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Abstract

In this paper, we will outline computations of quantum sheaf cohomol-
ogy for deformations of tangent bundles of toric varieties, for those defor-
mations describable as deformations of toric Euler sequences. Quantum
sheaf cohomology is a heterotic analogue of quantum cohomology, a
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quantum deformation of the classical product on sheaf cohomology groups,
that computes nonperturbative corrections to analogues of 273 couplings
in heterotic string compactifications. Previous computations have relied
on either physics-based gauged linear sigma model (GLSM) techniques
or computation-intensive brute-force Cech cohomology techniques. This
paper describes methods for greatly simplifying mathematical computa-
tions, and derives more general results than previously obtainable with
GLSM techniques. We will outline recent results (rigorous proofs will
appear elsewhere).
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1 Introduction

This paper is concerned with computing quantum sheaf cohomology rings,
an analogue of quantum cohomology rings for heterotic strings.

Quantum cohomology describes the operator product rings in A model
topological field theories. Those operator product rings are deformations
of the classical cohomology rings, and so are called “quantum cohomology”
rings. The deformations encode information about minimal-area surfaces,
and so quantum cohomology played an important role in the enumerative
geometry revolution that swept through algebraic geometry starting in the
early 1990s, and continues in various forms to this day.

Quantum sheaf cohomology computes analogous invariants of pairs con-
sisting of spaces X together with vector bundles E → X satisfying the con-
ditions

ΛtopE∗ ∼= KX , ch2(E) = ch2(TX).

Such pairs define the “A/2 model,” a heterotic generalization of the A model.
An analogue of quantum cohomology for the A/2 model was originally
defined in [1] (motivated by physics considerations in [2]), and describes a
deformation of the product structure on sheaf cohomology, for which reason
this deformation has been named “quantum sheaf cohomology.” Much as in
ordinary quantum cohomology, the deformation in question revolves around
enumerative properties of X — specifically, one computes sheaf cohomol-
ogy of induced sheaves over a moduli space of curves in X, corresponding
physically to nonperturbative corrections to correlation functions of charged
fields.

Quantum sheaf cohomology and related notions have been further devel-
oped in a variety of recent papers including e.g., [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19].

In this paper we shall outline general results for quantum sheaf cohomol-
ogy for X a compact toric variety and E a deformation of the tangent bundle
ofX, described as a deformation of the toric Euler sequence. In particular, in
the past such computations have been done with either physics-based gauged
linear sigma model (GLSM) techniques (which so far have not been amenable
to studying nonlinear deformations), or math-based computation-intensive
brute-force Cech cohomology computations. One of the innovations of this
paper and [20] are a set of new ideas to radically simplify mathematics
computations, which we use to obtain results of greater generality than
previously obtainable with GLSM techniques. Utilizing those methods, we
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find, for example, that quantum sheaf cohomology rings, at least in these
cases, are independent of nonlinear deformations, a result previously con-
jectured in [11, 13]. Detailed proofs are left to [20].

We begin in Section 2 by describing the A/2 model (a holomorphic field
theory), and outline the correlation function computations in that theory,
first at a formal level, then describing generalities of linear sigma model
(LSM) compactifications and induced sheaves over moduli spaces of curves.
In Section 3 we begin by computing the quantum sheaf cohomology of a
projective space. Since the tangent bundle of a projective space is rigid, the
result will automatically match the ordinary quantum cohomology ring, but
this is a useful warm-up exercise and demonstration of some of the tech-
nology we are introducing that simplify general quantum sheaf cohomology
computations. In Section 4, we apply these ideas to compute quantum
sheaf cohomology on a product of projective spaces. Briefly, quantum sheaf
cohomology reduces to a classical sheaf cohomology computation over the
LSM moduli spaces, and for a product of projective spaces, the LSM moduli
spaces are again a product of projective spaces, so we work through classical
sheaf cohomology for products of general projective spaces, then apply those
results to quickly compute quantum sheaf cohomology for a deformation of
the tangent bundle on P1 ×P1. Projective spaces are a bit simple, so in
Section 5 we compute quantum sheaf cohomology for a deformation of the
tangent bundle on a Hirzebruch surface, which allows us to tackle issues such
as nonlinear deformations and four-Fermi interaction terms. In Section 6 we
describe general results (derived in detail in [20]). In Appendix A we derive
an ansatz for four-Fermi terms from GLSMs, that is used both in this paper
and in [20].

2 General procedure and definitions

First, let us briefly review the A/2 model. Recall that on the (2, 2) locus,
the A model topological field theory is a twist of the (2, 2) supersymmetric
NLSM (nonlinear sigma model)

1
α′

∫
Σ
d2z

(
(gμν + iBμν) ∂φμ∂φν +

i

2
gμνψ

μ
+Dzψ

ν
+

+
i

2
gμνψ

μ
−Dzψ

ν
− +Rijklψ

i
+ψ

j
+ψ

k
−ψ

l
−

)

which is amenable to rational curve counting. Specifically, the A model is
defined by twisting worldsheet fermions into worldsheet scalars and vectors
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as follows [21]:

ψi
+ ∈ ΓC∞

(
φ∗T 1,0X

)
, ψi

− ∈ ΓC∞
(
KΣ ⊗

(
φ∗T 0,1X

)∗)
,

ψı
+ ∈ ΓC∞

(
KΣ ⊗

(
φ∗T 1,0X

)∗)
, ψı

− ∈ ΓC∞
(
φ∗T 0,1X

)
.

The heterotic analogue of the A model, known as the A/2 model, is a twist
of the (0, 2) NLSM

1
α′

∫
Σ
d2z

(
(gμν + iBμν) ∂φμ∂φν +

i

2
gμνψ

μ
+Dzψ

ν
+

+
i

2
hαβλ

α
−Dzλ

β
− + Fijabψ

i
+ψ

j
+λ

a
−λ

b
−

)

in which the fermions couple to bundles as follows:

ψi
+ ∈ ΓC∞

(
φ∗T 1,0X

)
, λa

− ∈ ΓC∞
(
KΣ ⊗ φ∗E∗

)
,

ψı
+ ∈ ΓC∞

(
KΣ ⊗

(
φ∗T 1,0X

)∗)
, λa

− ∈ ΓC∞
(
φ∗E) ,

where E is a holomorphic vector bundle onX. Anomaly cancellation requires

ΛtopE∗ ∼= KX , ch2(E) = ch2(TX).

(The second statement is the Green–Schwarz anomaly cancellation condition
generic to all heterotic theories; the first is a condition specific to the A/2
twist, an analogue of the condition that the closed string B model can only
propagate on spaces X such that K⊗2

X is trivial [6, 21].) In fact, a specific
choice of isomorphism ΛtopE∗ ∼= KX is part of the data needed to define the
path integral. Although both left- and right-movers have been twisted, the
theory defined by the twisting above is not a topological field theory, since
the worldsheet does not have supersymmetry on left-movers. Nevertheless it
is sufficiently close to a true topological field theory to enable mathematical
computations.

The Ramond–Ramond (RR) states of the A/2 model generalizing the A
model states are counted by sheaf cohomology Hq(X,ΛpE∨).
In general terms, we understand correlation functions in the A/2 model

as follows (see [1] for a more complete discussion). For a space X with



1260 RON DONAGI ET AL.

holomorphic vector bundle E → X satisfying

det E∗ ∼= KX , ch2(E) = ch2(TX),

the classical contribution to a correlation function is

〈O1 . . .On〉 =
∫

X
ω1 ∧ · · · ∧ ωn,

where each ωi is an element of H∗(X,Λ∗E∗), and corresponds to an opera-
tor Oi. The correlation function can only be nonzero if

ω1 ∧ · · · ∧ ωn ∈ Htop
(
X,ΛtopE∗)

and we get a number from this because of the isomorphism

det E∗ ∼= KX

and the fact that Htop(X,KX) ∼= C.

In sectors of nonzero instanton degree, each Oi induces an element of
H∗(M,Λ∗F∗), whereM is the moduli space and F a sheaf onM induced
by E , as described in [1]. For example, if the moduli space M admitted a
universal instanton α, then F = R0π∗α∗E . Schematically, if there are no ψı

+,
λa− zero modes, then the contribution to a correlation function in a sector
of nonzero instanton degree will be of the form

∫
M
ω̃1 ∧ · · · ∧ ω̃n,

where each ω̃i is an element of H∗(M,Λ∗F∗), and corresponds to an oper-
ator Oi. In close analogy with the classical case, this contribution will be
nonzero if

ω̃1 ∧ · · · ∧ ω̃n ∈ Htop
(M,ΛtopF∗)

and we get a number from this because the conditions

det E∗ ∼= KX , ch2(E) = ch2(TX)

imply (via Grothendieck–Riemann–Roch) that

detF∗ ∼= KM.
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If there are ψı
+, λ

a− zero modes, then we have to make use of the four-Fermi
terms, as described in [1]. Define

F1 ≡ R1π∗α∗E , Obs ≡ R1π∗α∗TX,

then one can formally identify the contribution of each four-Fermi term with
an insertion of

H1 (M,F∗ ⊗F1 ⊗ (Obs)∗) .

Assuming equal numbers of ψı
+, λ

a− zero modes, correlation functions in such
a sector will have the form∫

M
ω̃1 ∧ · · · ∧ ω̃n ∧ α,

where the ω̃i are as before and α is a wedge product of cohomology classes
associated with four-Fermi terms. Altogether the contribution can only be
nonzero if

ω̃1 ∧ · · · ∧ ω̃n ∧ α ∈ Htop
(M,ΛtopF∗ ⊗ ΛtopF1 ⊗ ΛtopObs∗

)
and we get a number from this because in these circumstances the conditions

det E∗ ∼= KX , ch2(E) = ch2(TX)

imply (via Grothendieck–Riemann–Roch) that

detF∗ ⊗ detF1 ⊗ detObs∗ ∼= KM.

Now, let us begin to specialize to examples of the form we shall discuss in
this paper. Consider a projective toric variety X = XΣ over C of dimension
n with fan Σ. The tangent bundle TX is defined by a cokernel of the form

0 −→ O⊕r E−→
n⊕

i=1

O (	qi) −→ TX −→ 0,

where r is the rank of the Picard lattice, whose complexification we denote as

W = Pic(X)⊗Z C.

We will often denote O⊕r
X by W ⊗OX . The map E acts by mapping the

ath O as

O qaiφi−→ O (	qi) ,
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where φi ∈ Γ (O (	qi)) is a homogeneous coordinate on the toric variety (see
for example [22]).

Now, we shall consider deformations E of the tangent bundle above,
defined by cokernels

0 −→ O⊕r E−→
n⊕

i=1

O (	qi) −→ E −→ 0

for more general maps E. Each element of E will be a polynomial. We
will distinguish two types of contributions to E: “linear” and “nonlinear”
deformations. Linear deformations involve monomials containing a single
homogeneous coordinate (as in all of the maps defining the tangent bundle).
Nonlinear deformations involve monomials containing a product of more
than one homogeneous coordinate.

We will use the linear sigma model (LSM) moduli spaceM. As explained
in, e.g., [23], for the case above, this is constructed by expanding each of
the homogeneous coordinates on X in a basis of zero modes on P1, and
interpreting the coefficients in the expansion as homogeneous coordinates
on the moduli space. If

X = Cn//
(
C×

)r
,

where (C×)r acts on Cn with weights 	qi, then the LSM moduli space of
maps of degree 	d is

M =

(
n⊕

i=1

H0
(
P1,O(	qi 	d)

))
//

(
C×

)r
.

It can be shown that the LSM moduli spaceM is smooth whenever the
original toric variety is. (The basic point is that if we describe the toric
variety as (Cn − E)/G, then singularities are at fixed points of G. See [20,
Section 4.1] for further details.)

The induced sheaves F , F1 can be constructed in an analogous fashion [1],
by expanding worldsheet GLSM fermions in a basis of zero modes and inter-
preting the coefficients as line bundles over the moduli space. Specifically,
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Figure 1: The fan for Fn.

following the methods of [1], one finds for present case that

0 −→ O⊕r E′T−→
n⊕

i=1

H0
(
P1,O(	qi 	d)

)
⊗C O(	qi) −→ F −→ 0,

F1
∼=

n⊕
i=1

H1
(
P1,O(	qi 	d)

)
⊗C O(	qi).

The map E′ in the definition of F is induced from the corresponding
map in the definition of E . It is constructed by taking the map E in E
(a polynomial in homogeneous coordinates) and expanding in terms of
homogeneous coordinates on the worldsheet P1. The components of the
induced map E′ are then the coefficients of various monomials in the homo-
geneous coordinates on P1.

To explain how the map is induced in more detail, let us consider the
example of a Hirzebruch surface Fn. To set notation, describe the Hirze-
bruch surface by the toric fan in figure 1.

From the fan, we read off the relations between toric divisors

Du = Dv, Dt = Ds + nDv

and the Stanley–Reisner ideal

DuDv = 0 = DsDt.
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The homogeneous coordinates u, v, s, t (corresponding to the four toric
divisors) have the following weights under two C× actions:

u v s t
1 1 0 n
0 0 1 1.

We describe a deformation E∗ of the cotangent bundle as the cokernel

0 −→ E∗ −→ O(−1, 0)⊕2 ⊕O(0,−1)⊕O(−n,−1) E−→W ⊗O −→ 0,

where W is a two-dimensional vector space

E =

⎡
⎣ Ax Bx

γ1s γ2s
α1t+ sf1(u, v) α2t+ sf2(u, v)

⎤
⎦ (1)

with

x ≡
[
u
v

]

A, B constant 2× 2 matrices, γ1, γ2, α1, α2 constants, and f1,2(u, v) homo-
geneous polynomials of degree n. (The matrices A, B and γ1,2 define linear
deformations of the tangent bundle; the functions sf1,2(u, v) define nonlinear
deformations.)

To demonstrate the technology, consider for a moment maps of degree
(1, 0). In this case, we get the induced sheaf

0 −→ F∗ −→ O(−1, 0)4 ⊕O(0,−1)⊕O(−n,−1)n+1 E′−→W ⊗O −→ 0,

where the map E′ is induced from the map E by expanding fields in zero
modes and picking off terms with the same homogeneous coordinates on
P1. Let us work through that in detail to illustrate the result. In the degree
(1, 0) sector, we expand

u = u0a+ u1b,

v = v0a+ v1b,

s = s0,

t = t0a
n + t1a

n−1b + · · ·+ tnb
n,

where a, b are homogeneous coordinates on P1. Then, in the original map
E, we replace each field u, v, s, t by its expansion in zero modes above, and
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pick off terms with the same homogeneous coordinates. In this fashion, we
find

E′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
A 0

0 A

]
x′

[
B 0

0 B

]
x′

γ1s0 γ2s0

α1t0 + s0f10un
0 + s0f11un−1

0 v0 α2t0 + s0f20un
0 + s0f21un−1

0 v0

+ · · ·+ s0f1nvn
0 + · · ·+ s0f2nvn

0

α1t1 + s0f10(nun−1
0 u1) + s0f11un−1

0 v1 α2t1 + s0f20(nun−1
0 u1) + s0f21un−1

0 v1

+(n− 1)s0f11un−2
0 u1v0 + · · · +(n− 1)s0f21un−2

0 u1v0 + · · ·
· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

where

x′ = [u0, v0, u1, v1]T

and

fi(u, v) = fi0u
n + fi1u

n−1v + · · ·+ finv
n.

In E′, the lines with t0, for example, correspond to coefficients of an, the
lines with t1 correspond to coefficients of an−1b, and so forth.

It can be shown in general that F is locally free whenever E is locally free
[20]. Briefly, F will be locally free whenever E′ is surjective. At any point on
the GLSM moduli space, pick a point on P1 at which the corresponding map
is nondegenerate, then the image of E′ is the image of E, hence surjectivity
of E implies surjectivity of E′.

3 Example: projective space

Let us begin with an extremely simple example, namelyPn. We will consider
what appears formally to be a deformation of the tangent bundle of Pn,
defined by E below

0 −→ E∗ −→ Z0
E−→W ⊗O −→ 0,

where

Z0 = O(−1)⊕n+1, E = Ax,
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where W is a one-dimensional vector space, x is a vector of homogeneous
coordinates on Pn and A a constant (n+ 1)× (n+ 1) matrix. We say this
appears to be a deformation; however, the tangent bundle of Pn admits
no deformations, hence the matrix A encodes, for nondegenerate A, mere
reparametrizations. By contrast, for P1 ×P1, which we shall study in the
next section, generic deformations of the tangent bundle yield bundles which
are not isomorphic to the original tangent bundle.

Since we are simply giving a more complicated description of Pn with
its tangent bundle, the quantum sheaf cohomology ring we compute should
exactly match the ordinary quantum cohomology ring, which is what we
shall find. This example will serve as a useful computational exercise, but
we will not start generating new results until the next section.

First, let us consider the classical cohomology ring. A nonzero correlation
function arises from correlators of total degree n, equal to the dimension of
Pn. Classical correlation functions are then a map

SymnW = H0 (SymnW ⊗O) −→ Hn (ΛnE∗) .

To determine the map, we use the generalized Koszul complex associated to
ΛnE∗

0 −→ ΛnE∗ −→ ΛnZ0 −→ Λn−1Z0 ⊗W −→ · · · −→ SymnW ⊗O −→ 0

which factorizes into a series of maps

0 −→ ΛnE∗ −→ ΛnZ0 −→ Sn−1 −→ 0, (3)

0 −→ Si −→ ΛiZ0 ⊗ Symn−iW −→ Si−1 −→ 0, (4)

0 −→ S1 −→ Z ⊗ Symn−1W −→ SymnW ⊗O −→ 0. (5)

Now, Hj(ΛiZ0) will vanish unless j = n, i = n+ 1 (or i = j = 0, but we
shall suppress that case as it will not be pertinent for our computations).
Thus, from (3) we find

Hn (ΛnE∗) ∼−→ Hn−1(Sn−1)

from (4) we find

H i−1(Si−1)
∼−→ H i(Si)

for 2 ≤ i ≤ n− 1, and from (5) we find

H0(SymnW ⊗O) ∼−→ H1(S1)
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which implies that the map

SymnW
∼−→ Hn(ΛnE∗)

is an isomorphism, as indicated. (As a consistency check, note that since W
is 1D, SymnW is also 1D.)

Now, in principle, the factorization of the generalized Koszul complex will
stop giving isomorphisms if ever we need to compute Hn(Λn+1Z0). This
will happen if we consider correlation functions with correlators of degree
greater than n. For example, if we have degree n+ 1 correlators, then the
correlation function computes a map

Symn+1W −→ Hn+1(Λn+1E∗) = 0.

In this (trivial) case, we have the generalized Koszul complex

0 −→ Λn+1E∗(=0) −→ Λn+1Z0 −→ ΛnZ0 ⊗W
−→ · · · −→ Symn+1W ⊗O −→ 0

which factorizes as

0 −→ Λn+1E∗(= 0) −→ Λn+1Z0 −→ Sn −→ 0, (6)

0 −→ Si −→ ΛiZ0 ⊗ Symn+1−iW −→ Si−1 −→ 0, (7)

0 −→ S1 −→ Z ⊗ SymnW −→ Symn+1W ⊗O −→ 0. (8)

As before, from (8) we have

H0
(
Symn+1W ⊗O) ∼−→ H1(S1)

and from (7) we have

H i−1(Si−1)
∼−→ H i(Si)

for 2 ≤ i ≤ n. Finally from (6) we have

Hn(Sn)
∼−→ Hn(Λn+1Z0).

Thus, the original correlation function necessarily vanishes

Symn+1W −→ Hn+1(Λn+1E∗) = 0
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but

Symn+1W
∼−→ Hn(Λn+1Z0).

From [20, Section 3.3], the group Hn(Λn+1Z0) is a 1D vector space
generated by

det(Aψ) = (detA)ψn+1,

where ψ is a basis element for W .

Thus, we find the classical sheaf cohomology ring is of the form

C[ψ]/ (det(Aψ)) ∼= C[ψ]/
(
ψn+1

)
.

Now, let us turn to the quantum sheaf cohomology ring. We shall compute
this by first computing the (classical) sheaf cohomology ring in any sector of
fixed instanton degree, then relating sectors of different instanton number.

In a sector of instanton number d, the LSM moduli space of Pn is easily
computed to be P(n+1)(d+1)−1. The induced bundle over the LSM moduli
space is F , where

0 −→ F∗ −→ Z
E′−→W ⊗O −→ 0,

where

Z = O(−1)⊕(n+1)(d+1),

W is the same one-dimensional vector space from previously, and

E′ =

⎡
⎢⎢⎢⎣
Ax0

Ax1
...

Axd

⎤
⎥⎥⎥⎦ ,

where xi is a (n+ 1)-element vector of coefficients of fixed degree in the
expansion of homogeneous coordinates of Pn in zero modes.



PHYSICAL ASPECTS OF QUANTUM SHEAF COHOMOLOGY 1269

We can now re-use the classical results above. For fixed instanton degree
d, the sheaf cohomology ring is

C[ψ]/
(
(det(Aψ))d+1

) ∼= C[ψ]/
(
ψ(n+1)(d+1)

)
.

Therefore, to preserve kernels, any relation between correlation functions in
different sectors of fixed degree must be generated by

〈O〉0 ∝ 〈O (det(Aψ))d〉d.

(This ensures that if O is an element of the quotiented ideal in the zero-
degree sector, so that 〈O〉0 vanishes, then its image O(det(Aψ))d will be
an element of the quotiented ideal in the sector of degree d, so that the
corresponding correlation function also vanishes.)

The relation above then implies that

det(Aψ) = q

for some constant q. (For example, this follows immediately in d = 1, then
higher degrees must just be a power.) Since det(Aψ) = (detA)ψ, this is
equivalent to the relation

ψn+1 = q′

which is the standard quantum cohomology relation for a projective
space Pn.

In the next sections, our tangent bundle deformations will, in general,
yield bundles that are not isomorphic to the tangent bundle, so the quantum
sheaf cohomology relations will be nontrivial.

4 Example: product of projective spaces

Mathematical computations of quantum sheaf cohomology have previously
[1, 3, 5, 18] relied on brute-force Cech cohomology representations. One of
the advancements of this paper and [20] is the use of purely analytic methods
to derive quantum sheaf cohomology.

We will illustrate these advances through an explicit computation for
general deformations of the tangent bundle of P1 ×P1. In particular, pre-
viously special deformations of the tangent bundle of P1 ×P1 have been
computed with brute-force Cech techniques, so this seems an appropriate
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example to generalize here. We will begin by examining classical cup prod-
ucts for P1 ×P1, then classical cup products for Pn ×Pm, and then we
will describe the quantum sheaf cohomology ring for P1 ×P1, which will
ultimately be determined by the classical computations on products of more
general projective spaces.

4.1 Classical cup products on P1 × P1

In this section we will discuss how to compute classical cup products in
the sheaf cohomology, without having to work through a Cech cohomology
computation.

Define V = Γ(O(1, 0)), Ṽ = Γ(O(0, 1)), W = C2. Define

Z0 ≡ (V ⊗O(−1, 0))⊕
(
Ṽ ⊗O(0,−1)

)
.

Then, the cotangent bundle deformation E∗ is the kernel

0 −→ E∗ −→ Z0
E−→W ⊗O −→ 0,

where

E =
[
Ax Bx
Cx̃ Dx̃

]
,

where x, x̃ are vectors of homogeneous coordinates on each P1 factor.

First, let us compute the classical sheaf cohomology ring. Classical
correlation functions are a map1

Sym2W = H0
(
Sym2W ⊗O) −→ H2

(
Λ2E∗)

1More formally, we could think of classical correlation functions and the map above as
an element of

Ext2
(
Sym2 (W ⊗O) , Λ2E∗)

which corresponds to the exact sequence (9). Breaking that long sequence into two short
exact sequences along Q corresponds to writing the Ext element above as a product of
elements of

Ext1
(
Q, Λ2E∗) , Ext1

(
Sym2 (W ⊗O) , Q

)
which correspond to the short exact sequences (10) and (11).
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and we will determine the ring structure by computing the kernel of that
map. We will use the generalized Koszul complex of Λ2E∗

0 −→ Λ2E∗ −→ Λ2Z0 −→ Z0 ⊗ (W ⊗O) −→ Sym2 (W ⊗O) −→ 0. (9)

It remains to compute the cup product above. First, split the long exact
sequence (9) into a pair of short exact sequences

0 −→ Λ2E∗ −→ Λ2Z0 −→ Q −→ 0, (10)

0 −→ Q −→ Z0 ⊗ (W ⊗O) −→ Sym2 (W ⊗O) −→ 0 (11)

which define Q.

Next, we shall evaluate the kernel of that map, that product, which will
give us the classical sheaf cohomology ring structure.

The short exact sequence (11) induces a map

δ1 : H0
(
Sym2W ⊗O) −→ H1 (Q)

(from the associated long exact sequence). Moreover, because

H∗ (Z0 ⊗W ) = 0

the map δ1 above is an isomorphism.

The other short exact sequence, (10), induces

0 −→ H1
(
Λ2Z0

) −→ H1(Q) δ2−→ H2
(
Λ2E∗) −→ 0

using the fact that

H1
(
Λ2E∗ = KP1×P1

)
= 0, H2

(
Λ2Z0

)
= 0.

The classical cup product is then the composition

H0
(
Sym2W ⊗O) δ1−→ H1(Q) δ2−→ H2

(
Λ2E∗) . (12)

We have seen that δ1 is an isomorphism, but δ2 has a nontrivial kernel.
Specifically, since

Λ2Z0 =
(
Λ2V ⊗O(−2, 0))⊕ (

Λ2Ṽ ⊗O(0,−2)
)
⊕

(
V ⊗ Ṽ ⊗O(−1,−1)

)
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we see that the kernel of the classical cup product is one-dimensional

H1
(
Λ2Z0

)
= Λ2V ⊕ Λ2Ṽ .

In fact, it can be shown [20, Section 3.3] that the kernel of the cup product
map (12) is defined by the relations

det
(
ψA+ ψ̃B

)
= 0, (13)

det
(
ψC + ψ̃D

)
= 0. (14)

These are the classical sheaf cohomology ring relations.

Let us check that this correctly reproduces the results of [3]. In that
paper, A = D = I

B =
[
ε1 ε2
ε3 0

]
, C =

[
γ1 γ2

γ3 0

]
.

There, the classical cohomology ring is given by

ψ2 + ε1ψψ̃ − ε2ε3ψ̃2 = 0,

ψ̃2 + γ1ψψ̃ − γ2γ3ψ
2 = 0.

Applying the general methods above to the matrices A, B, C, D here, we
find that

det
(
ψA+ ψ̃B

)
= ψ2 + ε1ψψ̃ − ε2ε3ψ̃2,

det
(
ψC + ψ̃D

)
= ψ̃2 + γ1ψψ̃ − γ2γ3ψ

2

and so we recover the results of [3] for the classical cohomology ring as a
special case. Similarly, it is straightforward to check that this also agrees
with the general results of [4], as we shall review later in Section 6.

4.2 Classical cup products on Pn × Pm

Let us now quickly repeat the analysis of the previous subsection for a more
general product of projective spaces, Pn ×Pm. In the next section, we will
compute the quantum sheaf cohomology ring for P1 ×P1, which will be
determined by classical computations on Pn ×Pm.
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As before, define V = Γ(O(1, 0)), Ṽ = Γ(O(0, 1)), W = C2. Define

Z = (V ⊗O(−1, 0))⊕
(
Ṽ ⊗O(0,−1)

)
.

Then, as before, the cotangent bundle deformation E∗ is the kernel

0 −→ E∗ −→ Z
E−→W ⊗O −→ 0,

where

E =
[
Ãx B̃x

C̃x̃ D̃x̃

]
,

where x, x̃ are vectors of homogeneous coordinates on Pn, Pm, respec-
tively, Ã, B̃ are (n+ 1)× (n+ 1) matrices and C̃, D̃ are (m+ 1)× (m+ 1)
matrices.

As before, we think of classical correlation functions in this theory as
maps

Symn+mW −→ Hn+m
(
ΛtopE∗)

and we compute the kernel, using the generalized Koszul complex associated
to ΛtopE∗

0 −→ Λn+mE∗ −→ Λn+mZ −→ Λn+m−1Z ⊗W
−→ · · · −→ Symn+mW ⊗O −→ 0.

To do computations, we split this into short exact sequences

0 −→ Λn+mE∗ −→ Λn+mZ −→ Sn+m−1 −→ 0, (15)

0 −→ Si −→ ΛiZ ⊗ Symn+m−iW −→ Si−1 −→ 0, (16)

0 −→ S1 −→ Z ⊗ Symn+m−1W −→ Symn+mW ⊗O −→ 0. (17)

Now, Hj(ΛiZ) will vanish unless j = i− 1 = n,m (see for example [20])
(or, alternatively, if i = j = 0, but we shall suppress that case as it will not
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be pertinent for our computations). Thus, from (15), we find

Hn+m−1(Sn+m−1)
∼−→ Hn+m(Λn+mE∗)

from (17) we find

H0(Symn+mW ⊗O) ∼−→ H1(S1)

and from (16) we find a surjective map

H i−1(Si−1) −→ H i(Si)

for 2 ≤ i ≤ n+m− 1. If i− 1 �= n,m, then the surjective map above is an
isomorphism. If i− 1 is either n or m, then it has a nontrivial kernel, given
by H i−1(ΛiZ ⊗ Symn+m−iW ).

If i− 1 = n �= m, then H i−1(ΛiZ) ∼= ΛtopV , and it can be shown [20,
Section 3.3] that this is generated by

det
(
ψÃ+ ψ̃B̃

)
,

where {ψ, ψ̃} is a basis for W . Thus, the kernel of Hn(Sn)→ Hn+1(Sn+1)
is generated by

det
(
ψÃ+ ψ̃B̃

)
.

The case i− 1 = m �= n is nearly identical, so we omit its description. If
i− 1 = n = m, the result is very similar. In this case

Hn(Λn+1Z) = Λn+1V ⊕ Λn+1Ṽ

and the kernel of Hn(Sn)→ Hn+1(Sn+1) is generated by

det
(
ψÃ+ ψ̃B̃

)
, det

(
ψC̃ + ψ̃D̃

)
.

Putting this together, we find that the classical sheaf cohomology ring of
Pn ×Pm with bundle E is generated by ψ, ψ̃ with relations

det
(
ψÃ+ ψ̃B̃

)
= 0 = det

(
ψC̃ + ψ̃D̃

)
.
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4.3 Quantum sheaf cohomology ring on P1 × P1

Define

Q ≡ det(ψA+ ψ̃B),

Q̃ ≡ det(ψC + ψ̃D).

In this section, we will show that the quantum sheaf cohomology ring of
P1 ×P1, with bundle E defined earlier, is given by

C[ψ, ψ̃]/(Q− q, Q̃− q̃).

First, we shall derive the form of the cohomology ring in each fixed instanton
sector, then, we shall find relations between the sectors.

We shall begin by deriving the ring for fixed instanton degree (d, e). As
outlined earlier, the LSM moduli space is computed to be

M = P2d+1 ×P2e+1.

Define Z to be the following sheaf onM:

Z ≡
(
SymdU ⊗ V ⊗O(−1, 0)

)
⊕

(
SymeU ⊗ Ṽ ⊗O(0,−1)

)
.

The induced sheaf F∗ is the kernel

0 −→ F∗ −→ Z −→W ⊗OM −→ 0,

where

U = Γ(P1,O(1)), V = Γ(P1 ×P1,O(1, 0)),
Ṽ = Γ(P1 ×P1,O(0, 1)), W = C2

which is naturally induced from the short exact sequence defining E∗, as
discussed in Section 2.

The desired correlation function in sector (d, e) can be computed as a
classical sheaf cohomology cup product onM = P2d+1 ×P2e+1. As we have
already computed classical sheaf cohomology on a product of projective
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spaces, we can apply our results from the previous subsection. The induced
maps are such that, for example

Ã = diag(A,A, . . . , A)

(d+ 1 copies), hence the classical sheaf cohomology ring relations are

det
(
ψÃ+ ψ̃B̃

)
= det

(
ψA+ ψ̃B

)d+1
= 0,

det
(
ψC̃ + ψ̃D̃

)
= det

(
ψC + ψ̃D

)e+1
= 0

and so we immediately find that for fixed degree (d, e), the sheaf cohomology
groups

H∗ (M,Λ∗F∗)

live in the polynomial ring

Sym·W / (Qd+1, Q̃e+1).

For example, for degree (d, e) = (1, 0), the kernel is spanned by the four
polynomials

Q2, Q̃ψ2, Q̃ψψ̃, Q̃ψ̃2

and it is straightforward to check that this is a correct property of the
correlation functions give in, e.g., [1, equations (21) to (30)].

It remains to derive the operator product ring, the quantum sheaf coho-
mology ring utilizing the structure derived.

As there are no four-Fermi contributions (F1 = Obs = 0), we expect from
existence of operator products that there should be relations between
correlation functions in different instanton sectors, of the form

〈O〉d,e ∝ 〈ORd,e,d′,e′〉d′,e′ (18)

for all O and some fixed operator Rd,e,d′,e′ . For example

〈O〉0,0 ∝ 〈OQ〉1,0

which suggests Q = q for some proportionality constant q, and

〈O〉0,0 ∝ 〈OQ̃〉0,1
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which suggests Q̃ = q̃ for some proportionality constant q̃. Equation (18) is
merely the generalization to arbitrary instanton degrees. Because of com-
patibility with the kernels above (i.e., maps must send kernels to (subsets
of) kernels, and must map top-forms to top-forms), the relations (18) should
be of the form

〈O〉d,e ∝ 〈OQd′−dQ̃e′−e〉d′,e′

hence

〈O〉d,e = Ad,e,d′,e′〈OQd′−dQ̃e′−e〉d′,e′

for some constant Ad,e,d′,e′ . We assume that the constant Ad,e,d′,e′ has the
form

Ad,e,d′,e′ = qd′−dq̃e′−e

for some constants q, q̃. Note that mathematically this is an assumption, not
a derivation; we justify this assumption by the fact that this is the standard
form of nonperturbative corrections to operator products, and so we recover
standard physics results.

Thus

〈O〉d,e = qd′−dq̃e′−e〈OQd′−dQ̃e′−e〉d′,e′

and in particular

〈ψψ̃QdQ̃e〉d,e = qdq̃e〈ψψ̃〉0,0

from which we derive the quantum sheaf cohomology relations

Q ∼ q, Q̃ ∼ q̃

so that the quantum sheaf cohomology ring is given by

C[ψ, ψ̃]/(Q− q, Q̃− q̃).

This matches the prediction of [4], and also specializes to the results in [1, 3].

As a consistency check, let us quickly observe how bundle isomorphisms
preserve the ring above. Let R ∈ GL(W ), P1 ∈ GL(V ), P2 ∈ GL(Ṽ ). Under
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the action of this GL(2)3

E �→
[
P1Ax P1Bx
P2Cx̃ P2Dx̃

]
R.

As R also acts on ψ, ψ̃, its action falls out of the ring relations, and we are
left with

det
(
Aψ +Bψ̃

)
�→ det

(
P1

(
Aψ +Bψ̃

))
= detP1 det

(
Aψ +Bψ̃

)
,

det
(
Cψ +Dψ̃

)
�→ det

(
P2

(
Cψ +Dψ̃

))
= detP2 det

(
Cψ +Dψ̃

)
and so we see that by absorbing detPi into q, q̃, the ring is preserved.

5 Example: Hirzebruch surface

Next, we shall compute quantum sheaf cohomology for a deformation of the
tangent bundle of the Hirzebruch surface Fn. We will use the same notation
as earlier in Section 2. As in that section, the homogeneous coordinates u,
v, s, t (corresponding to the four toric divisors) have the following weights
under two C× actions:

u v s t
1 1 0 n
0 0 1 1.

We describe a deformation E∗ of the cotangent bundle as the kernel

0 −→ E∗ −→ Z
E−→W ⊗O −→ 0,

where

Z = O(−1, 0)⊕2 ⊕O(0,−1)⊕O(−n,−1),
W is a two-dimensional vector space

E =

⎡
⎣ Ax Bx

γ1s γ2s
α1t+ sf1(u, v) α2t+ sf2(u, v)

⎤
⎦

with

x ≡
[
u
v

]
,
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A, B constant 2× 2 matrices, γ1, γ2, α1, α2 constants and f1,2(u, v)
homogeneous polynomials of degree n.

First, we shall outline the classical cohomology ring. As before, we use
the generalized Koszul complex associated to Λ2E∗, split it into two short
exact sequences, and compute the kernel of the map Sym2W → H2(Λ2E∗).
The kernel arises from H1(Λ2Z), which is 2D. It can be shown [20, Section
3.3] that the kernel is generated by

det
(
ψA+ ψ̃B

)
,
(
ψγ1 + ψ̃γ2

)(
ψα1 + ψ̃α2

)
.

Because we will be encountering these polynomials often, we shall assign
them names as follows:

QK1 = det
(
ψA+ ψ̃B

)
,

Qs = ψγ1 + ψ̃γ2,

Qt = ψα1 + ψ̃α2.

(This nomenclature is used in the companion paper [20].) Thus, the kernel
in the degree 	d = 0 sector is generated by QK1, QsQt.

Next, consider the sector of instanton degree 	d = (1, 0). The LSM moduli
space has homogeneous coordinates u0,1, v0,1, s, t0,...,n, with weights

u0,1 v0,1 s t0,...,n

1 1 0 n
0 0 1 1

with exceptional set

{u0 = u1 = v0 = v1 = 0, s = t0 = t1 = · · · = tn = 0}.

The induced bundle F is given by

0 −→ F∗ −→ Z
E′−→W ⊗O −→ 0,

where

Z = O(−1, 0)⊕4 ⊕O(0,−1)⊕O(−n,−1)⊕n+1
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and the map E′, induced from E, is given by

E′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ax0 Bx0

Ax1 Bx1

γ1s γ2s

α1t0 + sf1(u0, v0) α2t0 + sf2(u0, v0)
α1t1 + s . . . α2t1 + s . . .

· · · · · ·
α1tn + s . . . α2tn + s . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where we are using · · · to abbreviate full zero mode expansions of f1, f2,
as described earlier in e.g., the analogous case of equation (2). We use s . . .
merely to denote a series of terms which have s as a common factor.

We want to compute the kernel of the map Symn+4W → Hn+4(Λn+4F∗),
which we do using the generalized Koszul complex associated to Λn+4F∗.
Following the usual pattern, and using the exceptional set described above
(and the primitive collection it determines as in [20]), we find that the map
H3(S3)→ H4(S4) fails to be an isomorphism (because H3(Λ4Z) is nonzero)
and Hn+1(Sn+1)→ Hn+2(Sn+2) fails to be an isomorphism (because
Hn+1(Λn+2F) is nonzero). The kernel arising from the first is generated
by [20, Section 3.3]

Q2
K1 =

(
det

(
ψA+ ψ̃B

))2

and the kernel arising from the second is generated by [20, Section 3.3]

QsQ
n+1
t =

(
ψγ1 + ψ̃γ2

)(
ψα1 + ψ̃α2

)n+1
.

In terms of correlation functions, the result above implies that

〈O〉�d=0
∝ 〈OQK1Q

n
t 〉�d=(1,0)

which suggests that the OPE ring has the (partial) form

QK1Q
n
t = q1 (19)

for some parameter q1.
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Next, consider the degree 	d = (0, 1) sector. The LSM moduli space has
homogeneous coordinates u, v, s0,1, t0,1 (where the si and ti are the coeffi-
cients in the zero-mode expansion of s, t). These coordinates have weights

u v s0 s1 t0 t1
1 1 0 0 n n
0 0 1 1 1 1

and the exceptional set is given by

{u = v = 0, s0 = s1 = t0 = t1 = 0}.

The induced bundle F is now given by

0 −→ F∗ −→ Z
E′−→W ⊗O −→ 0,

where

Z = O(−1, 0)⊕2 ⊕O(0,−1)⊕2 ⊕O(−n,−1)⊕2

and the map E′, induced from E, is given by

E′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ax Bx

γ1s0 γ2s0

γ1s1 γ2s1

α1t0 + s0f1(u, v) α2t0 + s0f2(u, v)

α1t1 + s1f1(u, v) α2t1 + s1f2(u, v)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

As before, we want to compute the kernel of the map Sym4W → H4(Λ4F∗),
which we do using the generalized Koszul complex associated to Λ4F∗. Fol-
lowing the usual pattern, and using the exceptional collection described
above, we find that the map H1(S1)→ H2(S2) fails to be an isomorphism
(because H1(Λ2Z) is nonzero) and H3(S3)→ H4(Λ4F∗) fails to be an iso-
morphism (because H3(Λ4Z) is nonzero). The kernel arising from the first
is generated by

QK1 = det
(
ψA+ ψ̃B

)
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and the kernel arising from the second is generated by [20, Section 3.3]

Q2
sQ

2
t =

(
ψγ1 + ψ̃γ2

)2 (
ψα1 + ψ̃α2

)2
.

In terms of correlation functions, the result above implies that

〈O〉�d=0
∝ 〈OQsQt〉�d=(0,1)

which suggests that the operator product expansion (OPE) ring has the
(partial) form

QsQt = q2 (20)

for some parameter q2.

Now, consider the sector of instanton degree 	d = (1,−n). In this sector,
we need to take into account contributions from four-Fermi terms, some-
thing we have not needed to do previously. The LSM moduli space has
homogeneous coordinates u0,1, v0,1, t (where the ui, vi are the coefficients
in the zero mode expansion of u, v and s does not contribute because it has
no zero modes in this sector). These coordinates have weights

u0 u1 v0 v1 t
1 1 1 1 n
0 0 0 0 1

and the exceptional set is given by

{u0 = u1 = v0 = v1 = 0, t = 0}.

The induced bundle F is given by

0 −→ F∗ −→ Z
E′−→W ⊗O −→ 0,

where

Z = O(−1, 0)⊕4 ⊕O(−n,−1)

and the map E′, induced from E, is given by

E′ =

⎡
⎣Ax0 Bx0

Ax1 Bx1

α1t α2t

⎤
⎦ ,
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where xi = [ui, vi]T. Furthermore, the second U(1) effectively removes t
from the moduli space, so the LSM moduli space is effectively P3, and
then2 Z = O(−1)⊕4 ⊕O. In this example, F1 will be nonzero, as we will
discuss momentarily, but first let us compute the cohomology ring structure
in this instanton sector.

Proceeding based on previous experience, the kernel will have two com-
ponents. One component will arise from H3(Λ4Z) �= 0. This kernel will be
proportional to

Q2
K1 =

(
det

(
ψA+ ψ̃B

))2
.

The second component will arise from H0(Z) �= 0. This kernel will be pro-
portional to

Qt = α1ψ + α2ψ̃.

Now, let us compute F1. We will find that four-Fermi terms will con-
tribute, something that has not been true in previous cases. (As a result,
the interpretation of the kernels computed above as kernels of correlation
functions is more subtle than before — in some ways, this case is more
closely parallel to the details of a single projective space and the kernels
computed there.) Here

F1 = H1
(
P1,O(−n))⊗O(0, 1) = n−1⊕

1

O(0, 1)

(for n ≥ 1; we omit n = 0 as we have already studied P1 ×P1). If we
describe the moduli space as P3, then F1 = O(−n)⊕n−1. (In previous cases,
F1 vanished; we only mention it when it is nonzero.) 9 Since F1 is nonzero
(and of the same rank as the obstruction bundle, which in fact is identical),
in each correlation function in this sector we need to insert

Qn−1
s =

(
ψγ1 + ψ̃γ2

)n−1

(following Appendix A).

2The reader might ask why the last factor is O instead of O(−n), since it arises from
O(−n,−1). The answer is that the C× action describing the P3, must leave the t coor-
dinate neutral. If we label the two C× actions defining Fn as λ, μ, then the C× action
defining M = P3 is λ− nμ, so that over that M, t is a smooth section of O and s is a
smooth section of O(−n).
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Now, let us find some relations between correlation functions. First, let
us relate correlation functions in degree (1,−n) to those in degree (1, 0). In
both degrees, Q2

K1 partially generates the kernel, but in the former case, the
rest arises from Qt, whereas in the latter case, QsQ

n+1
t is a generator, so

to account for the difference, to map kernels to kernels, correlators in the
degree (1, 0) sector must be multiplied by QsQ

n+1
t /Qt = QsQ

n
t . Further-

more, because in the degree (1,−n) sector, four-Fermi terms add a factor
of Qn−1

s , we must also add that same factor to correlators in degree (1, 0).
Thus, we find that

〈O〉�d=(1,−n)
∝ 〈O (QsQ

n
t )

(
Qn−1

s

)〉�d=(1,0)
= 〈O (QsQt)

n〉�d=(1,0)
.

Note that this result is compatible with the earlier relation (19), namely

QsQt = q2

for some constant q2; furthermore, to achieve that compatibility required
both matching kernels and also utilizing four-Fermi terms.

As one more consistency check, let us now work out the relation between
correlation functions in degree 	d = 0 and those in degree 	d = (1,−n). In the
former case, the kernel is generated by QK1, QsQt, whereas in the latter
case, the kernel is generated by Q2

K1, Qt, so if we ignore four-Fermi terms,
then to match kernels, correlation functions would be related by

〈OQs〉�d=0
∝ 〈OQK1〉�d=(1,−n)

.

Because in degree (1,−n) we also have four-Fermi terms, generating factors
of Qn−1

s , the correct relation between correlation functions is

〈OQsQ
n−1
s 〉�d=0

∝ 〈OQK1〉�d=(1,−n)
.

In terms of our previous relations, this suggests that

QK1 = q1q
−n
2 Qn

s

which is indeed an algebraic consequence of (19) and (20). (Simply multiply
both sides by either Qn

s or Qn
t and apply (20) to turn one into the other.)

Again, note we need both kernels and four-Fermi terms to derive consistent
relations.

This last example also illustrates a technical point regarding OPE compu-
tations that will arise in [20]. There, we will derive OPEs by giving relations
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between correlation functions of the form

〈O〉β ∝ 〈ORβ,β′〉β′ .

Except for the last case above, in the examples we have studied it has been
possible to find an Rβ,β′ putting relations in the form above. However, the
last example illustrates that this cannot always be done. Technically, in
[20] we deal with this issue through the introduction of “direct systems” to
describe relations between correlation functions of different degrees.

Let us also take a moment to discuss the interpretation of the q’s. In
this text, we have been using them merely as placeholders for unspecified
constants; in particular, classical limits do not necessarily correspond to the
case that all qi → 0. To clarify this, let us consider the (2,2) limit of the
relations we have been deriving. In this limit,

A = I, B = 0, γ1 = 0, γ2 = 1, α1 = n, α2 = 1, f1 = f2 = 0.

As a result

QK1 = ψ2, Qs = ψ̃, Qt = nψ + ψ̃.

The classical cohomology ring of the Hirzebruch surface can be described by
(toric) generators Du, Dv, Ds, Dt in degree 2, obeying

Du ∼ Dv, Dt ∼ Ds + nDv,

D2
u = 0, Ds(nDu +Ds) = 0.

If we identify Du = ψ, Ds = ψ̃, then the relations (19) and (20), namely

QK1Q
n
t = q1, QsQt = q2

become

D2
u(nDt +Du) = q1, Ds(nDu +Ds) = q2

which clearly do not have the correct classical limit when q1 → 0. On the
other hand, the equivalent relations

QK1 = q′Qn
s , QsQt = q2

(where q′ = q1q
−n
2 ) become

D2
u = q′Dn

s , Ds(nDu +Ds) = q2
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which does reduce to the classical cohomology ring relations when q′ =
q1q

−n
2 → 0 and q2 → 0. This also illuminates the issue with the previous

presentation — q1 → 0, q2 → 0 independently do not give the classical limit,
one must also demand q1q−n

2 → 0. Thus, we see that only certain presenta-
tions of the ring will give the classical cohomology ring on the (2,2) locus
when all q → 0. For other presentations, more complicated limits must be
taken3 . The particular presentation given in [20] does have the property
that on the (2,2) locus, one recovers the correct classical limit as all q → 0
independently. In this paper we shall not belabor this point.

Now, let us summarize. We have not described an exhaustive survey of
all possibilities (see instead [20]), but based on the computations performed,
it would seem that the OPE ring in this example is defined by

QK1Q
n
t = q1,

QsQt = q2

which are relations (19) and (20). We will see in Section 6 that this is a
correct specialization of the general results of [20].

6 General result

6.1 Result

First, we shall outline the result from [20], and then compute it in examples.

Let {ρi} denote the (one-dimensional) edges of the fan, i.e., the toric divi-
sors, and let Ki denote “primitive collections” of edges, i.e., maximal col-
lections of edges not contained in any single cone. (These collections define
the Stanley–Reisner ideal, through the statement that the toric divisors do
not all intersect.)

To each primitive collection K, we can associate a unique divisor class
βK , as follows. Let the vector generating the edge of the fan corresponding
to ρ be denoted vρ, then for K = {ρ1, . . . , ρk}, we can write

vρ1 + · · ·+ vρk
=

∑
ρ

cρvρ (21)

for some integers cρ > 0, with the sum on the right running over toric divisors
not necessarily in K. By moving the right-hand side to the left, we can write

3We would like to thank I. Melnikov for illuminating discussions of this point.
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this as ∑
ρ

aρvρ = 0 (22)

for some integers ai. Then, it can be shown [24] that there is a unique curve
class βK such that βK ρ = aρ for all ρ.

Now, for each divisor class c = [ρ], we define a |c| × |c| matrix Ac, where
|c| is the number of toric divisors linearly equivalent to ρ. The matrix Ac is
given by the rows of the map E appearing in the definition of the deformation
E∗, the rows corresponding to representatives of c, and with nonlinear terms
omitted. Define

Qc = detAc.

The quantum sheaf cohomology ring is then given by polynomials in the
elements of a basis for W , modulo the relations

∏
c∈[K]

Qc = qβK
∏

c∈[K−]

Q−d
βK
c

c (23)

for each primitive collection K, where [K−] denotes the set of linear equiva-
lence classes of edges appearing in the right-hand side of (21) with nonzero
coefficients cρ, and d

βK
c ≡ c βK . (Note that for c ∈ [K−], the exponent −dβK

c

is nonnegative.)

The formula above gives a canonical presentation of the quantum sheaf
cohomology ring for each toric variety, dependent only upon the bundle and
toric variety and not the details of any particular presentation such as C×

weights or U(1) charges in a quotient.

Let us work through a few examples of this formalism, beginning with a
projective space Pn, as described in Section 3. Here, there are n+ 1 toric
divisors ρ0, . . . , ρn. There is only one primitive collection

K = {ρ0, . . . , ρn}

and for any fan, the vectors generating the edges obey

vρ0 + · · ·+ vρn = 0.

The unique divisor class β such that β ρ = 1 for all ρ is represented by any
of the toric divisors ρ, since they are all linearly equivalent. All of the toric
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divisors are linearly equivalent, and so there is one matrix Ac = Aψ, derived
from the map E defining E∗, and one Q = detAc = det(Aψ). The quantum
sheaf cohomology ring is then C[ψ] modulo the relation

det(Aψ) = q

matching what was found in Section 3, and for that matter matching the
(2,2) locus (since on a single projective space, all toric Euler deformations
return the tangent bundle itself).

A slightly more interesting example is P1 ×P1, as discussed in Section 4.
Here, let Dx0,1 , Dx̃0,1 denote the four toric divisors. (We are using here the
nearly same notation for the toric divisors that we used for corresponding
homogeneous coordinates in Section 4.) There are two primitive collections

K1 = {Dx0 , Dx1}, K2 = {Dx̃0 , Dx̃1}.

In each primitive collection, the constituent divisors are all linearly equiva-
lent to one another. Moreover

vx0 + vx1 = 0, vx̃0 + vx̃1 = 0.

It is easy to check that β1 is represented by Dx̃0 , Dx̃1 and β2 is represented
by Dx0 , Dx1 , since Dxi Dx̃j = 1. Following the notation of Section 4, we find

A1 = ψA+ ψ̃B,

A2 = ψC + ψ̃D

and from (23) the quantum sheaf cohomology ring is C[ψ, ψ̃] modulo the
relations

det
(
ψA+ ψ̃B

)
= qβ1 ,

det
(
ψC + ψ̃D

)
= qβ2

matching the results of Section 4.

Now, let us specialize the general result to Hirzebruch surfaces, and com-
pare to the results we obtained previously. To that end, we describe the
Hirzebruch surface classically with four (toric) divisors Du, Dv, Ds, Dt,
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where

Du = Dv, Dt = Ds + nDv

and

DuDv = 0 = DsDt.

There are two “primitive collections” of divisors, defined by the Stanley–
Reisner ideal above

K1 = {Du, Dv}, K2 = {Ds, Dt}.

For the first primitive collection

vu + vv = nvs

and the unique divisor class β1 such that

[Du]β1 = 1 = [Dv]β1, [Ds]β1 = −n, [Dt]β1 = 0

is represented by Ds, i.e., β1 = [Ds]. Similarly

vs + vt = 0

and the unique divisor class β2 such that

[Du]β2 = 0 = [Dv]β2, [Ds]β2 = 1 = [Dt]β2

is represented by Du, Dv, i.e., βK2 = [Du] = [Dv].

Then, to each primitive collection K is associated a polynomial in the
generators of W . In this case, these polynomials are

∏
c∈[K1]

Qc = QK1,

∏
c∈[K2]

Qc = QsQt.

In the expressions above, note that Du and Dv are linearly equivalent, so
there is only one linear equivalence class in [K1], but Ds and Dt are not
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linearly equivalent, so there are two linear equivalence classes in [K2]. Then,
putting this together, the quantum sheaf cohomology relations in (23) are

∏
c∈[K1]

Qc = QK1 = qβ1Q−d
β1
s

s

= qβ1Qn
s ,∏

c∈[K2]

Qc = QsQt = qβ2 ,

where

dβK
ρ ≡ [Dρ]βK

(here, dβ1
s = [Ds]β1 = −n) and qβ1 , qβ2 are the two quantum parameters.

Note that by multiplying both sides by Qn
t and using the second relation,

we can turn these two relations into

QK1Q
n
t = q′,

QsQt = qβ2 ,

where q′ = qβ1(qβ
2 )

n. It is this latter form in which the OPE rings for the
Hirzebruch surface appear earlier in Section 5, where q1 = q′, q2 = qβ2 .

6.2 Comparison to McOrist–Melnikov’s results

Let us now compare to the one-loop Coulomb branch results for the quantum
sheaf cohomology ring given in [4].

Implicitly, the relations derived in all one-loop Coulomb branch compu-
tations are not the relations of the ring at any single large-radius limit of
the GLSM, but rather live in a “localization” of the ring, in which opera-
tors have been inverted. Physically, this arises because the Coulomb branch
computations take place in a regime where σ vevs are large, and so can
be assumed nonzero and invertible; mathematically, this makes it possible
for the one-loop Coulomb branch relations to be equally applicable to all
large-radius phases. Thus, to compare the results of the last subsection,
derived in a single large-radius phase, we must descend to a localization of
the ring in which operator invertibility is allowed, and make the comparison
in that localization. We will find that, after implicitly descending to that



PHYSICAL ASPECTS OF QUANTUM SHEAF COHOMOLOGY 1291

localization, the results of the last subsection do indeed match the predic-
tions of [4].

Partition the line bundle factors into collections {O (	qi)} with matching
	qi. (We can think of this equivalently as partitioning the chiral superfields,
indexed by i, into collections consisting of matching U(1) charges 	qi.) Index
such collections by α. (There is a one-to-one correspondence between such
collections and linear equivalence classes of toric divisors.) Let

Ei : O⊕r −→ O (	qi)

denote the maps in the short exact sequence defining E . Define

Aja
(α)i ≡

∂

∂φj
Ea

i

∣∣∣∣
φ≡0

for i, j in the collection α. For example, the tangent bundle of a toric variety
is described by

Ea
i = Qa

i φi

hence

Aja
(α)i = δj

iQ
a
(α),

where 	qα = (Qa
α) denotes the U(1) charges of all fields in the collection α.

In this language, if we define Vα to be a vector space of the same dimension
as the number of line bundles in the collection α (the number of chiral
superfields with matching charges 	qα), and letW = Cr, then we can describe
the deformation of the tangent bundle as the cokernel

0 −→W ⊗O −→
⊕

α

Vα ⊗O (	qα) −→ E −→ 0.

Define

M j
(α)i = Aja

(α)iψa.

This is the same matrix that was denoted Ac in the previous section, but we
have adapted our notation to more closely resemble that of [4]. In this nota-
tion, the result of [20] is that the quantum sheaf cohomology ring relations
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descend to

∏
α

(
detM(α)

)Qa
α = qa (24)

for each a, where 	qα = (Qa
α), and qa is the quantum parameter, modulo

inversion of operators.

The ring above is specified in terms of the U(1) charges of the toric homo-
geneous coordinates, whereas in the previous section we gave a canonical rep-
resentation that was independent of such choices. Specifically, the canonical
representative was described in terms of aρ defined in (22). However, the
charges Qa

α are also defined as the kernel of a matrix formed from the vρ’s,
as in equation (22); thus, the aρ = Dρ β defined there are precisely one set of
charges. With that in mind, the quantum sheaf cohomology relations (23)
can be written in the form

∏
c

QDc β
c = qβ

for the β associated to each primitive collection, which is the same as

∏
c

(detAc)
Qβ

c = qβ

for Qβ
c ≡ Dc β. Thus, we see that the relations (23) specified in [20] really

do descend to the relations (24) in a localization4 of the ring, written in a
form closer to that of [4], for a particular choice of charges Qa

α.

We should emphasize again that this result is independent of nonlinear
deformations (meaning, terms in Ea

i nonlinear in φ’s), as conjectured in,
e.g., [11, Section 3.5]. This result also nicely meshes with previous physics
results. For example, Kreuzer et al. [13, Section A.3] conjectured that
A/2 correlation functions should be independent of nonlinear deformations,
based on the fact that the discriminant locus in GLSMs does not depend on
such nonlinear deformations.

4We are implicitly performing this comparison in the localization mentioned earlier, as
we have not specified whether the charges Qa

α are positive or negative.
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In the special case of linear deformations, i.e., when

Ea
i =

∑
j

Aja
(α)iφj

the result above specializes to the result of [4], computed with Coulomb
branch techniques in GLSMs.

Now, let us compare to particular examples discussed earlier in this paper.

In the case of deformations of the tangent bundle of P1 ×P1 discussed in
Section 4.3, it is straightforward to check that there are two M(α), given by

M(1) = ψ1A+ ψ2B,

M(2) = ψ1C + ψ2D

and so we have the relations

detM(1) = q1, detM(2) = q2

which matches our previous computation.

Next, let us describe the example of a Hirzebruch surface Fn. Consider
a fan with edges (1, 0), (0, 1), (−1, n), (0,−1), defined by the charges (1, 0),
(0, 1), (1, 0), (n, 1) and homogeneous coordinates u, s, v, t, respectively, as
in figure 1. For a deformation of the tangent bundle of Fn as defined in (1),
we compute

M(1) = Aψ1 +Bψ2,

M(2) = γ1ψ1 + γ2ψ2,

M(3) = α1ψ1 + α2ψ2

and so we have the quantum sheaf cohomology relations

(
detM(1)

) (
M(3)

)n = q1,(
M(2)

) (
M(3)

)
= q2

which are precisely (19) and (20) computed earlier, identifying

QK1 = detM(1), Qs =M(2), Qt =M(3).
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In the special case that E = TX, the ring above reduces to

∏
i

(∑
b

Qb
iψb

)Qa
i

= qa

or equivalently

ψ2
1 (nψ1 + ψ2)

n = q1,

ψ2 (nψ1 + ψ2) = q2

which is a standard result in (2,2) GLSMs [23, equation (3.44)]. If we identify
the toric divisors Di as

Di =
∑

a

Qa
iψa

(as a consistency check, note that since
∑

iQ
a
i 	vi = 0, it is necessarily the

case that ∑
i

〈m,	vi〉Di = 0

hence the description above encodes the linear relations on the Chow ring)
then the GLSM ring can be written as∏

i

D
Qa

i
i = qa

or equivalently

DuDvD
n
t = q1,

DsDt = q2,

where

Du ∼ Dv, Dt ∼ Ds + nDv.

There is an issue with classical limits, previously noted in Section 5. Let
us outline the analysis here, in the language of GLSMs. The classical coho-
mology ring of Fn can be described by the relations

D2
u = 0, D2

s = −nDuDs

and if we identify Du = ψ1, Ds = ψ2, then we almost recover this in the limit
qa → 0, except for an extra factor of Dn

t modifying the relation D2
u = 0. In
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order to make the relation with the classical cohomology ring more clear, we
should work in a different basis, one in which the fields have charges (1, 0),
(1, 0), (0, 1), (−n, 1). (Note this is achieved by an SL(2,Z) transformation.)
In this basis, the quantum cohomology ring becomes

ψ2
1 = q1 (−nψ1 + ψ2)

n , ψ2 (−nψ1 + ψ2) = q2

and so when we set qa → 0, and identify Du = ψ1, Ds = −ψ2, we recover
the classical cohomology ring without extraneous factors. (Alternatively, the
canonical presentation of the previous section avoids this problem.) More
invariantly, to cleanly recover the classical cohomology relations from the
GLSM relations, one wants to work in a basis such that the smooth phase
of the GLSM corresponds to the positive orthant of the secondary fan; this
is a property of the canonical presentation of the previous section.

7 Conclusions

In this paper we have outlined the mathematical computation of quantum
sheaf cohomology rings for deformations of tangent bundles of toric vari-
eties, emphasizing physics aspects of the computation. Our new methods
allow for much more efficient mathematical computations than possible pre-
viously. We have also seen in examples that in these cases (toric varieties,
deformations of the tangent bundle), quantum sheaf cohomology is indepen-
dent of nonlinear deformations, as conjectured elsewhere (see, e.g., [11, 13]).
Rigorous general proofs will appear in [20].

Extensions of the results of this paper to Grassmannians and flag mani-
folds are under discussion [25]. Extensions to hypersurfaces would also be
extremely useful. In this paper and [20] we compute kernels of correlation
functions in order to compute operator products; it would also be interesting
to work out complete expressions for the correlation functions themselves.
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Appendix A. GLSM derivation of four-Fermi terms

In this section we will outline how four-Fermi effects arise in GLSMs, and
use this to derive the ansatz for their effects in (0,2) theories used earlier in
Sections 5 and 6. Furthermore, we will see explicitly that nonlinear defor-
mations cannot contribute to the four-Fermi terms, at least in the GLSM.

First, let us consider ordinary (2,2) supersymmetric GLSMs for toric
varieties, as in [23, 26]. As discussed in [27], correlation functions in the
A-twisted theory are correlation functions of products of σ’s. The GLSM
itself does not contain any four-Fermi terms, but the effects of four-Fermi
terms in the low-energy NLSM are duplicated by Yukawa couplings in the
GLSM of the form ∑

i,a

Qa
i σaψ

ı
zψ

i
z.

Four-Fermi terms in a NLSM must be invoked whenever ψı
z, ψ

i
z have zero

modes. In the present case, when such fields have zero modes, to absorb
them one must use the Yukawa couplings above, which will then be respon-
sible for a factor of

∏
i

(∑
a

Qa
i σa

)ni

,

where

ni = h1
(
P1,O

(
	Qi
	d
))

,

where 	Qi has components Qa
i , and 	d defines the degree of the instanton

sector. (Strictly speaking, four-Fermi interactions contribute integrals over
of the worldsheet of such factors; however, in the A model, correlators are
independent of position, so such integrals merely contribute factors of the
worldsheet area, which are cancelled out by corresponding factors in the
path integral. See [27] for details.) This precisely duplicates the contribution
described in [1, Section 6.2.2]; [23, equation (3.69)].

In an A/2 theory describing a toric variety with a deformation of the
tangent bundle, the results above are modified slightly. There, the pertinent
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Yukawa couplings are of the form [14, 26]∑
i,j

ψı
zψ

j
z∂ıE

j
.

In terms of correlation functions, this means we insert∏
c

(detAc)
nc ,

where c runs over classes of toric divisors with the same GLSM charge (i.e.,
linear equivalence classes)

nc = h1
(
P1,O( 	Qc

	d)
)
,

where 	Qc is the charge of the homogeneous coordinates in class c, and the
matrix

Ac =
(
∂iE

j
)

with i, j running in the same class c. (Strictly speaking, again, four-Fermi
terms contribute integrals. In the A/2 model, a priori worldsheet correla-
tors are holomorphic functions of position, but as argued in [7] for CFT’s
and [28] for GLSMs, in a neighbourhood of the (2,2) locus, A/2 correla-
tors are actually independent of position, and so again the integrals merely
contribute factors of worldsheet area.)

Let us work out an example in detail to illustrate what this means.
Consider the example of a Hirzebruch surface Fn, as in Section 2. In an
example there, the deformation E of the tangent bundle is described by

0 −→ E∗ −→ O(−1, 0)2 ⊕O(0,−1)⊕O(−n,−1) E−→W ⊗O −→ 0,

where

E =

⎡
⎣ Ax Bx

γ1s γ2s
α1t+ sf1(u, v) α2t+ sf2(u, v)

⎤
⎦

with

x ≡
[
u
v

]

A, B are constant 2× 2 matrices, γ1, γ2, α1, α2 are constants, and f1,2(u, v)
are homogeneous polynomials of degree n.
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In the case above

Eu = (A11u+A12v)σ1 + (B11u+B12v)σ2,

Ev = (A21u+A22v)σ1 + (B21u+B22v)σ2,

Es = γ1sσ1 + γ2sσ2,

Et = (α1t+ sf1(u, v))σ1 + (α2t+ sf2(u, v))σ2

and the pertinent Yukawa couplings are

ψu
zψ

u
z ∂uE

u + ψv
zψ

u
z ∂vE

u + ψu
zψ

v
z∂uE

v + ψv
zψ

v
z∂vE

v

+ ψs
zψ

s
z∂sE

s + ψt
zψ

t
z∂tE

t + ψs
zψ

t
z∂sE

t + ψu
zψ

t
z∂uE

t + ψv
zψ

t
z∂vE

t

(and their complex conjugates). In particular, the last three terms

ψs
zψ

t
z∂sE

t + ψu
zψ

t
z∂uE

t + ψv
zψ

t
z∂vE

t

completely encode the nonlinear terms sfi(u, v) in E — those nonlinear
terms do not enter into any of the other Yukawa couplings above.

Because the couplings containing the nonlinear terms are not paired sym-
metrically, because ∂tE

u,v,s = 0, those nonlinear terms will not affect the
four-Fermi contribution to correlation functions. To see this, first note that
when we integrate over ψz, ψz zero modes, we will take a determinant of
Yukawa couplings (or rather, what those couplings induce over the instan-
ton moduli space). Since determinants are antisymmetric, and ∂tE

u,v = 0,
it must be the case that terms involving ∂u,vE

t cannot contribute. (At a
more elementary level, this is saying that since we can evaluate determinants
along either rows or columns, if we choose to evaluate along a column with
only one nonzero entry, then nonzero entries in the transpose row cannot
contribute.)

On any compact toric variety, the same will be true more generally. The
point is that for the argument to fail, we need for it to be possible to build
gauge-invariant combinations of the homogeneous coordinates. However,
that can be done if and only if the toric variety is noncompact (in which case,
the vev of such gauge-invariant combinations corresponds to noncompact
directions).

Let us work through the details in a particular case. Consider the sector
of maps of degree 	d = (1,−n), which corresponds to maps mapping into the
exceptional curve E with degree 1. This case was discussed earlier in this
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paper in detail; in effect, we are merely giving a more detailed derivation of
a result used there. In this case, it is straightforward to compute

0 −→ F∗ −→ O(−1)4 ⊕O E′−→W ⊗O −→ 0

over M∼= P3, with F1
∼= O(−n)n−1. In this case, there are only ψμ

z zero
modes for μ = s, hence the only pertinent Yukawa coupling is the induced
coupling5

∑
i

ψs
z,iψ

s
z,i (γ

∗
1σ1 + γ∗2σ2) .

Integrating over the ψz, ψz zero modes gives a factor of

(γ∗1σ1 + γ∗2σ2)
n−1 .

References

[1] S. Katz and E. Sharpe, Notes on certain (0,2) correlation
functions, Commun. Math. Phys. 262 (2006), 611–644; arXiv:
hep-th/0406226.

[2] A. Adams, A. Basu and S. Sethi, (0,2) duality, Adv. Theor. Math.
Phys. 7 (2004), 865–950; arXiv:hep-th/0309226.

[3] J. Guffin and S. Katz, Deformed quantum cohomology and (0,2)
mirror symmetry, J. High Energy Phys. 1008 (2010), 109; arXiv:
0710.2354

[4] J. McOrist and I. Melnikov, Half-twisted correlators from the Coulomb
branch, J. High Energy Phys. 0804 (2008), 071; arXiv:0712.3272.

[5] E. Sharpe, Notes on correlation functions in (0,2) theories, in ‘String
Geometry’ (Snowbird, 2004), eds. Katrin Becker, Melanie Becker,
Aaron Bertram, Paul Green, and Benjamin McKay, American Mathe-
matical Society, Providence, RI, 2004, 93–104; arXiv:hep-th/0502064.

[6] E. Sharpe, Notes on certain other (0,2) correlation functions, Adv.
Theor. Math. Phys. 13 (2009), 33–70; arXiv:hep-th/0605005.

[7] A. Adams, J. Distler and M. Ernebjerg, Topological heterotic rings,
Adv. Theor. Math. Phys. 10 (2006), 657–682; arXiv:hep-th/
0506263.

5In general, we must compute what each coupling ∂iE
j induces over the moduli space.

In the present case, we need only consider ∂sE
s, which is independent of u, v, s and t,

and hence takes the same form as it does classically.



1300 RON DONAGI ET AL.

[8] M.-C. Tan, Two-dimensional twisted sigma models and the theory of
chiral differential operators, Adv. Theor. Math. Phys. 10 (2006), 759–
851; arXiv:hep-th/0604179.

[9] M.-C. Tan, Two-dimensional twisted sigma models, the mirror Chiral
de Rham complex, and twisted generalized mirror symmetry, J. High
Energy Phys. 0707 (2007), 013; arXiv:0705.0790.

[10] I. Melnikov and S. Sethi, Half-twisted (0,2) Landau–Ginzburg models,
J. High Energy Phys. 0803 (2008), 040; arXiv:0712.1058.

[11] J. McOrist and I. Melnikov, Summing the instantons in half-twisted
linear sigma models, J. High Energy Phys. 0902 (2009), 026; arXiv:
0810.0012.

[12] I. Melnikov, (0,2) Landau–Ginzburg models and residues, J. High
Energy Phys. 0909 (2009), 118; arXiv:0902.3908.

[13] M. Kreuzer, J. McOrist, I. Melnikov and R. Plesser, (0,2) deformations
of linear sigma models, arXiv:1001.2104.

[14] J. Guffin and E. Sharpe, A-twisted heterotic Landau–Ginzburg models,
J. Geom. Phys. 59 (2009), 1581–1596; arXiv:0801.3955.

[15] I. Melnikov and R. Plesser, A (0,2) mirror map, JHEP, J. High Energy
Phys. 1102 (2011), 001; arXiv:1003.1303.

[16] P. Aspinwall, I. Melnikov and R. Plesser, (0,2) elephants, arXiv:
1008.2156.

[17] J. McOrist, The revival of (0,2) linear sigma models, Int. J. Mod. Phys.
A 26 (2011), 1–41; arXiv:1010.4667.

[18] J. Guffin, Quantum sheaf cohomology, a precis, arXiv:1101.1305.
[19] J. McOrist and I. Melnikov, Old issues and linear sigma models, arXiv:

1103.1322.
[20] R. Donagi, J. Guffin, S. Katz and E. Sharpe, A mathematical theory of

quantum sheaf cohomology, arXiv:1110.3751.
[21] E. Witten, Mirror manifolds and topological field theory, in ‘Mirror

Symmetry I’, ed. S.-T. Yau, American Mathematical Society, Provi-
dence, Rhode Island, 1998, 121–160; arXiv:hep-th/9112056.

[22] D. Cox, J. Little and H. Schenk, Toric varieties, unpublished manu-
script, available at: www.cs.amherst.edu/~dac/toric.html

[23] D. Morrison and R. Plesser, Summing the instantons: quantum
cohomology and mirror symmetry in toric varieties, Nucl. Phys. B440
(1995), 279–354; arXiv:hep-th/9412236.

[24] V. Batyrev, Quantum cohomology rings of toric manifolds, Astérisque
218 (1993), 9–34.

[25] R. Donagi, J. Guffin, S. Katz and E. Sharpe, work in progress.



PHYSICAL ASPECTS OF QUANTUM SHEAF COHOMOLOGY 1301

[26] E. Witten, Phases of N=2 theories in two dimensions, Nucl. Phys.
B403 (1993), 159–222; arXiv:hep-th/9301042.

[27] J. Guffin and E. Sharpe, A-twisted Landau–Ginzburg models, J. Geom.
Phys. 59 (2009), 1547–1580; arXiv:0801.3836.

[28] I. Melnikov, private communication.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


