L H C f\left[5^{4}-1\right] \quad 624$ indices $0,1, \ldots 623$.
[* $\{0127181923364344464755576164707677848689$ $929496108119122143148152\}+0,156,312,468]_{125}$
[34510172122 29313739414259636874889599104107 109110127130134141146153162165168169181186189190 191194196207208216218221222225229231237239241261 262269270271272276277279281285287288289291294300 305306323328332336338361362365366379383390399402 405410412413415424430438440451454467476482483495 496500513516524526540547548550559565570579585592 $604605608613615619622]_{125}$
[Second line] $+156 ; 312 ; 468=$ the respective remaining lines.
$\operatorname{LFCf}\left[\left(5^{4}-1\right) /(5-1)\right] \quad 156$ indices $0,1, \ldots 155$.
$\left[\right.$ The $\} \text { of first line above }]_{31}$

```
[p}\mp@subsup{p}{}{n}=\mp@subsup{2}{}{5}]\quadGF[\mp@subsup{2}{}{5}]\quad\mathrm{ Primitive root }\gamma\mathrm{ where }\mp@subsup{\gamma}{}{5}=1+\gamma+\mp@subsup{\gamma}{}{2}+\mp@subsup{\gamma}{}{3}
    LCf[25] 32 indices *, 0, 1,.. 30.
    LHCf[25 - 1] 31 indices 0, 1,..30.
            [** 0}
            [\begin{array}{llllllllllllllll}{4}&{7}&{9}&{11}&{15}&{17}&{19}&{20}&{21}&{22}&{23}&{26}&{29}&{30}\end{array}\mp@subsup{]}{16}{}
        LFCf[(25}-1)/(2-1)]\quad31 indices 0,1,\ldots30
            [01223558101213 14 18 24 25 27 28] [15
```



```
    LCf[26] 64 indices *, 0, 1,..62.
    LHCf[26 - 1] 63 indices 0,1,..62.
            [** 012 3 4 6 131416 18 20 21 22 25 26 31 35 37 40 42 43 46 49
```



```
            [5 7 7 8 9 10 11 12 15 17 19 23 24 27 28 29 30 32 33 34 36 38 39 41
                        44 45 47 48 52 55 60 61 62]32
            LFCf[(26 - 1)/(2-1)] 63 indices 0, 1, ..62.
            [First line above, omitting the *][31
    The University of Chicago,
                August 25, 1895.
```


ELEMENTARY PROOF OF THE QUATERNION ASSOCIATIVE PRINCIPLE.*

BY PROFESSOR ARTHUR S. HATHAWAY.
The variety of demonstrations that Hamilton has given of the associative principle of quaternion multiplication, and the remarks that he has made upon such demonstrations, show that he considered an elementary proof of this principle as very desirable. Only two of Hamilton's proofs have been generally employed by subsequent writers - the direct proof by spherical conics, and the indirect one depending upon the assumed laws of i, j, k - and the proof that he considered the most elementary has been entirely ignored, probably because of its deviation from fundamental ideas. On page 297 of the Elements, Hamilton calls attention to another method, as follows : "The associative principle of multiplication may also be proved without the distributive principle, by certain considerations of rotations of a system, on which we cannot enter here."

It is, of course, easy to see that such a proof is possible; but the details of it could not have presented themselves to Hamilton in an elementary form, or he would have seen that it

* Presented to the American Mathematical Society August 28, 1895.

[^0]: * Bulletin of the American Mathematical Society, ser. 2, vol. 1, pp. 61-66, Dec. 1894.

 Mr. Hölder explained this notion of the group of holoedric transformations into itself of a given group, for use in his memoir: Die Gruppen der Ordnungen $p^{3}, p q^{2}$, pqr, p^{4} (Mathematische Annalen, vol. 43, pp. 301412 ; see pp. 313, 314), which bears the date March 28, 1893. We, however, hit on the notion independently of each other ; see the foot-note (**) of p .66 of my former paper.
 \dagger Sylow: Mathematische Annalen, vol. 5, p. 588.

[^1]: * Jordan : Traité des substitutions, p. 92, 1870.
 \dagger Jordan : loc. cit., p. 97.

[^2]: * Jordan : loc. cit., p. 228. In my notation the two subscript dots (..) are the ratio dots (:), and are to call to mind that we may without changing anything replace $X=\left(x_{1}, \cdots x_{n}\right), X^{\prime}=\left(x^{\prime}{ }_{1}, \cdots x_{n}^{\prime}\right), \boldsymbol{G}=\left(g_{i j}\right)$ by $l X=\left(l x_{1}, \cdots l x_{n}\right), \quad l^{\prime} X^{\prime}=\left(l^{\prime} x^{\prime}{ }_{1}, \cdots l^{\prime} x^{\prime}{ }_{n}\right), \quad m \boldsymbol{G}=\left(m g_{i j}\right)$, respectively, where l, l^{\prime}, m are any integers taken modulo p, but $l \neq 0, l^{\prime} \neq 0, m \neq 0$.
 \dagger See, for instance, Reye: Das Problem der Configurationen (ActaMathematica, vol. 1, pp. 92-96, 1882).

[^3]: * Notice the particular case ($q=2, n=3$) in $\S 2$ of my paper cited above. The LHCf [23-1=7] and the Δ_{7} are, so to say, complementary. Indeed, for $q=2, n=$ any, the $L H C f\left[2^{n}-1\right]$ determines uniquely a $\Delta_{2}{ }^{n}-1$, from which the LHCf $\left[2^{n}-1\right]$ is likewise uniquely determined. This $\Delta_{2^{n}-1}$ serves as a defining invariant for the $L H G{ }_{\left(2^{2}-1\right.}^{\Omega\left(2^{n}\right)}$.

[^4]: * This linear fractional configuration might also be called the sub-group configuration of the Abelian $G_{p}{ }^{n}$.
 \dagger Galois: Sur la théorie des nombres (Bulletin des Sciences Mathématiques de M. Ferussac, vol. 13, p. 428, 1830 ; reprinted, Journal de Mathématiques pures et appliquées, vol. 11, pp. 398-407, 1846.)

 Serret : Algèbre supérieure, fifth edition, vol. 2, pp. 122-189.
 Jordan : Traité des substitutions, pp. 14-18.
 Moore : A doubly infinite system of simple groups (§ 3 is an abstract formulation of the Galois-field theory). (Proceedings of the Chicago Congress of Mathematics ; in abstract, Bulletin of the New York Mathematical Society, vol. 3, Dec. 1893.)

 Addendum of Oct. 15, 1895. I have found within a week that Mathied in Chapter III, pp. 275-304, of his Mémoire sur l'étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables (Journal de Mathématiques pures et appliquées, ser. 2, vol. 6, pp. 241-323, 1861), working from the Galois-field standpoint, defines and investigates two substitution-groups, which are (otherwise expressed) the groups $L G_{p^{n} \Omega\left(p^{n)}\right.}^{p^{n}}$ and $L H G_{\Omega\left(p^{n}\right)}^{p^{n}}$. This seems to be the source from which Mr. Jordan's linear groups (1870) were drawn. Mathieu gives two rational integral functions of the p^{n}

[^5]: * The s_{X} notation for the elements can be recovered if necessary.
 \dagger The $L F C f\left[\frac{p^{n}-1}{p-1}\right]$ for $n=2$ is trivial and hence is not tabulated.
 \S Every line [] has a suffix indicating the number of indices lying within.

