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and type IIB string theory
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The method of intersection spaces associates rational Poincaré
complexes to singular stratified spaces. For a conifold transition,
the resulting cohomology theory yields the correct count of all
present massless 3-branes in type IIB string theory, while inter-
section cohomology yields the correct count of massless 2-branes
in type ITA theory. For complex projective hypersurfaces with an
isolated singularity, we show that the cohomology of intersection
spaces is the hypercohomology of a perverse sheaf, the intersec-
tion space complex, on the hypersurface. Moreover, the intersec-
tion space complex underlies a mixed Hodge module, so its hyper-
cohomology groups carry canonical mixed Hodge structures. For
a large class of singularities, e.g., weighted homogeneous ones,
global Poincaré duality is induced by a more refined Verdier self-
duality isomorphism for this perverse sheaf. For such singularities,
we prove furthermore that the pushforward of the constant sheaf
of a nearby smooth deformation under the specialization map to
the singular space splits off the intersection space complex as a
direct summand. The complementary summand is the contribu-
tion of the singularity. Thus, we obtain for such hypersurfaces a
mirror statement of the Beilinson-Bernstein-Deligne decomposition
of the pushforward of the constant sheaf under an algebraic reso-
lution map into the intersection sheaf plus contributions from the

singularities.
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1. Introduction

In addition to the four dimensions that model our space-time, string theory
requires six dimensions for a string to vibrate. Supersymmetry considera-
tions force these six real dimensions to be a Calabi-Yau space. However, given
the multitude of known topologically distinct Calabi-Yau 3-folds, the string
model remains undetermined. So it is important to have mechanisms that
allow one to move from one Calabi-Yau space to another. In Physics, a solu-
tion to this problem was first proposed by Green-Hiibsch [11, 12] who con-
jectured that topologically distinct Calabi-Yau’s are connected to each other
by means of conifold transitions, which induce a phase transition between
the corresponding string models.

A conifold transition starts out with a smooth Calabi-Yau 3-fold, passes
through a singular variety — the conifold — by a deformation of complex
structure, and arrives at a topologically distinct smooth Calabi-Yau 3-fold
by a small resolution of singularities. The deformation collapses embedded
three-spheres (the vanishing cycles) to isolated ordinary double points, while
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the resolution resolves the singular points by replacing them with CP's. In
Physics, the topological change was interpreted by Strominger by the con-
densation of massive black holes to massless ones. In type ITA string theory,
there are charged two-branes that wrap around the CP! 2-cycles, and which
become massless when these 2-cycles are collapsed to points by the (small)
resolution map. Goresky-MacPherson’s intersection homology [8], [10] of the
conifold accounts for all of these massless two-branes ([1, Proposition 3.8]),
and since it also satisfies Poincaré duality, may be viewed as a physically
correct homology theory for type IIA string theory. Similarly, in type I1B
string theory there are charged three-branes wrapped around the vanishing
cycles, and which become massless as these vanishing cycles are collapsed by
the deformation of complex structure. Neither ordinary homology nor inter-
section homology of the conifold account for these massless three-branes. So
a natural problem is to find a physically correct homology theory for the I1B
string theory. A solution to this question was suggested by the first author
in [1] via his intersection space homology theory.

In [1], the first author develops a homotopy-theoretic method which asso-
ciates to certain types of singular spaces X (e.g., a conifold) a CW complex
I1X, called the intersection space of X, which is a (reduced) rational Poincaré
complex, i.e., its reduced homology groups satisfy Poincaré Duality over the
rationals. The intersection space IX associated to a singular space X is
constructed by replacing links of singularities of X by their corresponding
Moore approximations, a process called spatial homology truncation. The
intersection space homology

HI.(X;Q) := H.(IX;Q)

is not isomorphic to the intersection homology of the space X, and in fact
it can be seen that in the middle degree and for isolated singularities, this
new theory takes more cycles into account than intersection homology. For
a conifold X, Proposition 3.6 and Theorem 3.9 in [1] establish that the
dimension of HI3(X) equals the number of physically present massless 3-
branes in IIB theory.

In mirror symmetry, given a Calabi-Yau 3-fold X, the mirror map asso-
ciates to it another Calabi-Yau 3-fold Y so that type IIB string theory on
R* x X corresponds to type IIA string theory on R* x Y. If X and Y are
smooth, their Betti numbers are related by precise algebraic identities, e.g.,
B3(Y) = [a(X) + Ba(X) + 2, etc. Morrison [19] conjectured that the mirror
of a conifold transition is again a conifold transition, but performed in the
reverse order (i.e., by exchanging resolutions and deformations). Thus, if X
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and Y are mirrored conifolds (in mirrored conifold transitions), the intersec-
tion space homology of one space and the intersection homology of the mirror
space form a mirror-pair, in the sense that G3(IY) = If2(X) 4+ I54(X) + 2,
etc., where I5; denotes the i-th intersection homology Betti number (see [1]
for details). This suggests that it should be possible to compute the intersec-
tion space homology HI.(X;Q) of a variety X in terms of the topology of
a smoothing deformation, by “mirroring” known results relating the inter-
section homology groups IH,(X;Q) of X to the topology of a resolution
of singularities. Moreover, the above identity of Betti numbers can serve as
a beacon in constructing a mirror Y for a given singular variety X, as it
restricts the topology of those Y that can act as a mirror of X.

This point of view was exploited in [3], where the first and third authors
considered the case of a hypersurface X ¢ CP"*! with only isolated singu-
larities. For simplicity, let us assume that X has only one isolated singular
point z, with Milnor fiber F, and local monodromy operator T, : H,(F,) —
H,(Fy;). Let X be a nearby smoothing of X. Then it is shown in [3] that
H,.(IX;Q) is a vector subspace of H,(Xs;Q), while an isomorphism holds
if, and only if, the local monodromy operator T} is trivial (i.e., in the case
when X is a small degeneration of X;). This result can be viewed as mirror-
ing the well-known fact that the intersection homology groups I H;(X;Q) of
X are vector subspaces of the corresponding homology groups H;(X;Q) of
any resolution X of X, with an isomorphism in the case of a small resolution
(e.g., see [5, 9]).

Guided by a similar philosophy, in this paper we construct a perverse
sheaf ZSx, the intersection-space complex, whose global hypercohomology
calculates (abstractly) the intersection space cohomology groups of a pro-
jective hypersurface X C CP"*! with one isolated singular point. Our result
“mirrors” the fact that the intersection cohomology groups can be com-
puted from a perverse sheaf, namely the intersection cohomology complex
ICx. We would like to point out that for general X there cannot exist a
perverse sheaf P on X such that HI*(X;Q) can be computed from the
hypercohomology group H*(X;P), as follows from the stalk vanishing con-
ditions that such a P satisfies. However, Theorem 3.2 of the present paper
shows that this goal can be achieved in the case when X is a hypersurface
with only isolated singularities in a (smooth) deformation space, this being
in fact the main source of examples for conifold transitions. Furthermore, by
construction, the intersection space complex ZSx underlies a mixed Hodge
module, therefore its hypercohomology groups carry canonical mixed Hodge
structures. This result “mirrors” the corresponding one for the intersection
cohomology complex ZCyx .
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It follows from the above interpretation of intersection space cohomol-
ogy that the groups H*(X;ZSx) satisfy Poincaré duality globally, which
immediately raises the question, whether this duality is induced by a more
powerful (Verdier-) self-duality isomorphism D(ZSx) ~ ZSx in the derived
category of constructible bounded sheaf complexes on X. Part (¢) of our
main Theorem 3.2 (see also Corollary 3.14) affirms that this is indeed the
case, provided the local monodromy 77 at the singular point is semi-simple
in the eigenvalue 1. This assumption is satisfied by a large class of isolated
singularities, e.g., the weighted homogeneous ones.

Our fourth result “mirrors” the Beilinson-Bernstein-Deligne decomposi-
tion [4] of the pushforward R f.Q g[n] of the constant sheaf Q & under an alge-
braic resolution map f : X — X into the intersection sheaf ZCy of X plus
contributions from the singularities of X. Suppose that X sits as X = 7~1(0)
in a family 7 : X — S of projective hypersurfaces over a small disc around
0 € C such that Xs = n~1(s) is smooth over nearby s € S, s # 0. Under
the above assumption on the local monodromy 7} at the singular point, we
prove (cf. Theorem 3.2(c) and Corollary 3.10) that the nearby cycle complex
¥rQx[n], a perverse sheaf on X, splits off the intersection space complex
ZSx as a direct summand (in the category of perverse sheaves). The com-
plementary summand has the interpretation as being contributed by the
singularity x, since it is supported only over {z}. For s sufficiently close
to 0, there is a map sp : Xs — X, the specialization map. It follows by the
decomposition of the nearby cycle complex that the (derived) pushforward
Rsp.Qx_[n] of the constant sheaf on a nearby smoothing of X splits off ZSx
as a direct summand,

Rsp,Qx_[n] ~ZSx & C.

Finally, we would like to point out that since our paper is about a certain
perverse sheaf and its properties, and perverse sheaves are somewhat compli-
cated objects, it would be valuable to have an alternative, more elementary
description of the perverse sheaf under consideration. To this end, we note
that there are various more “elementary” descriptions of the category of
perverse sheaves available, for example the zig-zag category of MacPherson-
Vilonen [15]. The latter description is particularly applicable for stratifica-
tions whose singular strata are contractible. Since this is the case in the
present paper, it is desirable to understand the intersection space complex
ZISx and its properties and associated short exact sequence also on the
level of zig-zags. We do provide such an analysis in Sections 3.3 and 3.4. In
particular, under the above technical assumption on the local monodromy
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operator, we derive the splitting and the self-duality of the intersection space
complex also directly on the level of zig-zags.

In [13], T. Hiibsch asks for a homology theory SH, (“stringy homology”)
on 3-folds X, whose singular set ¥ contains only isolated singularities, such
that

(SH1) SH, satisfies Poincaré duality,

(SH2) SH;(X) = Hy(X — X) for i < 3,

(SH3) SH3(X) is an extension of H3(X) by ker(H3z(X —X) — H3(X)),
(SH4) SH;(X) = Hy(X) for i > 3.

Such a theory would record both the type IIA and the type IIB massless
D-branes simultaneously. Intersection homology satisfies all of these axioms
with the exception of axiom (SH3). Regarding (SH3), Hiibsch notes further
that “the precise nature of this extension is to be determined from the as yet
unspecified general cohomology theory.” Using the homology of intersection
spaces one obtains an answer: The group HI3(X;Q) satisfies axiom (SH3)
for any 3-fold X with isolated singularities and simply connected links. On
the other hand, HI.(X;Q) does not satisfy axiom (SH2) (and thus, by
Poincaré duality, does not satisfy (SH4)), although it does satisfy (SH1) (in
addition to (SH3)). The pair (IH.(X;Q), HI.(X;Q)) does contain all the
information that SH,(X) satisfying (SH1)—(SH4) would contain and so may
be regarded as a solution to Hiibsch’ problem. In fact, one could set

SHi(X) = THi(X;Q), i#3,
U HEX),  i=3.

This S H, then satisfies all axioms (SH1)—(SH4). A construction of SH, using
the description of perverse sheaves by MacPherson-Vilonen’s zig-zags [15]
has been given by A. Rahman in [20] for isolated singularities. As already
mentioned above, zig-zags are also used in the present paper to obtain topo-
logical interpretations of our splitting and self-duality results.

Acknowledgments. We thank Morihiko Saito for useful discussions. We
also thank Jorg Schiirmann for valuable comments on an earlier version of
this paper, and for sharing with us his preprint [6].
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2. Prerequisites
2.1. Isolated hypersurface singularities

Let f be a homogeneous polynomial in n + 2 variables with complex coeffi-
cients such that the complex projective hypersurface

X =X(f)={z e P"" | f(z) =0}

has only one isolated singularity x. Locally, identifying x with the origin of
Cnt!, the singularity is described by a reduced analytic function germ

g: (C"1 0) — (C,0).

Let B. C C"*! be a closed ball of radius ¢ > 0 centered at the origin and
let S, be its boundary, a sphere of dimension 2n + 1. Then, according to
Milnor [18], for € small enough, the intersection X N B, is homeomorphic to
the cone over the link L = X NS, = {g =0} NS of the singularity z, and
the Milnor map of g at radius e,

I S \L— S,

9]
is a (locally trivial) fibration. The link L is a (n — 2)-connected (2n — 1)-
dimensional submanifold of S.. The fiber F° of the Milnor map is an open
smooth manifold of real dimension 2n, which shall be called the open Milnor
fiber at x. Let I be the closure in S, of the fiber of g/|g| over 1 € S*.
Then F, the closed Milnor fiber of the singularity, is a compact manifold
with boundary OF = L, the link of x. Note that F° and F' are homotopy
equivalent, and in fact they have the homotopy type of a bouquet of n-
spheres, see [18]. The number p of spheres in this bouquet is called the
Milnor number and can be computed as

On+1
= dim ,
H C 7,
with 0,41 = C{xo,...,z,} the C-algebra of all convergent power series in

xo, ..., %n, and Jy; = (dg/0xo,...,09/0x,) the Jacobian ideal of the singu-
larity. Associated with the Milnor fibration F° < S, — L — S! is a mon-
odromy homeomorphism h : F° — F°. Using the identity L. — L, h extends
to a homeomorphism h : F' — F because L is the binding of the correspond-
ing open book decomposition of S,. This homeomorphism induces the (local)
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monodromy operator
T, = h* : H'(F;Q) — H"(F;Q).

If n > 2, the difference between the monodromy operator and the identity
fits into the Wang sequence of the fibration:

(1)

0 — H"(S. — L;Q) = H™(F;Q) == H"(F;Q) — H™'(S. — L; Q) — 0.

2.2. Intersection space (co)homology of
projective hypersurfaces

Let X be a complex projective hypersurface of dimension n > 2 with only
one isolated singular point x. The assumption on dimension is needed to
assure that the link L of z is simply-connected, so the intersection space I.X
can be defined as in [1]. The actual definition of an intersection space is not
needed in this paper, only the calculation of Betti numbers, as described in
the next theorem, will be used in the sequel. Nevertheless, let us indicate
briefly how IX is obtained from X. Let M be the complement of an open
cone neighborhood of x so that M is a compact manifold with boundary
OM = L. Given an integer k, a spatial homology k-truncation is a topologi-
cal space L.y such that H;(L.x) = 0 for i > k, together with a continuous
map f: L. — L which induces a homology-isomorphism in degrees i < k.
Using the truncation value k = n, the intersection space I .X is the homotopy
cofiber of the composition
Len 15 0 =0Mm 24 pr.

Let X5 be a nearby smooth deformation of X. Denote by 7T, the monodromy
operator on the middle cohomology of the Milnor fiber of the hypersurface
germ (X, z). Denote by

HI*(X;Q) == H*(IX;Q)
the intersection-space cohomology of X.

Theorem 2.1. ([3, Thms. 4.1 and 5.2]) Under the above assumptions and
notations the following holds:

' dim H*(X,; Q) if i # n,2n;
dim HI'(X;Q) = ¢ dim H (X Q) — k(T — 1) ifi =n;
0 if i = 2n.
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Moreover, if Hy,—1(L;Z) is torsion-free, then for i # n the above equality is
given by canonical isomorphisms of vector spaces induced by a continuous
map.

2.3. Perverse sheaves

Let X be a complex algebraic variety of complex dimension n, and Db(X ) the
bounded derived category of complexes of sheaves of rational vector spaces
on X. If X is a Whitney stratification of X, we say that K € D*(X) is X-
cohomologically constructible if, for all ¢ € Z and any (pure) stratum S of X,
the cohomology sheaves H!(K)|g are locally constant with finite dimensional
stalks on S. We denote by D2(X) the derived category of bounded con-
structible sheaf complexes on X, i.e., the full subcategory of D?(X) consist-
ing of those complexes which are cohomologically constructible with respect
to some stratification of X.

The abelian category of perverse sheaves on X is the full sub-category
Perv(X) of DY(X) whose objects are characterized as follows. Assume K €
D%(X) is cohomologically constructible with respect to a stratification X
of X, and denote by 4; : S; — X the corresponding embedding of a stra-
tum of complex dimension /. Then K is perverse if it satisfies the following
properties:

(i) condition of support:

HI (it K) = 0, for any [ and j with j > —I,
(ii) condition of cosupport:

HI(i)K) = 0, for any [ and j with j < —L.

If X is smooth, then any K € D%(X), which is constructible with respect to
the intrinsic Whitney stratification of X with only one stratum, is perverse
if and only if K is (up to a shift) just a local system. More precisely, in
this case we have that K ~ H~"(K)[n]. More generally, if K € Perv(X) is
supported on a closed I-dimensional stratum S, then K ~ H~!(K)[l].

Let us also recall here that the Verdier duality functor as well as restric-
tion to open subsets preserve perverse objects.

In this paper, we will be interested in the situation when the variety X
has only isolated singularities. For example, if X has only one singular point
x, then X can be given a Whitney stratification X with only two strata:
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{z} and X \ {z}. Denote by i: {z} — X and j: X \ {z} — X the corre-
sponding closed and open embeddings. Then a complex K € D?(X), which
is constructible with respect to X, is perverse on X if j*K[—n] is cohomo-
logically a local system on X°:= X \ {z} and, moreover, the following two
conditions hold:

HI(i*K) = 0, for any j > 0,
and

H’(i'K) =0, for any j < 0.
2.4. Nearby and vanishing cycles

Let 7: X — S be a projective morphism from an (n + 1)-dimensional com-
plex manifold onto a small disc S around the origin in C. Assume 7 to be
smooth except over 0. Denote by X = 771(0) the singular zero-fiber and by
X, =n71(s) (s # 0) the smooth projective variety which is the generic fiber
of 7. B

Let ¢y, ¢r : DY(X) — DY(X) denote the nearby and, respectively, van-
ishing cycle functors of 7 (e.g., see [7] and the references therein). These
functors come equipped with monodromy automorphisms, both of which
will be denoted by T'. Instead of defining the nearby and vanishing cycle
functors, we list their main properties as needed in this paper. First, we
have that

(2) Hi(Xs§Q) :Hi(X;lﬁn@;()v

and, for a point inclusion i, : {x} — X with F} the Milnor fiber of the
hypersurface singularity germ (X, x),

(3) H'(Fy;Q) = H'(i31xQ5)
and
(4) H'(Fy;Q) = H'(i%6.Q5),

with compatible monodromies T, and T'. Moreover, the support of the van-
ishing cycles is

(5) Supp(p=Q5) = Sing(X),
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the singular locus of X, see [7, Cor. 6.1.18]. In particular, if X has only
isolated singularities, then:

(6) H'(X;6:.Qz) = P H'(FsQ).

z€Sing(X)

By the definition of vanishing cycles, for every constructible sheaf com-
plex K € D%(X) there is a unique distinguished triangle

(7) K D K S g K T

in DY(X), where ¢ : X < X is the inclusion of the zero-fiber of 7. There is a
similar distinguished triangle associated to the variation morphism, see [14,
pp. 351-352], namely:
var | [+1

(8) O K — 0 K — t2|K :
The variation morphism wvar : ¢ K — 1, K is heuristically defined by the
cone of the pair of morphisms (but see the above reference [14] for a formal
definition):

0, 7T—1):[t'K — ¢ K] — [0 = ¥ K].
Moreover, we have: can o var =T — 1 and var o can =T — 1.

The monodromy automorphism 7' acting on the nearby and vanishing
cycle functors has a Jordan decomposition T'=T, o Ty = T o T}, where T}
is semisimple (and locally of finite order) and T}, is unipotent. For any A € Q
and K € D%(X), let us denote by Y 2K the generalized A-eigenspace for T',
and similarly for ¢ K. By the definition of vanishing cycles, the canonical
morphism can induces morphisms

can : Yr \K — ¢r \K
which are isomorphisms for A # 1, and there is a distinguished triangle
9) PE e K g i Y
There are decompositions

(10) 7/]71' = pr,l S5 1/)71',751 and ¢7r = ¢7r,1 & ¢7r,7$1

so that Ts = 1 on ¢ 1 and ¢r1, and T has no 1-eigenspace on v 1 and
¢r,#1. Moreover, can : Yy 41 — ¢r 21 and var : ¢r +1 — P 1 are isomor-
phisms.
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Let
N :=log(T,),
and define the morphism Var
(11) on K L5 K

by the cone of the pair (0, V), see [21]. (We omit the Tate twist (—1) appear-
ing in loc. cit., since it is not relevant for the topological considerations
below.) Moreover, we have can o Var = N and Var o can = N, and there is
a distinguished triangle:

(12) br1 K L5 K — {2 K

[+1

The functors ¢z[—1] and ¢,[—1] from D(X) to D?(X) commute with
the Verdier duality functor D up to natural isomorphisms [16], and send
perverse sheaves to perverse sheaves. To simplify the notation, we denote
the perverse nearby and vanishing cycle functors by

p% = ¢7r[_1] and p¢7r = ¢7T[_]-]’

respectively.

The functors P4, and P¢ acting on perverse sheaves (such as Q ¢[n + 1])
lift to functors ¥ : MHM(X) — MHM(X) and resp. ¢f : MHM(X) —
MHM (X) defined on the category M HM (X) of mized Hodge modules on
X, see [23]. More precisely, if

rat : MHM(X) — Perv(X)

(and similarly for X) is the forgetful functor assigning to a mixed Hodge
module the underlying perverse sheaf, then

rat o wf =Py orat and rato (ﬁf =P, o rat.

Moreover, the above morphisms can, N, Var and decompositions Py, =
Popr 1 @ Prpr 21 (and similarly for P¢,) lift to the category of mixed Hodge
modules, see [21, 23] for details.

The following semisimplicity criterion for perverse sheaves will be needed
in Lemma 2.3 below, see [21, Lemma 5.1.4] (as reformulated in [24, (1.6)]):

Proposition 2.2. Let Z be a complex manifold and K be a perverse sheaf
on Z. Then the following conditions are equivalent:
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(a) In the category Perv(Z) one has a splitting

Pog1(K) = Ker (Var : Pgg4,1(K) = Pihg1(K))
@® Image (can : PPy 1(K) = Pog1(K))

for any locally defined holomorphic function g on Z.

(b) K admits a decomposition by strict support, i.e., it can be written
canonically as a direct sum of twisted intersection cohomology com-
plexes.

We can now state one of the key technical results needed in the proof of
our main theorem:

Lemma 2.3. Let 7: X — S be a projective morphism from an (n+1)-
dimensional complex manifold onto a small disc S around the origin in C.
Then, for any i € Z, the restriction of the Q-vector space homomorphism

varg : ]H[i(X; qbﬁ@)}) — Hi(X§¢nQ)~()

(induced by the variation morphism var : ¢ — ) on the image of the
endomorphism T — 1 acting on H'(X; $:Qg) is one-to-one.

Proof. Let m: X — {0} be the restriction of 7 to its zero-fiber, and denote
by s the coordinate function on the disc § C C (with s om = w). Then we
have

H'(X;6:Qg) ~ H'™(X;P¢-Qg[n + 1))
~ H "(R7(P¢=Qg[n +1]))
(13) ~ P (RR, (P Qg [n + 1))
~ PHTM(RAE(Pheor Qg [n + 1]))
= p¢8(p%i_n(R7r*Q)~( [n + 1]))

where PH denotes the perverse cohomology functor, and the last identity
follows by proper base-change (see [23, Thm. 2.14]). Similarly, we have

H'(X;92Qg) = P ("H™"(Rm.Qg[n + 1)),

and these isomorphisms are compatible with the monodromy actions and
they commute with the morphisms can and var.
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Therefore, it suffices to prove the claim for the morphisms var and T — 1
acting on

Pos("H (Rm.Qgln+1])), j € Z.
Moreover, since the morphism wvar is an isomorphism on P¢, +1, we can
replace Pos (PH! (Rm.Qg[n + 1])) by Pos 1 (PH? (R, Q g [n + 1])). However, on
Pos1(PH/ (RmQg[n + 1])) we have that Ts = 1 and T = T),. Thus on this
eigenspace, with T;, the nilpotent morphism 7,, =1 — T,

=1
N =logT =logT, = —ZET,';' = (T -1)(1+Ty),
k=1

where Tn = > 724 k%rlT,’f is nilpotent. In particular, 1 + Ty is an automor-
phism. It follows that the endomorphisms N and resp. T — 1 acting on
Pps1(PHI(RT.Qg[n + 1])) have the same image. Similarly, the morphisms
var and Var also differ by an automorphism on P, 1 (PH? (Rm.Qg[n +1])),
so in particular they have the same kernel. Hence we can further replace
T —1 by N, and var by Var.

Next note that by the decomposition theorem of [21], the perverse sheaf
PHI(Rm.Qy[n +1]) on S admits a decomposition by strict support, i.e., it
can be written canonically as a direct sum of twisted intersection cohomology
complexes. Therefore, by the semisimplicity criterion of Proposition 2.2,

applied to S with the coordinate function s, we have a splitting:

p¢s,1(ij(R7r*Q)~([n +1])) = Ker (Var : Pds 1 — Pihs 1)
@® Image (can : Pips1 — Pos 1) .

Moreover, since can o Var = N on ¢, 1, we have that
Image(N) C Image (can : Pps1 — Pos1),
which by the above splitting is equivalent to
Image(N) N Ker (Var : Pog 1 — Paps 1) = {0}.
This finishes the proof of our claim. 0

2.5. Zig-zags. Relation to perverse sheaves

We will adapt the results of [15] to the situation we are interested in, namely,
that of a n-dimensional complex algebraic variety with only one isolated
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singular point z. Let, as above, denote by X° = X \ {z} the regular locus
and j : X° < X and i : {z} — X the open, respectively closed, embeddings.
Throughout this paper, we will only consider complexes of sheaves (e.g., per-
verse sheaves) which are constructible with respect to the Whitney stratifi-
cation of X consisting of the two strata X° and {z}.

The zig-zag category Z(X, x) is defined as follows. An object in Z (X, z)
consists of a tuple (P, A, B,«, 3,7), with P € Perv(X°) (hence P = L[n],
for £ a local system with finite dimensional stalks on X°), and A and B fit
into an exact sequence of vector spaces

B

(14) H ' (*Rj,P) —2— A B —— HY(i*Rj,P).

A morphism in Z(X, z) between two zig-zags (P, A, B, «, 3,~) and (P', A', B/,
o/, 3',7") consists of a morphism p : P — P’ in Perv(X°), and vector space
homomorphisms A — A’, B — B’, together with a commutative diagram:

H'(*Rj,P) —*— A 2 B 7 HOG*RjP)

(15) lp* l l lp*

H ' Rj,P) —“ A 2y g Ty HOG*R)P).

The zig-zag functor Z : Perv(X) — Z(X,x) is defined by sending an object
K € Perv(X) to the triple (j*K, H(i'K), H(i* K)), together with the exact
sequence:

(16)

H '(i*Rj,j*K) —— HY(i'K) —— H°(i*K) —— HY(i*Rj,j*K).

A morphism x : K — K’ in Perv(X) induces a morphism Z(k): Z(K) —
Z(K'") given by applying the functors H*(i* Rj,j*—), H(i'—) and H°(i*—)
to Kk to get the vertical maps of

H'\(*Rjj* K) —*— HOG'K) —— HO(*K) —1— HO(*Rj.j*K)

| l | |

H ' Rjj* K —“— HOG'K') 2 HO(*K') — HO(*Rj.j*K").

Remark 2.4. The exact sequence (16) is part of the cohomology long exact
sequence corresponding to the distinguished triangle

K = K — iR K Y
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obtained by applying the functor i* to the attaching triangle:
1
Wi'K — K — R K Y

Perverse sheaves and zig-zags are related by the following result of
MacPherson and Vilonen:

Theorem 2.5. ([15, Thm. 2.1, Cor. 2.2])

(a) The zig-zag functor Z : Perv(X) — Z(X,x) gives rise to a bijection
between isomorphism classes of objects of Perv(X) to the isomorphism
classes of objects of Z (X, x).

(b) For any two objects K and K' in Perv(X), with 8 and ' denoting
the maps HO(i'K) LA HO(i*K) and HO(i'K") L HO(i*K'), there is an
exact sequence:

(17) 0 — Hom(Coker(8), Ker(8')) — Hom(K, K') 5 Hom(ZK, ZK') — 0.

In particular, if either 8 or ' is an isomorphism, then Z induces an
1somorphism

Hom(K, K') = Hom(ZK, ZK').
The following example is of interest to us:

Example 2.6. (Nearby cycles) Let us consider the situation described in
Section 2.4, i.e., a family of projective n-dimensional hypersurfaces 7= : X —
S with zero fiber X := 771(0) with only one isolated singularity 2. Denote by
F the (closed) Milnor fiber, and by L = OF the corresponding link at x. The
zig-zag associated to the perverse sheaf ¢ (Q ¢ [n]) € Perv(X) consists of the
triple (Qx-[n|, H"(F, L;Q), H"(F;Q)), together with the exact sequence

(18) H" N(L;Q) —» H"(F, L;Q) — H"(F;Q) - H"(L; Q),

which is in fact the relevant part of the cohomology long exact sequence for
the pair (F, L). Indeed, we have the following identifications:

H*(i* Rjuj*r (Qg[n])) = H*(i* Rj.Qx-[n))

~ H*"(*Rj,Qx-) ~ H*™(L; Q),
H"(i*¢=Qgz) ~ H"(F;Q),
H!(F°;Q) ~ H"(F, L;Q),

H(i*(Qg[n)))
HO(i'y=(Qg[n]))

12

12
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with F° = F'\ L denoting as before the open Milnor fiber. Finally, note that
if n > 2, by using the fact that F' is (n — 1)-connected we deduce that the
leftmost arrow in (18) is injective, while the rightmost arrow is surjective.

3. Main results

In this section we define the intersection-space complex and study its prop-
erties.

3.1. Construction

Let X be a complex projective hypersurface of dimension n > 2 with only
one isolated singular point x. Then the link L of = is simply-connected and
the intersection space I X is defined as in [1]. In this section, we construct a
perverse sheaf on X, which we call the intersection-space complex and denote
it ZSx, such that

(19) dim H'(X; ZSx[—n]) = dim HI'(X;Q)

for all 7, except at i = 2n. B

As in Section 2.4, let m: X — S be a deformation of X, where S is a
small disc around the origin in C, the total space X is smooth, and the
fibers X, for s # 0 are smooth projective hypersurfaces in P*"*!. Define C to
be the image in the abelian category Perv(X) of the morphism of perverse
sheaves

(20) T—-1: gf)ﬂ(@)?[n] — (ﬁﬂ@g[n],

with ¢, the vanishing cycle functor for 7. So we have a monomorphism of
perverse sheaves

(21) C = ¢zQx[nl.

By (5), both perverse sheaves C and ¢,Qg[n] are supported only on the
singular point z. Composing (21) with the variation morphism

(22) var : ¢;Q5 [n] — l@r@;} [n],
we obtain a morphism of perverse sheaves

(23) t:C — ¥ Qg[n].
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Thus we can make the following definition:

Definition 3.1. The intersection-space complexr of X is defined as
(24) ISx := Coker(v: C — ¥:Qg[n]) € Perv(X).

It is clear from the definition that ZSx is a perverse sheaf. In the next
section, we show that ZSx satisfies the identity (19) on Betti numbers. The
latter fact also motivates the terminology. Moreover, for certain types of
singularities (e.g., weighted homogeneous), ZSx is self-dual and it carries a
decomposition similar to the celebrated BBD decomposition theorem [4].

3.2. Main theorem

The main result of this paper is the following:

Theorem 3.2. (a) The intersection-space complex ZSx recovers the inter-
section-space cohomology. More precisely, there are abstract isomorphisms

HI(X;Q) ifi#2n

(25) HF (X; ZSx [—n]) ~ { Hon(x50) = Qi om,

(b) The hypercohomology groups H"(X;ZSx) carry natural mized Hodge
structures.

Moreover, if the local monodromy T, at x is semi-simple in the eigen-
value 1, then:

(¢) There is a canonical splitting
(26) 1/),.-@5(“ [n] ~TS8x dC.

(d) The intersection-space complez is self-dual. In particular, there is a non-
degenerate pairing

(27) H™(X;ZSx) x H(X;ZSx) — Q.
Before proving the theorem, let us note the following;:
Remark 3.3. (i) If w is a small deformation of X, i.e., if the local mon-

odromy operator T, is trivial, then C ~ 0, so we get an isomorphism of
perverse sheaves ZSx ~ 1;Qg[n]. In view of the Betti identity (19), this
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isomorphism can be interpreted as a sheaf-theoretical enhancement of the
stability result from [3] mentioned in the introduction.

(ii) The above construction can be easily adapted to the situation of hyper-
surfaces with multiple isolated singular points. It then follows from (a) and
[1, Prop. 3.6] that the hypercohomology of ZSx for conifolds X provides the
correct count of massless 3-branes in type IIB string theory.

(iii) Examples of isolated hypersurface singularities whose monodromy is
semi-simple in the eigenvalue 1 include those for which the monodromy is
semi-simple, e.g., weighted homogeneous singularities.

(iv) The splitting Q¢ [n] ~ ZSx @ C for the deformation 7 : X > Sof X
from Theorem 3.2 should be viewed as “mirroring” the splitting

(28) Rf.Qg[n] = ICx & {contributions from singularities}

for f: X — X a resolution of singularities, sce [4, 5, 9]. (Recall that the
perverse sheaf C is supported only on the singular point x of X.) This analogy
is motivated by the fact that if sp : X; — X denotes the specialization map
(e.g., see [3] for its construction), then by using a resolution of singularities
it can be shown that

(29) VxQg = Rsp,Qx..

Thus, under our assumptions, we get a splitting:
(30) Rsp,Qx.[n]| ~ZSx & C.

Note, however, that the specialization map is only continuous, as opposed
to a resolution map, which is algebraic. Therefore, Theorem 3.2 provides
a validation of the idea that the “mirror” of the intersection cohomology
complex ZCx is the intersection-space complex ZSx, at least in the case of
projective hypersurfaces with an isolated singular point.

Proof of Theorem 3.2. (a) First, since Xisa manifold, we have that
var : ¢xQg[n] — ¥rQg[n]

is an injection in Perv(X), see the proof of [17, Lemma 3.1]. Thus, by
the definition of ¢, there is a short exact sequence in the abelian category
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Perv(X)
(31) 0 — C—¢:Qg[n] — ISx — 0.

As Perv(X) is the heart of a t-structure on D%(X), there exists, according
for example to [2, Remark 7.1.13], a unique morphism ZSx — C[1] such that

C — Y:Qgzn] — ISx — C[1]

is a distinguished triangle in D%(X). Consider its long exact sequence of
hypercohomology groups,

o= HY(X;C) = H' (X;¢Qg[n]) — H(X;ZSx) — HH(X;5C) — - -
By construction (but see also the proof of Lemma 3.6 below), we have

0, if § 0,

32 HY(X;C) = HY(C), =
(32) ( ) ©) {Image(Tx —-1), ifi=0.

Then, by Theorem 2.1, the only thing left to prove for part (a) is the injec-
tivity of

HO(C), = Image(T,, — 1) — H°(X;9-Q5[n]) = H"(X,;Q),

that is, that the variation of a vanishing cocycle, modulo monodromy-invariant
ones, is nonzero. This follows from Lemma 2.3.

(b) Since, by definition, T'— 1 is invertible on the non-unipotent vanishing
cycles P 41, it follows by the considerations of Section 2.4 that

(33) ISx = coker (Image(N) Yo Ppr1Qg[n + 1]) ,

where we use the fact discussed in Section 2.4 that on P¢, 1 the morphisms
T —1 and N differ by an automorphism, and similarly for var and Var.
Therefore, as all objects (and arrows) on the right-hand side of (33) lift to
similar objects (and arrows) in the abelian category M HM (X) of mixed
Hodge modules on X, it follows that ZSx underlies (under the forgetful
functor rat) a mixed Hodge module IS)I'(I on X defined by

78H .= coker (Image(N) Yor, 1/175{1@)}[71 + 1]) € MHM(X).

(Here we use the notations introduced in Section 2.4.) In particular, the
hypercohomology groups of ZSx carry canonical mixed Hodge structures.
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(c) Since ¢,(Qg[n]) is supported only on the singular point {x}, we have
(e.g., as in the proof of Lemma 3.6 below) that ¢.(Qg[n]) ~ 417" ¢ (Q[n]).
Moreover, the (co)support conditions yield i* ¢ (Qg[n]) ~ H°(i*¢x(Qg[n]))-
So, in view of the isomorphism (4), it follows that our assumption on the
local monodromy 7}, implies that 7'—1 =0 on ¢.,1(Qg[n]). On the other
hand, 7' — 1 is an isomorphism on ¢ 1(Q ¢[n]). Therefore, we get the fol-
lowing;:

(34)  C:=Image(T —1: ¢zQgzn] — ¢xQg(nl) = dr 21(Qg[n])-

Moreover, as the variation morphism var is an isomorphism on ¢ +1(Q5 [n]),
it follows that the morphism of perverse sheaves C — ¢Q ¢[n] can be identi-
fied with the canonical (split) inclusion ¥ 1 Q [n] — ¥xQ¢[n]. Altogether,
we obtain that

(35) ISX >~ wml(@)}[n],

and the claimed splitting is just the canonical one from (10).

(d) As it follows from part (c), our assumption on the local monodromy
operator T yields that ZSx =~ 1r 1Q¢[n]. Since the nearby cycle complex
Yz (Qg[n]) is self-dual (e.g., see [16, 21, 22]) and the Verdier duality functor
respects the splitting (10), it follows that ZSx is also self-dual. From the
self-duality of ZSx, one obtains readily a non-degenerate paring

H(X;ZSx) x H.(X;ZSx) — Q.
But since X is compact, H%(X;ZSy) = H (X;ZSx). O

Remark 3.4. (i) The proof of part (a) shows in fact that for any i ¢
{n,2n}, we have isomorphisms

H'(X;ZSx[-n]) ~ H'(X5; Q).
Then by Theorem 2.1, for any ¢ ¢ {n, 2n} we have (abstract) isomorphisms:
H'(X5;Q) ~ H'(IX; Q).
(ii) A topological interpretation of the splitting and self-duality of parts

(c) and (d) of the above theorem, will be given in Sections 3.3 and 3.4,
respectively, by using the theory of zig-zags (as recalled in Section 2.5).
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Remark 3.5. (Purity and Hard-Lefschetz) Tt follows from the proof of
part (b) of Theorem 3.2 that the intersection-space complex ZSx is a per-
verse sheaf underlying the mixed Hodge module IS)I'(I . While this mixed
Hodge module is not in general pure, it is however possible for its hypercoho-
mology H*(X;ZSx) to be pure and, moreover, to satisfy the Hard Lefschetz
theorem. It is known that such statements are always true for the “mirror
theory”, that is, intersection cohomology (e.g., see [5] and the references
therein). We give here a brief justification of these claims, by making use
of results from the recent preprint [6]. Recall that, under the assumption
of semisimplicity in the eigenvalue 1 for the local monodromy operator T,
we show in part (c) of Theorem 3.2 that ZSx ~ P9 1Qg[n + 1]. Next, fol-
lowing [6, Thm. 2.1], we note that the weight filtration of the mixed Hodge
structure on H' (Ptpr 1) := H'(X ;P9 1Q[n + 1]) is (up to a shift) the mon-
odromy filtration of the nilpotent endomorphism N acting on H' (P9 1). So
H*(P1,1) or, under the local monodromy assumption, H(X;ZSy), is a pure
Hodge structure if and only if N = 0 or, equivalently, the monodromy T act-
ing on H'(P1, 1) is semisimple. Note that by our calculations in Lemma 2.3,
this semisimplicity is equivalent to the condition that the monodromy T
acting on Pops 1 (PHI (RmQx[n +1])) is semisimple for all perverse sheaves
PHI(RmQg[n +1]) on the disc S. Moreover, if this is the case, then one
can show as in [6, Thm. 2.3] that the Hard Lefschetz theorem also holds
for the hypercohomology groups H'(X;ZSx). To sum up, the above discus-
sion implies that, if besides the “local” semisimplicity assumption for the
eigenvalue 1 of T, we also require a “global” semisimplicity property for
the eigenvalue 1 (i.e., the monodromy 7' acting on H'(X ;¢ 1Q¢[n + 1])
is semisimple), then the hypercohomology groups H'(X;ZSx) carry pure
Hodge structures satisfying the hard Lefschetz theorem. Finally, we should
also mention that the above technical assumption of “global semisimplicity
for the eigenvalue 17 is satisfied if the following geometric condition holds:
X carries a C*-action so that w : X — S is equivariant with respect to the
weight d action of C* on S (d > 0), see [6, Cor. 3.2] for details.

3.3. On the splitting of nearby cycles

In this section, we use the theory of ziz-zags to provide a topological interpre-
tation of the splitting statement of part (c¢) of our main Theorem 3.2. More
precisely, we will consider the zig-zags associated to the defining sequence
for ZSx,

(36) 0— C - ¢:Qz[n] — ISx —0,

in order to show that this short exact sequence splits.
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Let us denote as before by i:{z} — X and j: X°:=X\{z} = X
the closed and resp. open embeddings. Recall from Example 2.6 that the

zig-zag associated to the perverse sheaf 1 (Qg[n]) consists of the triple
(Qx-[n], H"(F,L;Q), H"(F;Q)), together with the exact sequence

37)  H"Y(L;Q) — H"(F,L;Q) — H"(F;Q) — H"(L; Q).
Similarly, we have the following:

Lemma 3.6. The zig-zag for C consists of the triple (0, A, B) together with
the ezact sequence

(38) 0—A—B—0,
where
(39) A::HOGC):Imag%fr—l:HWQZLAB—AEF%FJQQD,
and
(40) B = H°(i"C) ~ Image (Tx —1: H"(F;Q) — H™(F; Q)).
Proof. Since j7*C = 0, we have

H™'(i*Rj,5*C) = 0, H°(i*Rj,j*C) = 0,

that is, the two outermost terms of the zig-zag exact sequence vanish. Let
us determine the inner terms A and B. As C is supported on the singular
point z, we first get that j*C ~ j'C ~ 0. By using the attaching triangles,
we get that

(41) C ~ i,i*C ~ i,i'C.

So by applying i* and using i*i, ~ id, we get that i*C ~ i'C. Moreover, the
(co)support conditions for C imply that i*C € Perv({z}), i.e., H'(:*C) =0
for all i # 0. Hence, there is a quasi-isomorphism i*C ~ H?(i*C). Similar con-
siderations apply to the perverse sheaf ¢.(Qg[n]), which is also supported
only on the singular point x. Recall now that C is defined by the sequence
of perverse sheaves supported on {z}:
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(42) 6x(Qgln]) > € 6r(Qgln)).

As i* is always right t-exact and i' is left t-exact, it follows that on objects
supported over the point z, ¢* is t-exact and thus we get the following
sequence of rational vector spaces

(43) HO(* e (Qgln))) — HO(*C) = HO(i* $a(Qg[n]))-

By using the identification H%(i*¢(Q[n])) = H"(F;Q), the above sequence
proves (40). Similarly, by applying ' to (42), we obtain (39) in view of the
identification H%(i'¢(Qg[n])) = H"(F, L; Q). O

Therefore, the map ¢ of (36) corresponds under the zig-zag functor to
the map of zig-zags + : Z(C) — Z(¢¥=(Qg[n])) given as:
(44)

0 —— A L B — 0

R
H"Y(L;Q) —*— H"(F,L;Q) _s, H"(F;Q) 7 H™(L;Q),

with A and B defined as in (39) and (40).
Assume from now on that the following condition is satisfied:

Assumption 3.7. The local monodromy T, at the singular point is semi-
simple in the eigenvalue 1.

The following result will be needed in Proposition 3.9 below.

Lemma 3.8. Under the Assumption 3.7, the vertical homomorphisms i,
and uy, of the above diagram (44) are injective.

Proof. By the commutativity of the middle square of (44), the injectivity of
tq will follow from the injectivity of 1, since 3 is an isomorphism. Never-
theless, we shall also establish the injectivity of ¢, directly, and then go on
to prove that ¢ is injective. From the computations above, it follows that ¢,
is the homomorphism
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(45) Lot HY('C) — HO(i"=(Q5[n]))
obtained by restricting the variation morphism
(46) var : H(i'¢x(Qg [n])) — HO(i'¢x(Qg[n]))

to the subspace

HO(i'C) = Tmage(T — 1: H'(i'6x(Qg[n])) - H°('6x(Qg[n])))
C H(i ¢n(Q[n]))-

We claim that (46) is a vector space isomorphism, which in turn yields
that ¢, is injective. To prove the claim, make K = Qg[n] in (8). We get a
distinguished triangle

(47) 6xQz[n] 25 Q0] — tQgln + 2 Y

witht: X < X denoting the inclusion. By applying the functor ' and taking
the cohomology of the resulting triangle, we see that the variation morphism
(46) fits into an exact sequence:
(48)

o H' (i Qg) — HO(i'9x(Qg[n)))

var

2 HO(ix(Qg[n]) — H™2(i''Qg) — -+

If we now let e:=toi:{z} — X be the inclusion of the point z in the
ambient space X, then for any k € Z we have that

(49) H*i't'Qz) = H*(¢'Qg) ~ HF (B Q),

for B2"*2 a small (euclidian) ball around x in X. Finally, HE(B22,Q) =0
for all k # 2n + 2, which by (48) proves our claim (recall here that n > 2).
Similarly, ¢4 is the homomorphism

(50) w: HO(i*C) — H(*¢x(Qg[n]))
obtained by restricting the variation morphism
(51) var : H(*¢x(Qg[n])) — H°("¢x(Qgn]))

to the subspace
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HO(i"C) = Tmage(T — 1+ HO(*6x(Qg[n))) — HY(i"6x(Qg 1) )
C HO(i"6x(Qxln]).

So in order to show that ¢ is injective, we need to prove that
(52) Ker(var) N Image(T — 1) = {0}.

We shall first show that

(53) Ker(T — 1) = Ker(var).

As T — 1 = can o var, we have that Ker(var) C Ker(T — 1). So to establish
the equality (53), it suffices to show that both kernels have the same dimen-
sion.

By applying the functor i* to the distinguished triangle (47) and taking
the cohomology of the resulting triangle, we see that the variation morphism
(51) fits into an exact sequence:

(54)
0= H'(i*"x(Qglnl)) — H" ' (i"t'Qg)
— HO(i" ¢ (Qg[n])) = HO (" (Qg[n]) — -

Moreover, using the isomorphisms
H " 67(Qgln])) = H"(F;Q) = H(i*0=(Qgn])

for k +mn > 0, together with the fact that F'is (n — 1)-connected and n > 2,
we get from (54) that

(55)  Ker(HG"6r(Qgn]) 5 H("vn(Qgln])) ) = B ("1Qg).
We claim that
(56) H™(i"t'Qg) = Ker(T = 1: H( 9x(Qgn]) = H'(i*6(Qgn])))

which, in view of the above discussion, yields the equality (53). In order
to prove (56), let us first denote by s: X \ X < X the open embedding
complementary to ¢: X < X. Note that since ¢ is closed, we have that
t*t, ~ id. Therefore, by using the inclusion e :=toi: {z} — X as above,
we obtain:
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(57)
H™ ("' Qg) ~ H (" t'6.4'Qg) = H" M (e t,t'Qg) = H ™ (t.'Q5)a

Moreover, by using the attaching triangle

(58) tot — id — s,5" ﬂ),

as H"(Qg)e =0 = 7—[”+1(Q)~()x, we get that:

H”H(t*t!Q;{)z ~ H" (545" Qg )e H" (B2 +2, S*Q)}\X)

(59) ~ Hn(B%n—I—Q \X,Q) ~ Hn(sin—‘rl \ L;Q),

where B2"*2 denotes as before a small enough euclidian ball around z in
X, having as boundary the sphere 9B2"+2 = §2"*+1  Finally, by the Wang
sequence (1), we have that

(60)  HMSZHN\LiQ) = Ker (T~ 1: HY(F;Q) — H'(F;Q)),

which finishes the proof of (56).
Therefore, by (52) and (53), the claim on the injectivity of ¢, is equivalent
with

(61) Ker(T' — 1) N Image(T — 1) = {0},
which follows from our Assumption 3.7 on T}. O
We can now prove the following

Proposition 3.9. Under the Assumption 3.7, the zig-zag sequence corre-
sponding to (36) splits, i.e., there exists a zig-zag morphism

o: Z(Yr(Qzln]) — Z(C)
so that o o1 = idz ().

Proof. This amounts to defining homomorphisms o, : H"(F, L; Q) — A and
op: H'(F;Q) — B so that 0,014 =ida, 0p0 1, =idp and o0 § = ' 0 0,.
Note that then automatically o, c a = 0, as

e = (B) 1B oga = (B) LopBa =0

by exactness.
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In order to define o, let us first describe a basis for the vector space
H™(F,L;Q). Let {v1,...,vn} be a basis for Ker(3) and {a,...,ap} a basis
for A. Let A’ := Image(1,) C H"(F, L; Q). As 8| 4/ is injective, we have that
Ker(8) N A" = 0. Hence, the set of vectors {vi,...,Um,ta(a1),...,ta(ap} is
linearly independent in H"(F, L; Q). Next, consider the short exact sequence

0 — Ker(8) — H"(F,L;Q) -% Q := H"(F, L; Q) /Ker(8) — 0

and note that Ker(8) = Ker(q). Moreover, since ¢| 4/ is a monomorphism, it
follows that {qq(a1),...,qta(ap)} are linearly independent set of vectors in
Q. Extend this collection of vectors to a basis {qiq(a1), . .., qta(ap), a1, - -, @i }
of @, and define a homomorphism s : Q — H"(F, L; Q) by the rule: s(qiq(a;))
= 14(aj), for j =1,...,p, and by choosing arbitrary values in ¢~ '(g;) for
5(gj), 3 =1,...,k. Then it is easy to see that q o s = idg, hence

H"(F,L;Q) = Ker(5) @ Image(s).
So a basis for H"(F, L; Q) can be chosen as

{vi,.. . vm, ta(ar), ... talap), s(qr), . .., s(qr)}-

We can now define the map o, : H"(F, L; Q) — A as follows: 04(v;) = 0 for
all j=1,...,m, 04(ta(aj)) =a; for all j=1,...,p, and o4(s(g;)) =0 for
all j =1,..., k. Clearly, we also have o, 01, = id4.

In order to define oy, we first describe a basis for H"(F'; Q) as follows.
With the above definition of Q, let 5 : Q — H™(F;Q) be the canonical inclu-
sion so that 8 = foq. Then

{Bata(ar).. .. Bata(ap), Blar), - ., Blar)}

is a set of linearly independent vectors in H"(F;Q). Note that Bqi(aj) =
Bia(aj) = wh'(aj). Also, since 8" is an isomorphism, {#'(a1),..., 5 (ap)} is
a basis for B. Extend the above collection of vectors to a basis

{Lbﬁl(al)a ceey Lb/ﬁl(ap)? B(ql)v s ’B(Qk)v €1y 61}

for H"(F'; Q). We can now define oy, : H"(F; Q) — B as follows: oy (15'(a;)

= B'(a;) forall j = 1,...,p, op(B(g;) =0 for all j = 1,...,k, and op(e;)

for all j =1,...,[. Then we have by definition that o 0 ¢, = idp.
Finally, we check the commutativity relation o0 3 = 3/ 0 0, on basis

elements of H"(F, L;Q). For any index j in the relevant range, we have:

~

)
0
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(i) opB(vj) = 0= B'o4(v;) by the choice of v; € Ker(f) and by the defi-
nition of o,.

(i) opB(ta(ay)) = o/’ (aj) = B'(a;) = f'o4(tala;)), where the second
equality follows from oy 0 ¢y, = idp, and the third equality is a con-
sequence of o4ty = id4.

(iit) au8(s(q5)) = owBa(s(qj)) = ap(B(g;) = 0, and F'aa(s(g;)) = B'(0) = 0.

[l

As a consequence, we obtain the following

Corollary 3.10. Under the Assumption 3.7, there is a splitting of the short
exact sequence (36), hence:

1#”@5([7@ ~ ISX aC.

Proof. Since ' is an isomorphism, by the second part of Theorem 2.5 the
existence of such a splitting for (36) is equivalent to a splitting at the zig-zag
level. So the result follows from Proposition 3.9. O

3.4. On self-duality

In this section, we use the theory of ziz-zags to provide a topological inter-
pretation of the self-duality of the intersection space complex ZSx shown in
part (d) of our main Theorem 3.2.

We will still be working under the Assumption 3.7. Let D be the Verdier
dualizing functor in D%(X). Since X is compact, for any K € D’%(X) there
is a non-degenerate pairing

(62) H(X;DK) @ H(X; K) — Q.

Recall that the Verdier duality functor D fixes the category Perv(X), i.e.,
it sends perverse sheaves to perverse sheaves.

We will use part (b) of Theorem 2.5 to show that the intersection-space
complex ZSy is self-dual in Perv(X), i.e., there is an isomorphism

ISX ~ D(ISX)

More precisely, we will use a duality functor Dz in the category Z(X,z)
(see [20, Sect. 4]) to show that the zig-zag associated to ZSx is self-dual.
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Then Theorem 2.5 will generate a corresponding self-duality isomorphism
for ZSx.

Let us first describe the duality functor Dz on the zig-zag category
Z(X,z). Recall that X is a n-dimensional projective hypersurface with
only one isolated singularity z, and i: {z} — X and j: X° =X\ {z} —
X denote the respective inclusion maps. The following identities are well-
known:

(63)
i*Rj, ~i'Rj[1], Di* ~i'D, Dj* ~ j*D, Di, ~ 4D ~i,D, DRj, ~ RjD.

Let us now fix an object K € Perv(X) with associated zig-zag:

HY(i*Rj,j*K) —*— H'(i'K)

B

(64)
— 5 HY(*K) —— H°(i*Rj.j*K),

and recall that j*K ~ L[n], for some local system £ with finite dimensional
stalks on X°. The zig-zag Z(DK) associated to the Verdier dual DK is then
defined by the triple

(*DK, H°(i'DK), H*(i*DK)),
together with the exact sequence:

(65) HY(i*Rj,j*DK) —*— H'(i'DK)
—— HY(#*DK) —“— H'(i*Rj.j*DK).

By using (62), (63) and Remark 2.4, Z(DK) is then isomorphic to the triple
(Dj*K, H (" K)", H*(i' K)") = (£"[n], H*(i* K)", H(i' K) "),
together with the exact sequence:

HOG* Ry K)Y — s HO(*K)

P HGR)Y —s HU(*RjK)Y,

(66)
where for a vector space V, local system £ and homomorphism f, we denote
by VV, LV, fV their respective duals. In other words, the zig-zag of the dual
complex DK is obtained by “dualizing” the zig-zag of K, i.e., by considering
the corresponding dual vectors spaces and dual maps in (64).
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Definition 3.11. The above operation of dualizing a zig-zag defines a dual-
ity functor on Z (X, z), denoted by Dz, which is compatible with the Verdier
dual on Perv(X), i.e., we define

(67) Dz(Z(K)) = (£'[n], H'("K)", H'(P'K)")
together with the sequence (66).

Remark 3.12. In terms of the local system L := j*K|[—n| associated to
K € Perv(X), the zig-zags for K and DK correspond respectively to the
long exact sequences:

Z(K): H"'(i*Rj.L) —— HO(i'K)

B

(68)
— HY(i*K) —— H"(i*Rj.L),

and

(50) 2K HY Y (#Rj.LY) —L s HO*K)
P G KY s HMRjLLY).
Indeed, for any r € Z, we have

62
H"(i*Rj.j*K)Y ~ H" " (i*Rj.L)" @ H"""(D(i*Rj.L))

(70) ~ H™""(i' RiD(L))) = H""(i' Rj1L" [2n])

~ B (i RjicY) D

anrfl (Z*Rj*ﬁv)
We can now prove the following

Proposition 3.13. Under the Assumption 3.7, the zig-zag associated to
the intersection-space complex ISx is self-dual in the category Z(X, ).

Proof. Applying Z to the short exact sequence
0 — C— Y:Qgz[n] — ISx — 0,

we obtain the commutative diagram
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Do yn
Vv — A’ - B’ = w
(0% 5 ’y
0 0 0 0,
where
A' = H(i'TSx), B' = H(i*ISx)
and

V = H Yi*Rj,j*TSx) ~ H" Y(L;Q), W = H°(i*Rj,j*ISx) ~ H"(L; Q),

using that j*ZSx = Qx-[n]. The rows of this diagram are known to be exact,
but we do not know a priori that the columns are exact, since Z is generally
not an exact functor. However, using the splitting obtained in Corollary 3.10,
there is a commutative diagram

O—>C*>1/JWQX[ I8x 0

0——>C-"dca ISX ISy 0,

where the bottom row is the standard short exact sequence associated to
the direct sum, i.e. the map labelled incl is the standard inclusion and the
map labelled proj is the standard projection. Since the zig-zag category is
additive and Z an additive functor, we obtain commutative diagrams such
as e.g.

incl

0 A@ A 0,
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This proves that the second column of diagram (71) is exact. Similarly,
all other columns of (71) are exact. We claim that Image = Imaget; in
H™(F;Q). To establish this, we observe first that

Imaget, = Image(1,8") = Image(Bt,) C Imagef.

Thus it remains to show that § and ¢, have the same rank. By the Wang
sequence, we have the following cohomological version of [25, Prop. 2.2]:

Image(f) ~ Image(T, — 1) ~ B.

This proves the claim. Diagram (71) shows that 7 is surjective. Suppose
that 5(b') = 0. Then there is a class x € H"(F;Q) with py(xz) =" and
pw(y(2)) =F(pp(x)) =F(b') = 0. As py, is an isomorphism, v(z) = 0. So =
is in Imagef$ = Imaget;, which implies that b’ = py(z) = 0. We have shown
that 7 is injective, hence an isomorphism. This implies that § is the zero
map and & is an isomorphism. So the zig-zag Z(ZSx) for ZSx looks like:

(72 H"Y(L;Q) —— H"(F,L;Q)/A
— HY(F;Q)/B —— H"(L;Q).

By Definition 3.11, the zig-zag Z(D(ZSx)) for the Verdier dual of ZSx is
given by Qx-[n] on X°, together with the exact sequence (dualizing the

corresponding one for Z(ZSx)):
ay QY (H(FQ)/B)
— (H"(F,L;Q)/A) —— H"(L;Q)".

An isomorphism between the zig-zags Z(ZSx) and Z(D(ZSx)) can now be
defined as follows: The orientation of X° specifies a self-duality isomorphism

d: j*ISX = (@Xo[n] = D(@Xo[n] = DJ*ISX = j*DISX
The induced isomorphism
de : H ' (i*Rj.j*TSx) = H ' (i*Rj.j*DISx)

(similarly on HY) corresponds to the non-degenerate Poincaré duality pairing
H"Y(L;Q) ® H"(L; Q) — Q for the link L. It determines uniquely isomor-
phisms H"(F, L; Q)/A = (H"(F;Q)/B)", H"(F;Q)/B = (H"(F, L;Q)/A)"
such that
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H-'(i*Rj,j*ISx) ——— H"(F,L;Q)/A —>— H"(F;Q)/B —— H(i*Rj,j*ISx)

L ! l L

H™'(i*Rj,j*DISx) —— (H"(F;Q)/B)Y —>— (H"(F,L;Q)/A)Y —=— H°(i*Rj,j*ISx)

commutes. O

Corollary 3.14. Under the Assumption 3.7, the perverse sheaf IZSx is
self-dual in Perv(X).

Proof. In Prop. 3.13, we have constructed an isomorphism in Hom(Z(ZSx),
Dz(Z(ZSx))). Hence by Theorem 2.5(a), there exists an isomorphism in
Hom(ZSx,D(ZSx)). Therefore, ZSx is self-dual in Perv(X). O

Remark 3.15. By our calculation in the proof of Proposition 3.13, we
obtain the following stalk calculation for the intersection-space complex asso-
ciated to a hypersurface X with an isolated singular point x satisfying the
Assumption 3.7:

Q, for r = —n,
(74) H(ZSx), = { H(L;Q), forr=0
0, for r # —n, 0.

Moreover, at a smooth point y € X°, we get by the splitting of the nearby
cycles:

, s - ~JQ, forr=-—n,
(1) H(TSx)y = H (elQgln])), = { 0 g
Remark 3.16. Note that one could attempt to define an intersection-space
complex as the unique perverse isomorphism class corresponding to the zig-
zag given by the triple (Qx-[n]|, H"(F, L;Q)/A, H"(F;Q)/B) together with
the exact sequence (72). However, the resulting perverse sheaf, while being
self-dual, has no clear relation to Hodge theory.
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