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TOPOLOGY OP ALGEBRAIC CURVES. 

Isr the Mathematische Annalen, Vol. 38 (1891), Mr. David 
Hubert of Königsberg has a very interesting and suggestive 
article on the real branches of algebraic curves. The simplic­
ity of the method which Mr. Hubert employs, and the possi­
bility of its being made to yield further important results 
seem sufficient reasons for presenting here, in some detail, 
that portion of the article which treats of plane curves. It 
has seemed to the present writer advisable to amplify por­
tions of Mr. Hilberth article, with the view of making his 
method more intelligible, and also to make some changes in 
the proof of the principal theorem, in order to avoid some 
slight inaccuracies that have crept into his demonstration. 

The first part of the article m question is devoted to the 
determination of the maximum number of nested tranches 
possible to a plane algebraic curve of order n, and of maximum 
deficiency. By nested branches is meant a grouj> of even 
branches so arranged that the first lies entirely within the 
second, the second within the third, and so on, like a series 
of concentric circles.* It should be observed that some or all 
of the non-nested branches may, in perfect accord with this 
definition, lie within the ring-shaped regions formed by the 
nested branches. A single even branch, which neither en­
closes another branch nor is enclosed by one, may be looked 
upon as a nested branch or not, according to the nature of the 
question under discussion. For reasons that will presently 
appear, Hubert does not consider the even branches of the 
conic and cubic as nested. Hubert bases some of his inves­
tigations upon results previously obtained by A. Harnack,f 
and his method is entirely analogous to that of the latter. 

Harnack had proved, in the article referred to, that a plane 
algebraic curve, without singularities, of order n and of defi­
ciency p, can not have more than p -f 1, that is, £ (n—1) 
(n—2) + 1 real branches ; and, further, that, for every posi­
tive integral value of n, a non-singular curve with -J- (n — 1) 
(n — 2) + 1 real branches actually exists. Setting out from 
this result of Harnack's, Hubert shows first that a non-
singular curve can have no more than J (n—2) or ^ (^—3) 
nested branches, according as n is even or odd ; for, if it had 
more, a right line could be drawn meeting the curve in more 

* This definition is not scientific but it serves the present purpose. To 
make it rigorous Mr. Hubert needs only to define accurately what is 
meant by inside and outside of a closed branch. Such a definition has 
virtually been given by VON STAUDT, Geometrie der Lage, § 1, 16. 

f Mathematische Annalen, Bd. 10, lieber die Vieltheiligfceit der ebenen 
algebraischen Curven 
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than n points.* He proves further the following theorem: 
For every positive integral value of n, a non-singular curve of 
order n exists, having the maximum number of real branches, 
£ (n—-l) (n—2) + 1, and £ (n—2) or £ {n—Z)nested branches, 
according as n is even or odd. 

We shall, for sake of brevity, designate an even branch by 
the term "oval." It is evident that all nested branches 
are ovals. Moreover, we consider that case only where all the 
nested ovals are grouped in a single nest. We first assume 
the theorem true for a curve of nth order, Cn, whose equation 
may be written ƒ = 0, and we assume further that an ellipse, 
i?2, whose equation we write h = 0, can be constructed en­
closing one or more of the nested ovals, and cutting a non­
nested oval, b, in 2n points, whose order of succession shall be 
the same upon b as upon J5?a. It is evident that E^ and Gn 
have no other common point. The ellipse E2 and the branch 
b form, by their intersections, 2n regions, each completely 
bounded by a single segment of JE3 and a single segment of b. 
Within one of these regions there exists one or more nested 
ovals. Whether this region, which we call R, contains the 
nested ovals interior to E% or exterior to it, f depends upon the 
nature of b, and its position with respect to E^. (When E2 
encloses all the nested ovals, it may occur that none of these 
%n regions contains a nested oval ; in that case one of these 
regions will be all the plane exterior to J579 and b, and this we 
designate by R.) Let s be any segment of E2 determined by 
the intersections of E9 and 5, except that segment which forms 
a portion of the boundary of R. Upon s we choose 2 (n -f 2) 
points, none of them coincident with the extremities of s, and 
join by right lines the first and second, the third and fourth, 

, and the {2n + 3)th and (2n + 4)th. Let the product 
of the equations of these n -f 2 right lines be I = 0. Then 
for very small values of a, 

F=fh ± ôl = 0 

is the equation of a curve, Cn + 2, of order n + 2, lying very 
near the degenerate curve f h = 0. This On+i passes through 
the points common to Gn and the right lines, and through 
the points common to Ü72 and these lines, but not through the 
intersections of E^ with Gn. 

* This theorem is not true for curves of order lower than the fourth. 
Moreover, it must be borne in mind that every non-singular curve with 
the maximum number of real branches has at least one non-nested oval, 
because £ (n—2) and £ (w—3) are each less than £ (n—l) (n—2) 4-1. 

f A nested oval exterior to Eit since it encloses those interior to JS7a, 
must also enclose E>> itself. Therefore, when, among a number of iso­
lated ovals, we have to consider a single one as nested, we choose as such, 
one that lies in the interior of E^ 
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We proceed now to prove : 
(1) that (7„+2hasy -f- 1 real branches, p' being the defi­

ciency of On+2 ; 
(2) that On+2 has the maximum number of nested 

branches ; and 
(3) that the ellipse, E9, encloses one or more of the nested 

ovals of Cn+2, and cuts one of its non-nested ovals in 2(n + 2) 
points, whose order of succession upon Cn+2 is the same as 
upon E^ 

1. Ignoring the branch b for the moment, it appears, from 
the form of the equation F = 0, that in the immediate vicin­
ity of every other branch of Gn9 there exists a similar branch 
of Cn+2. The Gn has by hypothesis %(n — l)(n — 2) real 
branches, exclusive of b. These give rise, therefore, to 
%(n — l)(n — 2) real branches of Gn+i. Furthermore, under 
proper choice of the sign of tf, there exists, in the vicinity of 
the complete boundary of each of the 2n regions formed by 
Eü and 5, an oval of Cn+2. The latter curve has no real branch 
save those already enumerated. Therefore Gn+2 has %(n — 1) 
(n — 2) + 2n = \(n + l)n + 1 = p' + 1 real branches. 

2. Each of the nested ovals of Gn gives rise to a nested oval of 
Gn + 2. Moreover, the oval of Gn + 2 engendered by the boundary 
of R is itself a nested oval of On + 2. The latter has, therefore, 
one more nested oval than does Gn. Since increasing n by 
2, increases the functions i(n—2) and £(w—3) by 1, it follows 
that Gn + 2 has the maximum number of nested branches. 

3. In the vicinity of that region, a portion of whose boun­
dary is S, there exists an oval of Gn + 2 which cuts the ellipse in 
the 2{n -f 2) points already determined upon s, and the order 
of succession of these 2(n + 2) points is the same upon Gn + 2 
as upon s. 

Hence, if our assumptions concerning Gn and J572 are valid, 
the curve G1l + 2 has the maximum number of real branches, and 
also the maximum number of nested branches. And further­
more—and this is a very important point—the ellipse E2 has 
the same position with respect to Gn + 2 that it was assumed to 
have with respect to On. It follows, then, that we may in like 
manner derive from the Gn + 2 a Gn + 4 having the same proper­
ties, and so on. If, then, we can prove our assumption valid 
for one even value, and for one odd value of n, we may con­
clude that our theorem is true for all values of n. 

That these assumptions are valid whenw = 4 can be demon­
strated as follows : Let ƒ = 0 be the equation of a given ellipse 
<7a, and h = 0 that of the auxiliary ellipse E2. Let E^ intersect 
0^ in 4 real points ; and upon any segment, s, of E2 deter­
mined by two successive points of intersection, choose the 8 
successive points, 1, 2, 3, . . . 8. Join by right lines, 1 with 2, 
3 with 4, . . . , and 7 with 8. Let the product of the equa-
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tions of these 4 right lines be I = 0. Then, for very small val­
ues of ô, 

fh±dl=0 

represents a non-singular quartic, C\, and, by proper choice of 
the sign of a, this quartic has four ovals, one of which inter­
sects E2 in the eight points upon s. Moreover, within E^ 
there lie one or two ovals of C4, one if s is exterior to (72, and 
two if s is within C2, Now a quartic can have no more than 
£(4 — 2) = 1 nested oval. We choose as such, an oval in the 
interior of E2. We have then a 04 with the maximum num­
ber of real branches, viz., £(4 — 1)(4 —• 2) + 1 = 4 ; with the 
maximum number of nested ovals, 1 ; and the ellipse E^ en­
closes this nested branch, and cuts a non-nested oval in 2(2 + 
2) = 8 real points, whose order of succession upon C4 is the 
some as upon E2. Hence our assumption is valid token 
n ~ 4. 

That this is true also when n = 5 is similarly proved. Let 
ƒ = 0 represent a straight line. Draw the ellipse, E# not cut­
ting ƒ = 0 in any real point. Upon E2 choose six points and, 
as before, join alternate pairs by right lines. Let the prod­
uct of the equations of these three right lines be I = 0. 
Then, when ô is very small, 

fh ± Ô I = 0 

represents a non-singular cubic, C3, the oval of which inter* 
sects Et2 in the six points whose order of succession upon E\ 
and the oval is the same. Proceeding one step further, let 
the equation of C, be ƒ = 0. Upon any segment of i?2 choose 
2(3 + 2) = 10 points, and join alternate pairs by right lines, 
the product of whose five equations is I = 0. Tnen, for suffi­
ciently small values of d, 

fh ± ô I = 0 

represents a non-singular quintic, Ot9 and, upon proper choice 
of the sign of d, this Ch has six ovals, one of which intersects E^ 
in ten points. Within E2 lie two ovals of (75, one of which we 
consider a nested oval. Moreover, Gb has an odd branch in 
the vicinity of the odd branch of C3. We have then a quintic 
with the maximum number of real branches, £(5 ~ 1)(5 — 
2) + 1 = 7 ; with the maximum number of nested branches, 
£(5 — 3) = 1 ; and with a non-nested oval cut by E9 in 2(3 + 
2) = 10 real points ; E^ also encloses the nested branch. 
Hence, our assumptions are valid when n = 5. The theorem 
is therefore true in general. 

Headers of Hilberths article in the Annalen will notice some 
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minor errors in his proof. He states, for instance, that the 
auxiliary ellipse may lie wholly within the innermost nested 
oval (see Annalen, vol. 38, p. 117). This is impossible, for 
the ellipse could not then be made to intersect a non-nested 
oval. Again, he allows the ellipse to cut any of the non­
nested branches. If the ellipse be drawn to enclose all the 
nested branches and to intersect in 2n points an odd branch, 
the derived On + 9 will have indeed the maximum number of 
real branches, but one fewer than the maximum number of 
nested branches. And, lastly, Hubert chooses the 2(n + 2) 
points of E# through which the lines I = 0 are to pass, upon 
any segment of E^. If, however, these betaken upon that seg­
ment of 2?g which forms part of the boundary of B, the branch 
of Cn + a which has these points in common with E2 will be a 
nested oval, and, though the Cn + 2 will then have p + 1 real 
branches, and the maximum number of nested ovals as re­
quired, it will be impossible to carry the process further. 

It will be observed that Hilberths results apply only to 
curves of maximum deficiency, and of the maximum number 
of real branches, n being given. It by no means follows that 
a curve of order n and of maximum deficiency, but with 
fewer than the maximum number of real branches, cannot 
have more than i (n — 2) or •£ (n — 3) nested branches. For 
instance, in the case of the cubic discussed above, if a be 
given the opposite sign to the one there chosen, the equation 

fh ± 6 I = 0 

will represent a non-singular quintic, having but three real 
branches, two of which are nested. 

And, in general, it is easily seen that a non-singular curve 
of even order, and possessing but %n real branches, may have 
them all nested. Similarly, a curve of odd order having 
only J(w + 1) real branches, may have \{n—1) of them nested. 
Hubert leaves untouched also the case of singular curves, 
and thus excludes from his investigations a large class of 
curves. It would be interesting to know under what con­
ditions, and in what way, the branches of a singular curve 
can be nested. 

Lack of space prevents any discussion of the second part of 
Hilbert's article, in which the author determines some of the 
properties of curves in three-fold space. I give only the re­
sults of these investigations. By a method entirely analogous 
to that presented above, Hilbert proves the theorem : An 
irreducible twisted curve of order n, with the maximum num­
ber of real branches [J (n — I)3 -f- 1 when n is even, and \ 
(n — 1) (n — 3) + 1 when n is odd] can have no more than 
\v — 2, 2v — I, %v — 1 odd branches, according as n = 4tv, 
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év -f 1, 4v + 3. When n = év + 2, wo odW branch can 
exist. Exceptional are the cases when w = 3, 4, 5, the maxi­
mum number of odd branches being 1, 2, 3, respectively. Then, 
by applying Abel's theorem for elliptic functions, he proves, 
for every value of n, the existence of curves with the maximum 
number of real odd branches. 

L. S. HULBURT. 
WORCESTER, MASS., April 5, 1892. 

FINAL FOEMULAS FOE THE ALGEBRAIC 
SOLUTION OF QUAETIO EQUATIONS.* 

BY MANSFIELD MERRIMAN, PH.D. 

I. F I N A L formulas for the algebraic solution of quadratic 
and cubic equations are well known. Such formulas exhibit 
the roots in their true typical forms, and lead to ready and 
exact numerical solutions whenever the given equations do 
not fall under the irreducible case. But for the quartic, or 
biquadratic, equation the books on algebra do not give similar 
final formulas. The solution of the quartic has been known 
since 1540, and numerous methods have been deduced for its 
algebraic resolution, yet in no case does this appear to have 
been completed in final practical shape. It is the object of 
this paper to state the final solution in the form of definite 
formulas. 

II. The expression of the roots of the quartic is easily made 
in terms of the roots of a resolvent cubic, and the cubic itself 
is solved without difficulty. Yet great practical difficulty 
exists in treating a numerical equation on account of the 
presence of imaginaries in the roots of the resolvent. Wit­
ness the following example which is generally given to illus­
trate the method in connection with Euler's resolvent : 

" Let it be required to determine the roots of the biquad­
ratic equation, 

xK - 25x* + ßOx - 36 = 0. 

By comparing this with the general form the cubic equation 
to be resolved is, 

f _ 5 0 / + 72% - 3600 = 0 

* Abstract of a paper presented to the Society at the meeting of May 
7, 1892. 


