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KINETIC STABILITY OF CENTKAL OKBITS.* 

BY PKOFESSOR W. WOOLSEY JOHNSON. 

1. I N the chapter on Central Orbits of Tait and Steer's 
Dynamics of a Particle, Fourth Edition, p. 125, occurs an 
investigation of the apsidal angle of a nearly circular orbit. 
When the attraction varies inversely as the nth power of the 
distance, the expression found becomes imaginary when n ex­
ceeds 3, and the remark is made that " the investigation fur­
nishes a simple example of the determination of the conditions 
of Kinetic Stability, which we cannot discuss in this element­
ary treatise." It may not be without interest to show that an 
investigation of a no less elementary character will furnish a 
satisfactory discussion of this interesting subject, so far as it 
relates to central forces. 

2. The usual polar equation of the central orbit is 

d*u , P /<n 

dF + U = Wtf> (1) 

in which P is the attraction acting on a unit of mass. 
The first integral of this equation found in the usual 

way is 
(duV , 9 2 nPdu 

Since ƒ tl™L - -fpdr = - V+ 0, V being the potential 

function, this equation may be written 

c 'mi = j^°-Ti —* = *(•). <2> 
the function if)(u) depending not only on the given law of 
force, but also upon the values given to the two constants h 
and G. 

3. In discussing the function tp(u) we have only to consider 
positive values of u, (the reciprocal of r the distance from the 
centre of force,) and it is evident from equation (2) that the 
values of u for every point of an actual orbit must be such as 
to make tp(u) positive, except the maxima and minima values 

* Read before the AMBKICAN MATHEMATICAL SOCIETY at the meeting 
of April 27, 1895. 
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which make tp(ti) = 0. Thus, if tp(n) is negative for all posi­
tive values of u, there is no orbit having the given values of 
G and h; and if ij;(u) is always positive there is no maximum 
or minimum distance, but an orbit extending to the centre of 
force in one direction and to infinity in the other. 

In the general case, putting tp(u) = 0, we have the apsidal 
values of u. Let the positive roots of this equation be ux,u^ 
etc., which at first suppose to be all distinct. If we draw 
circles about the centre of force with the reciprocals of these 
quantities as radii, the plane will be separated into spaces in 
which tp(u) is alternately positive and negative (for ip(u) can­
not become infinite for a finite value of u). In each of the 
spaces where ip{u) is positive an orbit exists with the given 
values of G and h, having its apsides upon the circle or circles 
which bound the space. 

4. Now suppose the values of G and h to be so related that 
tf)(u) = 0 has a pair of equal roots, say u0. As they approach 
the special values which fulfil the condition, tp(u) = 0 will 
have two roots near to u0. If in the annular space between 
the corresponding circles ip(u) is positive, there exists an orbit 
which, as the annular space contracts, approaches the circular 
form, and finally becomes a circular orbit described like any 
other orbit with kinetic stability. The differential equation 
is satisfied by the constant value u = u0, and for all neighbor­
ing values of u $>{u) is negative. 

If, on the other hand, tp(u) is negative in the narrow annu­
lar space, there are no orbits approximating the circular form. 
u = u0 still satisfies the differential equation, but tp(u) is posi­
tive for neighboring values of u on either side, and when 
u = u0 the body may be regarded as being at an apse of either 
of the orbits which exist in the two spaces in which tp{u) is 
positive, which are now brought into juxtaposition. The cir­
cular orbit is only a singular solution, and not a case of the 
general integral of the differential equation, and is described 
with Kinetic Instability. 

5. To fix the ideas as to the mode in which the condition 
of equal roots is approached, as well as to obtain convenient 
expressions for the condition and for the criterion of stability, 
let us assume w0as a possible value of u, say that of a point 
of projection, and then express G and h in terms of two other 
parameters. For this purpose take v0, the initial velocity, 
and y, the angle between the direction of the initial radius 
vector r0 and that of projection. 

Observe that G denotes the total energy of a unit mass in 
the orbit and that h is the double area described by the radius 
vector in a unit of time. Hence 

O=V0 + iv0% h = r0v0Any, (3) 
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and ip(u) becomes 

9,1/ 2 ni 2 

t/>(u) = - T - V - ( V0 - V) + -¥\ u\ 
TX ' v* sm2 yx ° ' ' sin2 y ' 

which makes if>(u0) positive. Now supposing 0, and there­
fore v0, to be fixed, h is restricted to be not greater than r0v0, 
which is its maximum value, corresponding,to y = 90° and 
making u0 an apsidal value. The value of *p(u) when the 
point of projection is an apse is therefore 

9QJ 2 

*(«) = v K r . - r ) + «.•-«•, (4) 
which makes ip(u0) = 0. 

6. If now 0 (and v0) has such a value that when y = 90° we 
reach the case of equal roots, we must have ip'(u0) = 0. Dif­
ferentiating equation (4), 

.„ x 2 < / dV\ 0 

rfF 
or, since -

and 

du u*9 

v ' v0u (5) 

For equal roots we must therefore have (as well as ;/=90°,) 

*0" = P0r0; (6) 

in other words, the centrifugal force must equal the attraction 
at the initial point. 

7. Passing now to the criterion of stability, observe that 
when the circular orbit is stable tl>(u0), of which the value is 
zero, is a maximum value of ip{u), and this requires ip"(u0) 
to be negative. 

Differentiating (5) and putting P0r0 for v* by (6), we find 

whence 
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It follows that, while with any law of central attraction 
a circular orbit is possible with any radius r0> it will be 

{—u [ — * » ?.£> j £*.} *- «•• 
8. The case in which P = /m3 is peculiar, since the crite­

rion is then identically equal 3. The special case occurs 
when ( 7 = 0 , the orbit being an equiangular spiral unless 
h2 = ju, which makes y — 90 , when it becomes a circle, and 
the circle must be regarded as described with kinetic in­
stability. 

LAGRANGE'S PLAGE IN THE THEOKY OF 
SUBSTITUTIONS, f 

BY DR. JAMES PIBKPONT. 

I K the present brief note I cannot vindicate Lagrange's 
right to the title of creator of the theory of substitutions; 
but I hope, by presenting a few examples of his methods, to 
show the importance of considering him from this point of 
view. Lagrange was led to the study of this theory by his 
attempts to solve equations of degree higher than the fourth. 
Speaking of the inherent difficulties which this thorny sub­
ject offered to the investigator, he remarks : J 

" The theory of equations is of all parts of analysis the one, 
we would think, which ought to have acquired the greatest 
degree of perfection, by reason both of its importance and of 
the rapidity of the progress that its first inventors made; 
but although the mathematicians of later days have not ceased 
to apply themselves, there remains much in order that their 
efforts may meet with the success that one could desire. In 
regard to the resolution of literal equations one has hardly 
advanced further than one was in Cardan's time, who was the 
first to publish the resolution of equations of the third and 
fourth degree. The first successes of the Italian analysts 
in this branch seem to have marked the limit of possible 
discoveries: at least it is certain that all attempts that have 
been made up to the present to push back the limits of this 
branch of algebra have hardly served for other purposes than 

* An equivalent criterion is otherwise derived in Thomson and Tait's 
Natural Philosophy, § 350. 

t Read before the Yale Mathematical Club. 
X Lagrange: Nouveaux Mémoires, Acad. Sciences Berlin, years 1770-

71. Also, Œuvres, vol. in, pp. 205-421, Réflexions sur la résolution 
algébrique des équations. 


