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Abstract

We consider the moduli problem of stable maps from a Riemann
surface into a supermanifold; in twistor-string theory, this is the instan-
ton moduli space. By developing the algebraic geometry of supermani-
folds to include a treatment of super-stacks we prove that such moduli
problems, under suitable conditions, give rise to Deligne–Mumford super-
stacks (where all of these objects have natural definitions in terms of
super-geometry). We make some observations about the properties of
these moduli super-stacks, as well as some remarks about their applica-
tion in physics and their associated Gromov–Witten theory.
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1 Introduction

The study of moduli spaces in algebraic geometry is an old and storied
topic which has proven to be an exciting field for a wide variety of rea-
sons. Not least among these is the fact that moduli problems present one
of the best examples for the use of stack theory in algebraic geometry (cf.
[1, 2]). Furthermore, the development of string theory over the past 25 years
has given further impetus to the study of moduli problems. In particular,
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the classic study of instanton counting for the quintic Calabi–Yau in P4 [3]
lead to the prominence of Kontsevich’s [4] moduli space of stable maps and
Gromov–Witten theory as a means to study the interaction between enu-
merative algebraic geometry and mirror symmetry (cf. [5, 6]). The moduli
space of stable maps from a Riemann surface into an abstract variety or
scheme is by now relatively well understood; indeed, it was shown some
time ago that this moduli problem gives rise to a Deligne–Mumford stack as
long as the target space is projective and smooth [7]. In this paper we follow
the tradition of physics suggesting directions for mathematics by studying
a generalization of this moduli problem to a setting where the target space
is a supermanifold.

A supermanifold can be näıvely thought of as a manifold in the usual
sense, but now endowed with some coordinates that anti-commute. Indeed,
the earliest definitions of supermanifolds are as locally ringed spaces which
are locally homeomorphic to the super-space Rn|m; a space with n real com-
muting or bosonic degrees of freedom and m anti-commuting or fermionic
degrees of freedom [8]. The natural analogue of supermanifolds in the the-
ory of algebraic geometry is the concept of super-scheme. This algebraic
perspective was first developed in [9, 10, 11], and corresponds to an ordi-
nary (bosonic) scheme endowed with a structure sheaf of super-algebras
obeying an obvious consistency condition [12, 13]. These constructions have
been of interest to physicists for some time due to their obvious applica-
bility to the study of supersymmetric field theories (i.e., theories with a
symmetry that intertwines bosonic and fermionic degrees of freedoms) and
super-gravity (cf. [14]). However, recent developments in the study of the
planar (i.e., large number of colours) sector of maximally supersymmetric
(N = 4) super-Yang–Mills (SYM) theory have demonstrated a novel appli-
cation of super-geometry and highlighted the need for a rigorous theory
of the moduli space of stable maps from a Riemann surface to a super-
scheme.

In 2003, Witten discovered that particular classes of n-particle scattering
amplitudes in planar N = 4 SYM can be calculated by integrating over the
moduli space of stable maps of degree d from a Riemann surface of genus
g into the super-scheme P3|4 (denoted M̄g,n(P3|4, d)), where d+ 1− g is
the number of negative helicity particles involved and g is the loop-order
of the corresponding field theory calculation [15]. For instance, a maximal
helicity violating (MHV) tree interaction involves an arbitrary number of
positive helicity particles (gluons for Yang–Mills theory) and two negative
helicity particles. This amplitude is supported on a degree 1, genus zero (as
tree level indicates zero loops) holomorphic curve in P3|4 (i.e., a line). The
target space P3|4 of this theory has the interpretation as the twistor space
of (4|8)-dimensional chiral Minkowski super-space, the natural space–time
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of N = 4 SYM (see [13, 16] for good reviews of algebraic super-geometry in
the context of twistor theory).

Although Witten’s original formulation is by no means unique, the CFT
correlator computations associated to scattering amplitudes involve (in one
way or another) integrals over the moduli space M̄g,n(P3|4, d) in all known
twistor-string theories [17, 18, 19]. In much of the literature up to this point,
it has been assumed that the properties of M̄g,n(P3|4, d) are inherited from
its well-studied bosonic counterpart; these include compactness, smoothness
(at genus zero), algebraicity and the Deligne–Mumford property at the level
of the stack. Beyond twistor-string theory itself, this moduli space and its
properties have played a role in a myriad of related advances using twistor
methods (see [20] for a review). These include: the relationship between
the connected and disconnected prescriptions for the twistor string [21]; the
embedding of the Grassmannian formalism of [22] into the twistor string
[23]; the proof for the Britto-Cachazo-Feng-Witten (BCFW) recursion rela-
tions [24, 25] in twistor-string theory [26]; the proof of the BCFW recursion
relations for the supersymmetric Wilson loop in twistor space [27, 28]; and
the derivation of all-loop recursion relations for mixed Wilson loop-local
operator correlators [29]. Despite the central role played by M̄g,n(P3|4, d) in
each of these examples, there has never been a rigorous investigation of this
moduli space to verify whether or not its supposed properties actually hold.

In this paper, we provide a rigorous treatment of the moduli stack of
stable maps from a Riemann surface to a general super-scheme. Our main
result is the following theorem:

Theorem. Let X be a smooth, projective and split super-
scheme and let M̄g,n(X,β) be the moduli stack of stable maps
from a Riemann surface of genus g with n marked points to
X whose image lies in the homology class β (see Definition
3.1). Then M̄g,n(X,β) is a Deligne–Mumford super-stack.

In the case of twistor-string theory, this confirms the working assumptions
of the literature discussed earlier.

Section 2 builds a theory of super-schemes which is largely a review or
reformulation of studies presented elsewhere in the literature. We then
take a new step by introducing the notion of a super-stack, as well as the
corresponding concepts of algebraicity and Deligne–Mumford-ness for these
objects. Our treatment is heavily influenced by Behrend’s presentation of
stacks at the Isaac Newton School on moduli spaces [30], as well as the classic
reference on algebraic stacks [31]. We then use our theory of super-stacks to
show that the stack of stable maps from a Riemann surface to a super-scheme
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is a Deligne–Mumford super-stack in Section 3, under natural assumptions.
We also make some observations about other properties of this moduli space
which have been used in the physics literature, including its natural maps
and smoothness criteria. In Section 4, we make some observations about
open issues and applications of our super-stack construction to theoretical
physics, as well as laying out some questions about the Gromov–Witten
theory associated with such objects.

1.1 A note on terminology

As our primary interest throughout this paper will be “super-geometric”
objects (e.g., supermanifolds, super-schemes, etc.), we must make a choice
about how to differentiate these constructs from their counterparts which
are familiar from ordinary algebraic or differential geometry. To avoid
a proliferation of adjectives, we simply drop the “super-” from in front
of all super-geometric objects we consider after their initial introduction
and definition. Hence, from now on we will use “scheme” to refer to a
super-scheme, “stack” to refer to a super-stack, and so forth (although
we will emphasize the distinction whenever a new “super-” construct is
introduced). The objects and constructions of ordinary algebraic geome-
try will be distinguished by placing a “bosonic” before them; thus a clas-
sical scheme will be refered to as a “bosonic scheme” for the remainder of
the paper. All constructions will take place over the field of complex num-
bers and we will restrict our attention to schemes which are locally of finite
type.

2 Algebraic super-geometry

We now turn to the development of the concepts in “algebraic
super-geometry” which will be necessary to construct the moduli spaces
of interest. From now on, we consider target spaces using the language of
schemes rather than manifolds; in the context of twistor-string theory, this
is natural since projective varieties are naturally projective schemes. We
first develop the notion of a super-scheme along the lines of prior research in
super-geometry (e.g., [12, 13]) and study the local properties of morphisms
between these objects. The remainder of the section is devoted to the devel-
opment of a suitable theory of super-stacks. A super-geometric generaliza-
tion of the GAGA principle [32, 33] means that we are free to interpolate
between the abstract algebraic point of view, which we take through most
of this paper, and the more intuitive complex-analytic approach. Unless
otherwise mentioned, we work over the field C.
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2.1 Super-schemes

2.1.1 Super-rings

In order to build algebraic geometry for supersymmetric settings, we must
first consider more basic algebraic notions such as rings. We define a super-ring
R to be a ring in the usual sense, but now with fermionic part

R = Rb ⊕Rf ,

where Rb is an ordinary (i.e., bosonic) ring and Rf is made up of anti-
commuting elements. In other words, a super-ring is a Z2-graded ring which
is graded commutative. A super-ideal I ⊂ R is an ideal of R in the usual
sense and obeys

I = (I ∩Rb)⊕ (I ∩Rf) . (2.1)

We say that I is prime if for all a, b ∈ R, ab ∈ I implies that a or b is in I, as
usual. We then define the “super-spectrum” (henceforth, “spectrum”) of R,
Spec(R) to be the set of all prime super-ideals in R. As any ring is trivially
a super-ring, there is no need for us to distinguish between the notions
of spectrum and super-spectrum. This leads to the following observation
relating the spectrum of a super-ring to the spectrum of its bosonic part:

Lemma 2.1. Let R=Rb⊕Rf be any super-ring. Then Spec(R) ∼= Spec(Rb)
as sets, and under this isomorphism every prime super-ideal p ∈ Spec(R)
gets mapped to its bosonic part.

Proof. Let p be a prime super-ideal of the super-ring R. Then we can write

p = (p ∩Rb)⊕ (p ∩Rf) ≡ pb ⊕ pf

by the definition of a super-ideal (2.1). Now, for any fermionic element
ψ ∈ Rf , it follows that ψ2 = 0, which indicates that ψ2 ∈ p. But p is prime,
so ψ ∈ p for all ψ ∈ Rf . Hence, we have

p = (p ∩Rb)⊕Rf .

So pf = Rf , and a prime super-ideal in Spec(R) carries no new information
in its fermionic sector. Thus, we get the isomorphism Spec(R) ∼= Spec(Rb)
by projecting out the trivial Rf in the direct sum

pb ⊕Rf 	→ pb

as required. �
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We now see that the natural definition for a locally super-ringed space is
a (bosonic) topological space X equipped with a structure sheaf of super-
algebras OX such that the stalk of OX over each point inX has the structure
of a super-ring. Although locally ringed spaces are the road to bosonic
schemes in ordinary algebraic geometry (cf. [34, 35]), Lemma 2.1 allows
us to take a much simpler approach to defining super-schemes that builds
directly on the already existing theory of bosonic schemes.

2.1.2 Super-schemes

We now give the definition of super-scheme that will be used in the remainder
of this paper:

Definition 2.1 (Super-scheme). A super-scheme X (henceforth, a scheme)
is a pair (Xb,A), where Xb is a bosonic C-scheme in the ordinary sense
and A is a quasi-coherent sheaf1 of super-algebras, whose bosonic part obeys
Ab = OXb

.

So a scheme is just a bosonic scheme augmented by a structure sheaf of
super-algebras; this definition coincides with that often given in the litera-
ture of super-geometry (e.g., [13]).

We now provide some additional definitions which fill out the theory of
schemes:

Definition 2.2 (Morphism). A morphism of schemes (Xb,A)→ (Yb,B) is
a pair (f, φ), where f : Xb → Yb is a morphism of bosonic C-schemes and
φ : B→ f∗A is a morphism of super-algebras.

Definition 2.3 (Sub-scheme). A sub-scheme X of a scheme Y = (Yb,B)
is a scheme (Xb,A) equipped with a pair (f, φ) such that f : Xb ↪→ Yb is a
closed immersion and φ : B→ f∗A is surjective.

These notions now provide us with a well-defined category of schemes,
which we denote as Sch (the category of bosonic schemes is denoted BSch).
Now, any X ∈ ob(Sch) comes equipped with a natural forgetful functor
Sch → BSch which simply projects to the underlying bosonic scheme

X = (Xb,A) 	→ Xb

but there is another important way in which bosonic schemes may be
obtained from schemes. We consider first the case of an affine scheme (i.e.,

1In the context of supersymmetry, this can be restricted to coherent sheaves, as the
supersymmetry algebra is finitely generated.
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one which is of the form Spec(R) for some super-ring R), and trust that the
reader is capable of extending the arguments to a general scheme.

Note that in any super-ring R = Rb ⊕Rf , the bosonic portion Rb must
contain nilpotent elements of the form ψχ, where ψ, χ ∈ Rf . In general
such elements are bosonic and non-zero in Rb, but must of course square
to zero. In all physical applications, sections of this sort do not appear in
the bosonic portion of the effective field theory; i.e., after integrating out
fermionic degrees of freedom in any Lagrangian, we are left with objects
that are “purely bosonic” in the sense that they are not inherited from the
fermions in the manner just described. We therefore consider a construction
which identifies elements in a super-ring obtained in this fashion with zero:

Definition 2.4 (Bosonic truncation). Let R = Rb ⊕Rf be a super-ring. The
ring τb(R) is defined as R/(RRf). For a scheme X = (Xb,A), this allows
us to define τb(X), as schemes are glued from affine schemes2 .

Given X ∈ ob(Sch) and Y ∈ ob(BSch), we say that X is a superization of
Y if τb(X) ∼= Y .

We now establish several important facts about τb, beginning with its
universal property:

Lemma 2.2. Let Y → X be a morphism of schemes, where Y = Yb is a
bosonic scheme. Then there exists a unique morphism Y → τb(X) such that
the composition Y → τb(X) → X agrees with the given morphism Y → X.
In particular,

Hom(Y,X) = Hom(Y, τb(X)).

Proof. The lemma is proved for all schemes by proving it for affine schemes.
In this case, we need only show that for a morphism of super-rings f : A→
B, where B is bosonic, we obtain a unique factorization A→ τb(A) → B.
As f must map all fermionic elements of A to zero, all elements of AAf must
be mapped to zero. Hence, we obtain the required factorization map

τb(A) = A/(AAf) → B

which completes the proof. �

We know that τb maps schemes to bosonic schemes, but how does it act
on morphisms of schemes? The following result confirms that τb indeed acts
as a functor.

2An equivalent construction for supermanifolds is given in [13].
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Lemma 2.3. The map τb can be extended to a functor τb : Sch → BSch.

Proof. We must check that for a given morphism of schemes f : Y → X,
there is a morphism of bosonic schemes τb(f) : τb(Y ) → τb(X) which pre-
serves identities and respects composition. This is immediate from Lemma
2.2 though, as Y → X → τb(X) factorizes into τb(Y ) → τb(X), and the uni-
versal property implies that identity and composition are preserved. �

Finally, the universal property and the locality of fibre product confirm
immediately that the functor τb respects the fibre product:

Lemma 2.4. Let Y → X and Z → X be morphisms of schemes. Then there
is a natural isomorphism

τb(Y )×τb(X) τb(Z) → τb (Y ×X Z) .

Every bosonic scheme gives rise trivially to a scheme. In the spirit of
Grothendieck’s relativization of absolute notions, we look to extend the
notion of bosonic scheme to a property of morphisms between schemes:

Definition 2.5 (Bosonic morphism). A morphism of schemes Y → X is
called bosonic if for every bosonic scheme Ub together with a morphism
Ub → X, the base-change Y ×X Ub is a bosonic scheme.

We then obtain an important result linking bosonic morphisms of schemes
with the τb functor:

Lemma 2.5. Let Y → X be a bosonic morphism of schemes. Then

τb(X)×X Y ∼= τb(Y ).

Proof. By Definition 2.5, it follows that τb(X)×X Y is bosonic by assump-
tion. From the natural morphism τb(X)×X Y → Y and Lemma 2.2, it
follows that there is a canonical morphism τb(X)×X Y → τb(Y ), and by
the universal property of fibre products, there is also a natural morphism
τb(Y ) → τb(X)×X Y . Due to the universal properties that both morphisms
satisfy, it follows that they are mutually inverse, and hence τb(X)×X Y ∼=
τb(Y ). �

Finally, we provide a superized notion of finite presentation for the struc-
ture sheaf of super-algebras of a scheme:
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Definition 2.6 (Fermionically of finite presentation). A scheme X =
(Xb,A) is called fermionically of finite presentation if Af is coherent as
a Ab-module.

We often use these properties of the τb functor to define concepts for
schemes in terms of the underlying concept for bosonic schemes. For instance,
we say that a scheme X is projective if it is fermionically of finite presenta-
tion and τb(X) is a projective bosonic scheme. The category of projective
schemes will be denoted PSch.

In the following definition we record the observation that we can take the
relative spectrum of a sheaf of super-algebras on a bosonic scheme to obtain
a super-scheme. It is constructed by taking Spec of a super-algebra Zariski
locally and gluing the schemes together.

Definition 2.7 (Relative spectrum, split scheme). Let X be a bosonic
scheme and A a sheaf of super-algebras on Xb. Then there exists a scheme
SpecX(A) over X called the relative spectrum of A. A super-scheme Y is
called split, if there exists a coherent locally free sheaf V on τb(Y ) such that
Y ∼= Specτb(Y )(∧•V).

We can apply this definition to an easy example with important applica-
tions in twistor-string theory:

Example (Pm|n). We define Pm|n and show that it is a superization of
Pm. As an analytic supermanifold, we can chart Pm|n with local coordinates

(Z1, . . . , Zm+1, ψ1, . . . , ψn),

where the Zα are the ordinary homogeneous coordinates on Pm and the ψi

are anti-commuting fermionic coordinates. We consider a sheaf of super-
algebras on Pm

A
Pm|n =

(
n⊕

k=0

∧kOPm(−1)⊕n

)
. (2.2)

Clearly τb(APm|n) = OPm , so define Pm|n to be the relative spectrum of A
Pm|n

Pm|n ∼= SpecPm(A
Pm|n).

Note that although τb(Pm|n) = Pm, the underlying bosonic scheme of Pm|n
is different from Pm, since locally its algebra of functions contains nilpo-
tent elements. Furthermore, Pm|n endowed with the structure sheaf of
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super-algebras (2.2) is trivially a projective scheme, and is fermionically
of finite presentation.

2.1.3 Local properties of morphisms

In the study of bosonic algebraic geometry, properties of morphisms such
as smooth or étale are essential for learning about relationships between
objects in that theory. While formal definitions of these properties can be
found in [35], there is an easy analogy in the category of smooth schemes:
a smooth morphism corresponds to a submersion, while an étale morphism
corresponds to a local diffeomorphism. We now extend these notions from
the world of bosonic algebraic geometry to algebraic super-geometry, assum-
ing that all schemes and morphisms are locally of finite type over C.

Definition 2.8 (Smooth scheme). A scheme is called smooth if the mor-
phism τb(X) → X admits a left-inverse g : X → τb(X) Zariski-locally on
X, and we can express X with respect to g as Specτb(X)(∧•V), where V is a
locally free sheaf (defined on a Zariski open subset U ⊂ τb(X)).

We would like to say that a morphism Y → X is smooth if all fibres are
smooth schemes. In order for this to be a sensible definition, we need to
introduce the notion of flat morphisms.

If R is a super-ring, then an R-module M is said to be flat if the functor
−⊗R M is exact (i.e., sends short exact sequences to short exact sequences).
A morphism of rings A→ B is then called flat if B is flat as an A-module.

Definition 2.9 (Flat morphism). Let X = (Xb,A) and Y = (Yb,B) be
schemes and f : Y → X be a morphism. Such a morphism of schemes is
called flat if, for every y ∈ Y , the induced morphism of local rings Af(y) →
By is flat.

From this definition, we state the following two facts about flat mor-
phisms:

Lemma 2.6. Let f : Y → X be a closed immersion corresponding to the
ideal sheaf IX , and g : Z → X a flat morphism. Then the pullback Y ×X Z
is the closed immersion corresponding to IY = f∗IX .

Proof. Without loss of generality, we consider the affine case, where f cor-
responds to a surjective morphism of rings A→ B and g is a flat morphism
of rings A→ C. Then the base change at the level of schemes induces a
surjective morphism of rings C → B ⊗A C, whose kernel is precisely I ⊗A C
as A→ C is flat. The tensoring of modules corresponds to pullback, and we
have the desired result. �
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Lemma 2.7. Let g : Y → X be a bosonic and flat morphism of schemes,
with X = (Xb,A), Y = (Yb,B). Then the fermionic portion of B is given
by Bf = g∗Af , and moreover B2

f = g∗A2
f . In particular we have that Y ∼=

X ×Xb
Yb.

Proof. As g is bosonic, we know from Lemma 2.5 that τb(Y ) = Y ×X τb(X),
so B/IY

∼= B⊗A A/IX . Now, the natural morphism τb(X) → X is a closed
immersion corresponding to the sheaf of ideals IX = A · Af , and by Lemma
2.6, we know that IY = g∗IX . Then taking the fermionic portion gives
Bf = g∗Af . The second and third statements follow easily from the first. �

These two lemmas allow us to prove the following proposition which will
be crucial in our later study of the moduli stack of stable maps from a
Riemann surface to a scheme.

Proposition 2.1. Suppose X = (Xb,A) is a scheme which is fermionically
of finite presentation, Y = (Yb,B) a scheme, and the morphism f : Y → X
a flat bosonic morphism. Then the underlying morphism of bosonic schemes
fb : Yb → Xb is flat.

Proof. Again, without loss of generality, we can assume that all schemes are
affine, so f corresponds to a morphism of rings A→ B. Using the fact that
f is bosonic, it follows that τb(Y ) → τb(X) is flat as the base change of the
flat morphism f . Now consider a closed immersion τb(X) → Xb given by
the sheaf of ideals A2

f ⊂ Ab, and likewise for B. By Lemma 2.7, we know
that B2

f = BbA
2
f . Now, let I ≡ AAf ; by assumption X is fermionically of

finite presentation, so it follows that A2
f is a nilpotent ideal. We are then in

a situation to apply the local criterion for flatness of the Ab-algebra Bb, as
stated in [36]. As Bb/(IbBb) is flat as an Ab/Ib-algebra, it suffices to show
that TorAb

1 (Bb, Ab/Ib) = 0.

Consider the short exact sequence

0 → Ib → Ab → Ab/Ib → 0.

Applying the functor TorAb∗ (Bb,−) to this yields a long exact sequence, of
which we are interested in the following portion:

TorAb
1 (Bb, Ab) �� TorAb

1 (Bb, Ab/Ib) �� Bb ⊗Ab
Ib ��

α

��

Bb ⊗Ab
Ab

γ

��
B ⊗A I

β �� B ⊗A A



MODULI STACKS OF MAPS FOR SUPERMANIFOLDS 1315

Now, as Ab is a free Ab-module so TorAb
1 (Bb, Ab) = 0. Hence, TorAb

1 (Bb,
Ab/Ib) will vanish provided the map Bb ⊗Ab

Ib → Bb ⊗Ab
Ab is injective.

The map β is injective as B is a flat A-module. Since

B ⊗A I = (B ⊗Ab
I)/(afb⊗ i− b⊗ afi : af ∈ Af , b ∈ B, i ∈ I)

we see that α is injective as well. Consequently, Bb ⊗Ab
Ib → Bb ⊗Ab

Ab is
injective and TorAb

1 (Bb, Ab/Ib) = 0 as desired. �
Definition 2.10 (Smooth/étale morphism). A morphism of schemes f :
Y → X is called smooth if it is flat and for every point Spec(C) → X the
fibre Y ×X Spec(C) is a smooth super-scheme. It is called étale if it is
smooth, bosonic and has zero-dimensional fibres.

2.2 Super-stacks

We now look to build upon the theory of schemes (much of which has built
on prior research in super-geometry) and develop a theory of (super-)stacks.
For the reader unfamiliar with this nomenclature, smooth Deligne–Mumford
stacks can be thought of as the algebraic generalization of orbifolds in the
same way that smooth schemes can be viewed as the algebraic analogue
of manifolds. However, where a coarse moduli space only “remembers” a
group action at singular points in the original manifold, a stack encodes
much more information [37]. For the case we will be interested in, the stack
will encode the automorphism group of curves in a target space which are
the image of a world-sheet of a particular genus under a map of a given
degree; an orbifold point in the corresponding coarse moduli space can be
thought of as a point where this automorphism group is non-trivial. A good
introduction to stacks is given by Gómez [2].

Stacks are a generalization of sheaves. The definition in the literature
(e.g., [1, 2, 38]) applies directly to the context of super-geometry. Our treat-
ment of algebraic super-stacks, on the other hand, should be seen as a special
case of relative algebraic geometry [39]. In this theory one replaces the cat-
egory of rings by a more general category of monoid objects in suitable
monoidal category. This approach to algebraic geometry is fundamental to
the subject of derived algebraic geometry (see [40] for a discussion of this
circle of ideas).

2.2.1 Schemes as representable functors

One reason why bosonic schemes can be hard to grasp intuitively is due
to the fact that a point of a scheme does not necessarily correspond to a
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spatial point in the classical sense. For instance, consider the affine scheme
A1 corresponding to the ring of polynomials C[t]. We know that points of
A1 are given by prime ideals in C[t], so we have a point for every complex
number z ∈ C, namely the prime ideal (t− z). But we also have the zero
ideal (0), which does not correspond to a complex number and therefore to a
point of the variety A1. This is an example of what is called a generic point
[35]. Geometrically, generic points correspond to irreducible subvarieties; in
our example of A1, there is only one non-trivial closed irreducible subvariety:
A1 itself.

A way to single out those points of a bosonic C-scheme X which we
believe to be points of some variety is by considering the set of morphisms
{Spec(C) → X}. Geometrically, Spec(C) is a point with the structure sheaf
corresponding to constant C-valued functions. It is therefore not surpris-
ing that this set of morphisms, denoted X(Spec(C)), agrees with what we
understand to be the “set of points” of a bosonic scheme X. The same con-
cept holds for a manifold M in differential geometry: the set of morphisms
{pt →M} agrees with the set of points of M .

In general, we are free to consider the set of morphisms Y → X (for
any bosonic scheme Y ), which we denote by X(Y ). This gives a functor,
referred to as the “functor of points of X.”3 It is a general principle (true
in every category) that this functor determines the object uniquely (the
Yoneda lemma). Grothendieck’s [37] viewpoint on algebraic geometry is to
study a bosonic scheme in terms of its functor of points.

For example, we can see that A1(X) is the set of regular functions on X
(i.e., OX(X)). For Pn(X), a X-point of Pn corresponds to a line bundle
L together with n+ 1 global sections {s0, . . . , sn} which span L. Similar
descriptions exist for Grassmanians and flag schemes.

The functorial viewpoint of super-geometry was introduced by the Bern-
stein school (cf. [12]) and emphasized by Manin [13]. Our goal is now
to extend these ideas, allowing us to study algebraic spaces and algebraic
stacks. We first recall some necessary notions from category theory:

Definition 2.11 (Grothendieck pretopology). Let C be a category. A
Grothendieck pretopology on C is a family of coverings (i.e., a distinguished
collection of morphisms {Ui → X}i∈I) satisfying the following axioms:

(1) Every isomorphism Y → X is a covering.

3Actually, this is a co-functor from the category of bosonic schemes to the category of
sets: (BSch)op → Set.
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(2) Given a covering {Ui → X}i∈I and a morphism Y → X, then {Ui ×X

Y → Y }i∈I is a covering of Y , provided the fibre products exist in C.
(3) Given a covering {Ui → X}i∈I , and for every i ∈ I a covering {Vij →

Ui}j∈Ij of Ui, then {Vij → X}(i,j)∈∐i∈I Ij
is a covering of X.

Näıvely, one can take C = BSch and consider the Grothendieck pretopol-
ogy given by the actual open coverings; such a construction generalizes obvi-
ously to the category of schemes. In practice this is not enough to give
interesting theories of principal bundles or cohomology with constant coef-
ficients due to the fact that Zariski-open subsets are too big. This situation
is remedied by studying more general “open subsets,” not necessarily given
by the inclusion of Zariski open subsets. In other words, we need a suitable
notion of locality in the context of category theory which yields non-trivial
cohomology.

To do this, we introduce the notion of a set-valued functor as sheaf, as
well as the so-called “fppf” pretopology:

Definition 2.12. A set-valued functor F : (C)op → Set is a sheaf if, for
every covering {Ui → X}i∈I of a X ∈ ob(C) and every family of local sections
{si ∈ F(Ui)}i∈I , there exists a unique section s ∈ F(X) satisfying: F(Ui →
X)(s) = si for all i ∈ I if and only if for all (i, j) ∈ I × I we have F(Ui ×X

Uj → Ui)(si) = F(Ui ×X Uj → Uj)(sj).

The latter condition in this definition is a gluing condition familiar from
the theory of sheaves on topological spaces. Most often, we will take C = Sch,
the category of schemes.

Definition 2.13 (fppf/étale pretopology). The fppf (resp. étale) pretopol-
ogy on the category of schemes consists of coverings {Ui → X}i∈I , where
Ui → X is a flat (resp. étale) morphism locally of finite presentation in the
category of schemes and ∐

i∈I

Ui → X

is surjective.

One can check that Definition 2.13 satisfies Definition 2.11 of a
Grothendieck pretopology. Furthermore, we see once again that the topolog-
ical aspects of super-geometry are solely encoded in the underlying bosonic
topology. We now obtain the following lemma, which has important conse-
quences for our development of stacks.
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Lemma 2.8. The functor of points of a scheme is a sheaf with respect to
the fppf topology.

Proof. This result follows from Definitions 2.12 and 2.13, and descent theory
(cf. [38]). �

Functors as fibred categories: One way of viewing stacks classically
is as categories which are fibred in groupoids, and this is precisely the per-
spective we want to extend to the setting of super-geometry. A groupoid is
a group with several identities, or equivalently, as a set with automorphism
groups attached to every element. This will be the ideal way to describe
orbifolds and stacks in algebraic super-geometry.

Definition 2.14 (Groupoid). A groupoid is a small category, where all
morphisms are isomorphisms.

A groupoid-valued lax 2-functor from F : C → Grpd is given by assigning
to every object X a groupoid F(X), and to every morphism X → Y a
morphism of groupoids F(X) → F(Y ). This differs from an ordinary functor
because the identity

F(g ◦ f) = F(g) ◦ F(f)

is not precisely satisfied; additionally, one requires a variety of other consis-
tency conditions be satisfied. Rather than following this track of 2-functors
(which is somewhat tedious even in the classical sense), we pursue the
slightly more conceptual language of fibred categories. This allows us to
avoid undue techinicalities in our discussion of super-geometry without
sacrificing rigor.

Definition 2.15 (Category fibred in groupoids (CFGs)). Let F : C → D
be a functor. Let y ∈ ob(C) and u→ v a morphism in D. If v = F(y),
we say that a morphism x→ y completes this data to a Cartesian diagram
if F(x) = u and for every z ∈ ob(C) with a morphism to y and F(z) → u
making the diagram:

F(z) ��

��

F(y)

u �� v
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commute, there exists a unique morphism z → x such that

F(z)

��

�����
�

�
�

F(x)

��

�� F(y)

u �� v

commutes. We say that F : C → D is a category fibred in groupoids (hence-
forth, a CFGs) if every diagram can be completed to a Cartesian diagram.

For every u ∈ ob(D), we consider the subcategory of C given by x ∈ ob(C)
satisfying F(x) = u and morphisms x→ y satisfying F(x→ y) = idu. This
subcategory is called the fibre over u of C. Definition 2.15 states that a
CFGs is precisely a functor with all fibres being groupoids. In the language
of 2-functors (which we have neglected here), this gives rise to a lax 2-functor
(D)op → Grpd sending u to the groupoid F−1(u). The functoriality stems
from the fact that we can pullback an object y in C lying over v along a
morphism π : u→ v, to obtain π∗y. This 2-functorial point of view suggests
that there should exist an analogue of sheaves in line with Definition 2.12.

The functor which we will need to satisfy a sheaf property in this context
is the “functor of isomorphisms,” but we also demand a descent property for
the objects in the CFG. Let F : C → D be a CFG and u ∈ ob(D) an object.
Given two objects x and y of C lying over u, we can define a set-valued
functor

Iso(x, y) : (D/u)op → Set.

It sends an object of the comma category C/u, which is simply a morphism
φ : v → u, to the set of isomorphisms

φ∗x→ φ∗y.

Note that this functor is well-defined up to equivalence, as the same is true
for the pullbacks φ∗u and φ∗v. We refer to subsection I.3.7 in [38] for a
concise discussion of this concept.

Definition 2.16 (Stack). Let F : C → D be a CFG; and assume that D is
endowed with a Grothendieck pretopology. We say that F is a stack, if the
following two conditions are satisfied:



1320 TIM ADAMO AND MICHAEL GROECHENIG

• Given two objects x and y of C, lying over the same object u of D; the
functor of isomorphisms between x and y

Iso(x, y) : (C/u)op → Set

is a sheaf.
• Let {ιi : ui → u}i∈I be a covering in D, and p1 : ui ×i uj → ui, p12 :
ui ×u uj ×u uk → ui ×u uj, etc. be the natural projections. Then given
objects xi of C lying over ui, together with isomorphisms

φij : p∗1xi → p∗2xj

on ui ×u uj satisfying the cocycle condition

p∗23φjk ◦ p∗12φij = p∗13φik

on ui ×u uj ×j uk, there exists an object x over u together with
isomorphisms

φi : ι∗ix→ xi

on ui, satisfying

φij ◦ φi = φj

on ui ×u uj.

2.2.2 Super-stacks

We are now ready to set out our superized notion of stacks. To do this,
we choose a Grothendieck pretopology on the category of schemes, Sch,
resulting in the following definition:

Definition 2.17 (Super-stack). A super-stack (henceforth, a stack) is a
CFG over the category of schemes which is a stack with respect to the fppf
pretopology.

Just as τb was extended to a functor for schemes, we can extend it to a
functor of stacks as well. The motivation for such an extension is derived
from the universal property of τb given by Lemma 2.2, and how it acts on
the space of maps between schemes. We have also seen that the functor of
points of the bosonic scheme τb(X) can be described as the functor of points
of the scheme X restricted to bosonic schemes. Such a definition is sensible
because any Grothendieck pretopology on Sch restricts (by Definition 2.13)
to the usual pretopology on BSch.



MODULI STACKS OF MAPS FOR SUPERMANIFOLDS 1321

Definition 2.18. For a stack X , we define τb(X ) to be the bosonic stack
given by restriction to the full subcategory of bosonic schemes.

As before, τb is the right adjoint to the fully faithful inclusion functor
between two-categories ι : BStack→ Stack. Hence, to view a bosonic stack
Xb as a stack over Sch, we take

ι(Xb)(U) ≡ Xb(Ub).

2.2.3 Morphisms of stacks and algebraicity

Surjectivity is a property which will be important in the study of morphisms
between stacks. At the level of schemes, the condition that Y → X is sur-
jective is just the condition that the morphism is surjective upon restriction
to the underlying bosonic topological spaces (i.e., τb(Y ) → τb(X) is surjec-
tive). To define a notion of surjectivity for morphisms of stacks, we use the
following procedure, well-known in the bosonic case [31], using the stack’s
set of points.

Let X be some stack over affine schemes and F,L,K some fields, and
consider the set of isomorphism classes X (Spec(F,L,K)). We then iden-
tify a point x ∈ ob(X (Spec(F ))) with y ∈ ob(X (Spec(L))) if there exists a
common sub-field K ⊂ F,L and a point z ∈ ob(X (Spec(K))) such that x
and y both map to z. The set of all such points in X → Sch up to this
identification is called the set of points of the stack X . This is a well-known
concept from the theory of bosonic stacks, and only depends on τb(X ) [31].
Every morphism of stacks induces a map between their sets of points, and
consequently we can call a morphism of stacks surjective if and only if the
corresponding map between sets of points is surjective. In particular, this
means that the morphism Y → X is surjective if and only if the morphism
of bosonic stacks τb(Y) → τb(X ) is surjective.

Definition 2.19 (Schematic morphism). A morphism of algebraic stacks
f : Y → X is said to be schematic if, for all X → X (where X is a scheme),
the diagram

Y

��

�� X

��
Y f �� X

is Cartesian for some scheme Y . We say that a schematic morphism is
smooth, étale, flat or bosonic, if every base change Y → X has the respective
property.
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The notion of schematic morphisms allows us to define algebraic super-
spaces. This concept has been introduced by Dominguez Perez et al. [41].

Definition 2.20 (Algebraic space). A set-valued sheaf X on the category of
schemes is called an algebraic super-space (henceforth, an algebraic space),
if there exists a scheme S together with a morphism S → X , which is a
surjective morphism of stacks, which is schematic and étale.

In the same way that an ordinary functor can be represented by a scheme,
we can define what it means for a morphism of algebraic stacks to be repre-
sentable:

Definition 2.21 (Representable morphism). A morphism of stacks f : Y →
X is said to be representable if, for all X → X (where X is a scheme), the
diagram

Y

��

�� X

��
Y f �� X

is Cartesian for some algebraic space Y .

If a morphism of stacks is representable, then we are free to define what
is meant by other local morphism properties for it. In this manner, any
property of schemes which is invariant under base change can be defined as
a property of morphisms of stacks, provided that morphism is representable;
examples are étale, smooth, un-ramified and so on. The following definition
sets out formal terminology which we use to deal with morphisms of stacks
from now on:

Definition 2.22. A morphism of stacks Y → X is called:

(1) bosonic if every base change of Y → X in Definition 2.21 is bosonic,
(2) smooth if every base change of Y → X in Definition 2.21 is smooth

and
(3) étale if every base change of Y → X in Definition 2.21 is étale.

With this definition at hand we can finally introduce algebraic stacks:

Definition 2.23 (Algebraic stack). A stack X is called algebraic if there
exists an algebraic space S together with a surjective, representable and
smooth morphism S → X .
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We will say that the morphism S → X is a complete versal family for the
algebraic stack X .4 This terminology is taken from [30] and emphasizes that
in general stacks should be viewed as abstract moduli problems. Morally
speaking, moduli problems are about classifying certain objects up to iso-
morphism. A complete versal family is a continuously (or regularly) varying
family of such objects, such that every isomorphism type is covered (this is
the surjectivity or completeness condition); versality (i.e., smoothness) is a
weakened universality condition, which ensures that every other family can
be obtained étale locally from our chosen one.

Now that we have a fully developed vocabulary for describing morphisms
between stacks in super-geometry, we are also ready to define a Deligne–
Mumford stack:

Definition 2.24 (Deligne–Mumford stack). A stack X → Sch is Deligne–
Mumford if there exists a complete versal family S with the corresponding
morphism S → X being étale.

We obtain the following fact directly from our definitions:

Lemma 2.9. Let Y → X be a representable morphism of stacks. If X is an
algebraic stack (resp. Deligne–Mumford stack) then so is Y.

Proof. If X is algebraic, then it contains a complete versal family S → X for
some scheme S. By the definition of a representable morphism of stacks, we
know that the base change Y ×X S → Y is a complete versal family of Y;
further, this will be étale if the complete versal family of X was étale. �

3 The moduli stack of stable maps

Having developed our understanding of algebraic super-geometry to the
extent that we have a suitable notion of algebraic and Deligne–Mumford
stacks, we now proceed to construct the object which will be of interest for
twistor-string theory. In what follows, we will consider X to be a (complex)
smooth projective scheme; this will be the target space of our string theory.
After providing the definitions necessary to construct the moduli stack of
interest, we prove that it is a Deligne–Mumford stack.

4Often this morphism is referred to as an atlas for the stack X .
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3.1 Moduli of stable maps

Our first step must be to find a supersymmetric generalization of Kontse-
vich’s [4] concept of a stable map from a Riemann surface into a variety
or bosonic scheme. This proves to be a rather trivial generalization of the
usual definition:

Definition 3.1 (Stable map). A stable map over T ∈ ob(Sch) into X is
given by the following set of data:

{π : C → T, g, n, β ∈ H2(X,Z), φ : C → X} ,

where C is an algebraic space, π is a proper, flat, bosonic morphism whose
geometric fibres Ct are reduced, connected and one-dimensional bosonic
schemes (i.e., possibly singular Riemann surfaces), and n =
{xi : T → C}i=1,...,n are marked points which vary smoothly between the fibres
of C. Furthermore, these fibres obey the following conditions:

(1) dimH1(OCt) = g;
(2) the only singularities of Ct are ordinary double points;
(3) every contracted irreducible component of arithmetic genus h of Ct con-

tains at least 3− 2h special (i.e., marked or singular) points on its
normalization; and

(4) φ∗[Ct] = β.

In this definition, the notion of homology on a projective scheme X has
to be understood as the homology of the analytic space associated to τb(X).
Criterion (3) of this definition is just the requirement that the automorphism
group of the map be finite; this is the well-known hallmark of stability for
curves and maps.

For a morphism of schemes u : S → T , it is possible to pullback a T -family
of stable maps to an S-family of stable maps. This allows us to organize
families of stable maps into a CFG over Sch.

Definition 3.2. Let M̄(X, g, n, β)(T ) be moduli stack of maps into X over
T , as specified in Definition 3.1. Letting the base scheme T vary, we obtain
a CFG over Sch which is the moduli stack of stable maps to X, denoted by
M̄g,n(X,β).

The following is a tautology and is proved by applying Lemma 2.2 at the
level of each family in the moduli stack.
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Lemma 3.1. The bosonic truncation of M̄g,n(X,β) is canonically equiva-
lent to the moduli stack M̄g,n(τb(X), β), i.e.,

τb(M̄g,n(X,β)) ∼= M̄g,n(τb(X), β).

3.2 Stack properties

In Definition 3.2 we have introduced a CFG over the category of schemes
which describes the moduli problem of stable maps; our next goal is to prove
a result analogous to the classic theorem of Behrend and Manin [7] in the
bosonic setting, namely that this CFG is in fact an algebraic stack. For this
we require that the target scheme X be globally split; that is, there exists
a locally free sheaf V on τb(X), such that X is equivalent to the relative
spectrum of the sheaf of algebras

∧• V.

Theorem 1. Let X be a smooth, projective and split scheme. Then
M̄g,n(X,β) → Sch is a Deligne–Mumford stack.

Proof. We divide the proof of this theorem into several smaller steps. To
avoid a proliferation of notation where it is not needed, we denote M̄g,n(X,β)
by M̄(X) throughout this proof, and often suppress the notation for the
image class, genus and marked points when discussing stable maps. The
assumption that X = (Xb,A) is a globally split scheme means that there
exists a locally free sheaf V on τb(X) such that A =

∧• V (i.e., the super-
structure on X is determined by an exterior algebra). We begin with the
following observation about families of stable maps:

Lemma 3.2. Let {π : C → T, xi : T → C, φ : C → X} be a family of stable
maps parameterized by T ∈ ob(Sch). Then {Cb → Tb, xi : Tb → Cb, Cb →
Xb → τb(X)} is also a family of stable maps.

Proof. Recall from Definition 3.1 that stability is determined by the fibres
of the family having finite automorphism group; this is a purely bosonic
property, so it follows that {Cb → Tb, Cb → Xb → τb(X)} is a family of sta-
ble maps in the bosonic sense of Kontsevich [4] provided the underlying
morphism Cb → Tb is flat. But by definition π : C → T is a flat, bosonic
morphism, so by Proposition 2.1, the result follows. �

The bosonic reduction sending any family of stable maps to the under-
lying bosonic family of stable maps induces a functor between categories
which we will interpret as a morphism of CFGs: Ξ : M̄(X) → τb(M̄(X)).
Furthermore, τb(M̄(X)) = M̄(τb(X)) as was stated in Lemma 3.1.
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Lemma 3.3. The morphism Ξ : M̄(X) → M̄(τb(X)) is representable.

Proof. Let T and W be affine schemes and consider the following set-up:

W

��

��		�
�

�
�

P

��

�� T

��

M̄ Ξ �� τb(M̄)

where W is the test scheme for the pullback and the square is Cartesian. As
τb(M̄) is bosonic, it follows that the morphism T → τb(M̄) is fully captured
by Tb → τb(M̄), and identical statements can be made for every other mor-
phism or composition of morphisms to τb(M̄) appearing in this diagram.
To see this, use Lemma 2.7, which implies that

C ∼= Cb ×Tb
T.

Therefore the data of a family of curves parametrized by T is equivalent to
a family of curves parametrized by Tb. Similarly the sections

xi : T → C

can be recovered from their bosonic part. As we have seen the only part of
a family of stable maps amenable to the super-structure on X is the map
φ : C → X. Henceforth we may assume that T is bosonic.

We thus have a bosonic scheme T and a family of stable maps {π : C →
T, xi : T → C, φ : C → τb(X)}, which we pullback to a family of stable maps
into τb(X) parametrized by Wb. In order to compute the fibre product in
question we need to describe in which ways this family of stable maps can
be extended to a stable map into X. If R denotes the fermionic compo-
nent of the sheaf of super-rings on W , and X = Specτb(X)(

∧• V) then those
extensions are given by

π∗(φ∗V∨ ⊗ π∗R).

Here we have implicitly used Lemma 2.7, since π∗R is the fermionic com-
ponent of the family of curves parametrized by W . We then apply 7.6 of
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[42] to see that there exists a coherent sheaf Q on T such that for every
quasi-coherent sheaf R on T

π∗
(
(φ∗V)∨ ⊗ π∗R) = HomT (Q,R). (3.1)

One can show that this construction is compatible with base change (see
Remark 7.9 of [42]). Then using Q as the generator for an exterior algebra,
we see that morphisms φ∗V → π∗R correspond to ∧•Q → R, giving the
required universal property and completing the proof. �

End of proof of Theorem 1. By assumption, τb(M̄(X)) = M̄(τb(X)) is a
Deligne–Mumford stack, and by construction it is easy to see that M̄(X) is
a CFG over the category of schemes. Then using the fact that Ξ : M̄(X) →
M̄(τb(X)) is representable from Lemma 3.3, it follows by Lemma 2.9 that
M̄(X) is also a Deligne–Mumford stack, as required. �

The defining equation (3.1) of the sheaf Q on M̄g,n(X,β) allows us to
make the following observation:

Lemma 3.4. Q∨ = π∗(φ∗V∨).

Proof. This follows from setting R = O in equation (3.1). �

Since M̄g,n(τb(X), β) is a bosonic moduli stack of stable maps, there
exists a universal curve (Σ̃, ñ) and a universal instanton:

(Σ̃, ñ)

ρ

��

Φ �� τb(X)

M̄g,n(τb(X), β)

(3.2)

The universal instanton construction allows us to pull back geometric struc-
tures from the target τb(X) and then push them down onto the moduli stack.
A similar construction was unravelled in Lemma 3.3. The maps π and φ in
this Lemma are obtained from the universal instanton maps ρ and Φ by base
change. In particular we see that the stack M̄g,n(τb(X), β) is endowed with
a sheaf Q = (ρ∗(Φ∗V∨))∨, which generates an exterior algebra ∧•Q, giving
rise to the moduli stack M̄g,n(X,β) by the relative spectrum construction.
We may therefore conclude that M̄g,n(X,β) is a split Deligne–Mumford
super-stack.
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From this result and the known theorems for the bosonic stack (Theorem
3.14 of [7]), we get an easy corollary which addresses the cases of interest in
twistor theory:

Corollary 3.1. Let X be any split smooth projective C-scheme, then
M̄g,n(X,β) is a split Deligne–Mumford stack. In particular,

M̄g,n(Pp|q, β)

is a split Deligne–Mumford stack.

As before we know that M̄g,n(X,β) is a moduli stack of stable maps, and
thus there exists a universal curve (Σ̃, ñ) and a universal instanton in the
super-context as well:

(Σ̃, ñ)

ρ

��

Φ �� X

M̄g,n(X,β)

(3.3)

3.3 Other properties of the moduli stack

In this section, we assume that Theorem 1 holds, so M̄g,n(X,β) is a Deligne–
Mumford stack; as noted by Corollary 3.1, this will be true for most schemes
X which arise in physical applications (i.e., split projective smooth
C-schemes). The properties of the bosonic stack of stable maps to a bosonic
scheme are well studied, and the various properties and underlying struc-
tures of this space are by now well known (cf. [43, 5]). Most of these proper-
ties carry over without change to the super-geometric setting, and we review
them here briefly.

Let Σ be some Riemann surface of genus g; recall from Definition 3.1 the
notion of a stable map φ : Σ → X (for some scheme X). More formally, we
can think of this as restricting our attention to a C-family of stable maps
in M̄g,n(X,β). We represent this single object in M̄g,n(X,β) by (Σ, n, φ),
where n is shorthand for the set of special points {x1, . . . , xn} on Σ.

The moduli stack M̄g,n(X,β) comes equipped with several natural maps.
These include the “evaluation maps”

evi : M̄g,n(X,β) → X, (Σ, n, φ) 	→ φ(xi) (3.4)
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which can be tensored together in the obvious fashion to give

Ev : M̄g,n(X,β) → Xn. (3.5)

Since Σ is a bosonic Riemann surface of genus g, the underlying stacks M̄g

and M̄g,n (stable curves of genus g and stable curves of genus g with n
marked points, respectively) are the ordinary bosonic stacks of Deligne and
Mumford [44], with dimensions 3g − 3 and 3g − 3 + n, respectively. Since
(Σ, n, φ) need not be a stable curve on its own, we can define a projec-
tion to M̄g,n in the usual way: provided n+ 2g ≥ 3, simply contract the
destabilizing components of Σ to obtain a stable curve Σ̂. This defines a
functor

κ : M̄g,n(X,β) → M̄g,n, (Σ, n, φ) 	→ (Σ̂, n). (3.6)

When M̄g,n(X,β) posesses a coarse moduli space, this should descend to a
morphism following the techniques used in the bosonic setting [45].

We also have the forgetful functor

ρn : M̄g,n(X,β)→ M̄g,n−1(X,β). (3.7)

This functor is defined as in the bosonic setting, where it inherits its struc-
ture from the underlying functor between bosonic stacks M̄g,n → M̄g,n−1,
which forgets the marked point xn and contracts any resulting destabilizing
components of Σ. The forgetful functors are, of course, well defined only
when both the source and target in (3.7) exist.

An important property of bosonic stacks is the fact that they can have
impure dimension: deformations of the moduli stack can be obstructed
and the dimension of the space can change when points in a family are
obstructed. Nevertheless, one can still compute the expected or virtual
dimension of the moduli stack, which corresponds to the dimension of the
space when the deformation theory is unobstructed. We can apply the
tangent-obstruction complex techniques of [46], along with a super-geometric
generalization of the Hirzebruch–Riemann–Roch theorem to find for the
virtual super-dimension

vsdim M̄g,n(X,β) = (1− g)(sdimX − 3)−
∫

β
ωX + n, (3.8)

where sdimX is the super-dimension of X and ωX is the canonical class of
X. Recall that when X is a split scheme, X = (Xb,∧•V) for a locally free
sheaf V on τb(X). In this case, sdimX = dim τb(X)− rank V.
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As in the bosonic case, the dimension of M̄0,n(X,β) is equal to the
expected (virtual) dimension when H1(C, φ∗TX) = 0 for all genus zero sta-
ble maps φ; this means that the deformation theory of the moduli stack is
unobstructed [47, 43]. We will use the same terminology as in the bosonic
category, and refer to such target schemes X as convex ; an easy example of
a convex scheme is the projective space Pp|q.

In the bosonic category, the moduli stack will be smooth when we restrict
to genus zero and the target scheme is convex. The machinery from the
proof of Theorem 1 allows us to make an analogous statement in our super-
geometric setting:

Proposition 3.1. Let X be a split smooth projective scheme which is con-
vex. Then M̄0,n(X,β) is a split, smooth Deligne–Mumford stack; in partic-
ular,

M̄0,n(Pp|q, β)

is smooth.

Proof. Let X be equivalent to the relative spectrum of ∧•V on τb(X), where
V is a locally free sheaf on τb(X). The convexity condition is now equiv-
alent to τb(X) being convex and for every map φ : P1 → τb(X) we have
H1(P1, φ∗V∨) = 0. To see this one observes that V∨ is the fermionic part of
the tangent sheaf TX .

Let S be a versal family for the stack M̄0,n(τb(X), β). In the proof of
Lemma 3.3 we are able to set R = Os for every point s ∈ S, as in Lemma
3.4; note that Os is meant to be the structure sheaf of the point s. We see
that (Q⊗Os)∨ is the same as H0(π−1(s), φ∗V∨) from equation (3.1). The
Riemann–Roch formula and the convexity condition for the fermionic part
implies now that the rank of this vector space is constant. We conclude that
Q is a coherent sheaf on S of constant rank. The convexity condition for the
bosonic part implies that M̄0,n(τb(X), β) is smooth, and a coherent sheaf
of constant rank on a reduced algebraic space is locally free. This implies
that M̄0,n(X,β) is a smooth Deligne–Mumford stack. �

Example (Witten’s construction for M̄0,0(Pp|q, d)). For a simple
reality check on our formula for the virtural super-dimension of the moduli
stack, we consider M̄0,0(Pp|q, β). As in the bosonic case, H2(Pp|q,Z) ∼= Z, so
we can write β = d[�], where [�] is the class of a line and d is the degree of
the stable map. This allows us to abbreviate M̄g,n(Pp|q, β) by M̄g,n(Pp|q, d).
We now review Witten’s [15] construction of a versal family for M̄0,0(Pp|q, d)
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on a dense open subset. We adopt a very heuristic view, treating a stable
map to Pp|q as a map from P1; in reality, this should be tensored with some
super-ring so as not to violate Lemma 2.2, but we ignore these subtleties
here.

The basic idea is to construct a simple versal family of stable maps for a
dense open subset of the moduli space. On Pp|q choose homogeneous coor-
dinates ZI = (Z1, . . . , Zp+1, ψ1, . . . , ψq), and let σ = (σ1, σ2) ∈ P1 be homo-
geneous coordinates on our genus zero Riemann surface. Away from the
boundary divisor in M̄0,0(Pp|q, d) (i.e., for irreducible curves only) a degree
d map ZI : P1 → Pp|q can be written as

ZI(σ) =
d∑

r=0

U I
r σ

r.

A priori, the moduli of such a map are the coefficients {U I
r }, which span a

linear super-space

span{U I
r } = L ∼= C(p+1)d+p+1|qd+q.

Since the ZI are homogeneous coordinates, we must account for the re-
scalings ZI → tZI for t ∈ C∗. This reduces L to a projective linear space
PL ∼= P(p+1)d+p|qd+q. Additionally, the map cannot vanish since the ZI are
homogeneous, so we must cut out those {U I

r } which correspond to the zero
locus. Finally, we must account for the automorphism group of the Riemann
surface, PGL(2,C).

Hence, we are left with an open subset of a projective super-space which
can be identified with a versal family for the stack away from the boundary
divisor and zero-locus (i.e., on a dense open subset)

M̄0,0(Pp|q, d) ⊃M0,0(Pp|q, d) ∼= (PL− Zero Locus)/PGL(2,C). (3.9)

From this we can immediately read off the expected super-dimension: p−
q − 3 + d(p− q + 1). Note that the stack properties are immediately obvious
from the explicit presence of the PGL(2,C)-quotient.

Now, consider our formula for the virtual super-dimension (3.8)

vsdimM̄0,0(Pp|q, d) = sdimPp|q − 3−
∫

d[�]
ω

Pp|q .
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We know that the canonical sheaf of Pp is O(−p− 1), and from (2.2) A
Pp|q =

∧•O(1)⊕q, so

−
∫

d[�]
ω

Pp|q = d(p+ 1)− dq

and our formula for vsdimM̄0,0(Pp|q, d) agrees precisely with what is pre-
dicted by (3.9).

4 Discussion and conclusion

In this paper, we have constructed a Deligne–Mumford moduli stack of stable
maps from a Riemann surface to a scheme in the context of super-geometry,
and studied its properties. On a purely mathematical level, this investi-
gation re-emphasizes the utility of stacks for representing moduli problems
and also demonstrates the extent to which super-geometric objects inherit
many of their characteristics from the underlying bosonic geometry. Indeed,
Theorem 1 demonstrates that M̄g,n(X,β) is Deligne–Mumford whenever X
is split projective and smooth, and Proposition 3.1 shows that M̄0,n(X,β)
is smooth under conditions inherited from the bosonic case. However, the
machinery developed in Section 2 illustrates that the inclusion of super-
geometric objects in algebraic geometry is by no means trivial.

The main assumption we have made in proving these results is that the
target scheme X is split. While this covers a large number of physically
interesting cases (including the maximally supersymmetric twistor space
for four-dimensional space–time, P3|4), there are some important examples
which are left out. In particular, general complex flag spaces are not gener-
ically split, and these are important in defining twistor geometry in higher
dimensions (cf. [48, 13]): recent investigations of six-dimensional gauge the-
ories via twistor methods could lead to twistor-string-like developments in
these more general settings [49, 50, 51]. While we expect that our results
should extend to the non-split category, it is clear that our strategy of proof
(in particular, the methods used for Lemma 3.3) will not work. It may be
possible to cover such cases by working with a suitably abstract formalism:
a generalization of Lurie’s [52] criteria for representability to super-stacks
could suffice, but we leave it to future research to investigate this issue in
detail.

In [53], the problem of determining the Berezinian on the moduli space
of smooth genus g curves in Pp|p+1 was studied from a more heuristic point
of view whereby it was assumed that the moduli space was an orbifold. The
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Berezinian sheaf could then be constructed via a pullback from M̄g,n using
the map κ from (3.6). It would be interesting to study to what extent these
results generalize to the boundary of the moduli stack.

There are several other interesting questions which remain unanswered
in this work: the status of Gromov–Witten theory for our moduli stacks;
the existence of coase moduli schemes for these stacks; and the potential for
applications in physics. We will now say a few words about each of these
issues, leaving it to future research to investigate them fully.

4.1 Gromov–Witten theory

In the bosonic category, one of the most important applications of
Kontsevich’s moduli space of stable maps is in the study of Gromov–Witten
theory. Here, Gromov–Witten invariants (rational numbers which can be
interpreted as “counting maps” from a Riemann surface to the target scheme
of a given genus and image class) are computed by integrating cohomology
classes over the moduli stack. In the context of super-geometry, the defi-
nition of Gromov–Witten invariants should be the same as in the bosonic
category.

Let X be a smooth split projective scheme; we want Gromov–Witten
invariants 〈Ig,n,β〉 to act as

〈Ig,n,β〉 : H∗(X,Q)⊗n → Q

via an integration over the moduli stack M̄g,n(X,β). This requires some
homology cycle representing the moduli stack which we can integrate. In
the bosonic case, when X is convex and g = 0, then there is a fundamental
class [M̄0,n(X,β)] which corresponds to 1 ∈ H∗(M̄0,n(X,β),Q) in the stack
cohomology [54, 55] by Poincaré duality. However, when X is not convex or
g > 0, one requires a virtual fundamental class [M̄g,n(X,β)]virt. We assume
that this object can also be defined using the machinery from the bosonic
category: the perfect tangent-obstruction complex [46], or perfect obstruc-
tion theory [56, 57]. Below, we will propose a definition using a formula from
[4], which takes the fermionic part into account.

Gromov–Witten invariants are then defined in the usual fashion (e.g., [5]):

Definition 4.1 (Gromov–Witten invariants). Let X be a smooth globally
split projective scheme, β ∈ H2(X,Z), and α1, . . . , αn ∈ H∗(X,Q). For g,



1334 TIM ADAMO AND MICHAEL GROECHENIG

n ≥ 0, the Gromov–Witten invariant 〈Ig,n,β〉(α1 . . . , αn) is given by

〈Ig,n,β〉(α1 . . . , αn) =
∫

[M̄g,n(X,β)]virt

ev∗1(α1) ∪ · · · ∪ ev∗n(αn), (4.1)

where [M̄g,n(X,β)]virt is the virtual fundamental class and evi are the eval-
uations maps from (3.4).

Since this definition is identical to the one from the bosonic category,
and M̄g,n(X,β) is just a stack over the category of schemes, it makes sense
to assume that Gromov–Witten invariants in our super-geometric setting
will have many of the same properties as their bosonic counterparts; in
particular, they should still obey some super-geometric analogues of the
axioms of Kontsevich and Manin [47]. However, one could worry that no new
information is gained in the super-geometric setting: i.e., that the Gromov–
Witten invariants of X are identical to those of τb(X). There are some hints
that this may not be true, though.

Consider the simple tree-level example of M̄0,n(Pp|q, d) ≡ M̄d(Pp|q) stud-
ied at the end of Section 3. The space Pp|q is convex, in this simple unob-
structed case, Kontsevich’s [4] formula for the fundamental class in terms of
intersection theory should suffice

[M̄d(Pp|q)] =

(∑
k

(−1)kc(Ok
M̄)

)
∩ Td(TM̄)−1, (4.2)

where OM̄ is the structure sheaf of M̄d(Pp|q) with its natural Z-grading;
c(Ok

M̄) is the homological Chern class of the appropriate sheaf, and Td(TM̄)
is the Todd class of the moduli stack.

Furthermore, since Pp|q is convex, we can assume that there are no con-
tributing factors to Ok

M̄ coming from an obstruction theory. By Theorem 1
and Lemma 3.4, it follows that O0

M̄ = ∧•Q, where Q = (ρ∗(Φ∗O(1)⊕q))∨ via
the universal instanton (3.3). Hence, Kontsevich’s formula (4.2) reads

[M̄d(Pp|q)] =

(
c(Oτb(M̄)) + c

( ∞⊕
k=1

∧k(ρ∗(Φ∗O(1)⊕q))∨
))

∩ Td(TM̄)−1.

(4.3)

The dependence of this formula on the super-structure of the stack M̄d(Pp|q)
is immediately obvious, and there is additional dependence hidden in
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Td(TM̄). Since this is the cycle in H∗(M̄d(Pp|q),Q) which is to be integrated
over to determine any Gromov–Witten invariants of the form 〈I0,n,d[�]〉, it
seems natural to expect these invariants to be different from those of Pp.

The ordinary cohomology of a globally split scheme X is known to be
equivalent to τb(X) [58, 59]; nonetheless, it is possible that the Gromov–
Witten theory is amenable to the super-structure, as the proposed definition
of the virtual fundamental class takes the fermionic part into account. In
other words, the quantum cohomology of X is different than the quantum
cohomology of τb(X). It is also possible that one should work with a new
cohomology theory for supermanifolds based on cyclic cohomology [60] or
some modification thereof [61].

Of course, this line of argument is quite hand-wavy. To actually prove
that Gromov–Witten theory is sensitive to the super-structure of the target
manifold requires a calculation of the actual invariants (and a comparison
against their counterparts in the bosonic truncation).

4.2 Existence of coarse moduli spaces

Where moduli stacks arise in physics, one hopes to work with some bosonic
scheme or algebraic space which represents the stack; if the stack is smooth
and Deligne–Mumford this is equivalent to working with a space with orb-
ifold singularities instead of the full stack. Naturally, one can ask when
such objects exist in the context of super-geometry. In moduli problems, it
is impossible to find a scheme or algebraic space that fully represents the
moduli stack (i.e., a fine moduli space) as soon as there exist objects in the
stack with non-trivial automorphisms. In such cases, one instead looks for
the “coarse moduli space” of the stack, which is defined as:

Definition 4.2 (Coarse moduli space). Let X be an algebraic space; it is
called the coarse moduli space for a stack X → Sch if there is a morphism
X τ−→ X, which is universal. That is, for all algebraic spaces Y , there is a
unique completion which makes the following diagram commutative:

X τ ��



�
��

��
��

X

∃!
���
�
�

Y

In the theory of bosonic stacks, the essential result for establishing the
existence of a coarse moduli space (i.e., a bosonic moduli scheme) is the
Keel–Mori [62] theorem, which asserts that every Deligne–Mumford bosonic
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stack has a coarse moduli space under very general conditions. The authors
do not know whether the Keel–Mori theorem holds for super-stacks.
Although a super-geometric Keel–Mori theorem may certainly exist, a neg-
ative result would show yet another interesting facet of super-geometry
whereby one is forced to work directly with the stack in moduli
problems.

4.3 Applications in physics

In the Introduction, we emphasized the importance of M̄g,n(X,β) in recent
advances in the understanding of planarN = 4 super-Yang–Mills via twistor-
string theory and related constructs. As one might expect, twistor-string
theory also contains gravitational vertex operators; unfortunately, these cor-
respond to N = 4 conformal super-gravity: a theory widely believed to be
non-physical [63]. Conformal super-gravity scattering amplitudes in flat
space can be calculated directly in the string theory, and again an integral
over the moduli space M̄g,n(P3|4, d) is required [64, 65].

However, a recent observation by Maldacena [66] relates tree-level graviton
scattering in Einstein and conformal gravity in the presence of a cosmologi-
cal constant; this means that correct (tree-level) Einstein gravity scattering
amplitudes can be obtained for N = 0 and 4 from twistor-string theory [67].
Extending these ideas to maximally supersymmetric (i.e., N = 8) Einstein
super-gravity will certainly continue to require an integral over the moduli
space, but perhaps with a non-Calabi–Yau target. Furthermore, deducing
simplifying structures about the gravitational theory (such as a MHV-like
formalism) from any twistor-string theory could follow from the properties
of the moduli space, in analogy with gauge theory (cf. [21]). In any case, we
expect M̄g,n(X,β) to play an important role in any twistorial developments
in gravity as well as gauge theory.

On a more general level, the bosonic version of the moduli stack
M̄g,n(X,β) has been of much interest in the study of mirror symmetry (cf.
[5, 6]). The analogue of the Calabi–Yau condition for a projective scheme
or variety X in super-geometry is that its Berezinian sheaf has a canonical
global section: BerX

∼= OX [13]. When X = Pp|q this occurs when p = q − 1
[68, 69, 15], and for a smooth hypersurface V [s] ⊂ Pp|q of degree s the condi-
tion is p+ 1− q = s (this condition can also be generalized to hypersurfaces
in weighted projective varieties) [70]. Although there are counter-examples
to Yau’s theorem in super-geometry [71], they appear to be confined to
fermionic dimension one [72, 73], so we can usually apply our intuition from
ordinary differential geometry to these objects.
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The notion of mirror symmetry for Calabi–Yau supermanifolds has gen-
erated interest as a candidate for incorporating rigid Calabi–Yau manifolds
into the mirror symmetry landscape [68, 69]. However, most studies of mir-
ror symmetry in super-geometry have utilized Landau–Ginzburg models to
construct the mirror manifold [74, 75, 70]. It would be very interesting to
know if mirror symmetry for supermanifolds could be studied formally using
M̄g,n(X,β) or its Gromov–Witten theory, as it has for bosonic manifolds.
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