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Abstract

Using the fact that every worldsheet is ruled by two (light-cone) copies
of worldlines, the recent classification of off-shell supermultiplets of
N -extended worldline supersymmetry is extended to construct standard
off-shell and also unidextrous (on the half-shell) supermultiplets of world-
sheet (p, q)-supersymmetry with no central extension. In the process, a
new class of error-correcting (even-split doubly-even linear block) codes
is introduced and classified for p+ q � 8, providing a graphical method
for classification of such codes and supermultiplets. This also classifies
quotients by such codes, of which many are not tensor products of world-
line factors. Also, supermultiplets that admit a complex structure are
found to be depictable by graphs that have a hallmark twisted reflection
symmetry.
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Contents

1 Introduction, rationale and summary 905

2 Worldsheet supermultiplets 909

2.1 Weaving worldsheets from worldlines within 910

2.2 Some learning examples 913

2.2.1 The building blocks 918

2.2.2 Tensor product (4,0)-Adinkras 919

2.2.3 Tensor product (3,1)-Adinkras 920

2.2.4 Tensor product (2,2)-Adinkras 922

2.3 Additional structures 924

2.3.1 ZZZ2-symmetry and projection 924

2.3.2 Complex structure 928

2.3.3 Summary 929

3 Supersymmetry and error-correcting codes 931

3.1 Encoding worldsheet supermultiplets 931

3.2 Supermultiplet reduction 936

3.3 Some low-(p, q) split codes 940

3.4 Ground fields versus tensor products 948

3.5 Worldsheet Adinkra degeneracy 1 954

3.6 Worldsheet Adinkra degeneracy 2 958

4 Conclusions 962

Appendix A. Details of the d2,2-encoded ZZZZ2-symmetry 964

Appendix B. Solving superdifferential relations 968

References 970



WEAVING WORLDSHEET SUPERMULTIPLETS 905

1 Introduction, rationale and summary

Supersymmetry has been utilized in physics for about four decades [1–4], as
it stabilizes the vacuum and simplifies renormalization or even eliminates the
need for it. Nevertheless, and although the use of off-shell fields is paramount
in quantum theories, off-shell formulations of supersymmetric models are
still known only for relatively low total number of supercharges, N (counting
each real spinor component separately). This situation has remained largely
unchanged in the past two decades (as reviewed, e.g., in [5]), and has been
recognized as a major remaining challenge [6].

To this end, Gates and Rana [7, 8] proposed: (1) classifying the off-shell
worldline supermultiplets (which are technically simpler owing to the sim-
plicity of the Lorentz group Spin(1, 0) � Z2) and then (2) determining which
of these extends to higher-dimensional spacetimes and reconstructing the
models built from them. It turns out that worldlines admit myriads1 of
inequivalent adinkraic supermultiplets [9–12, 17–19] of (N � 32)-extended
worldline supersymmetry; see also [20–26]. In such supermultiplets, each
component field is mapped by each supercharge to precisely one other
component field or a derivative thereof; graphical depictions of such super-
multiplets are Adinkras. The familiar supermultiplets from the standard
literature on models in 3 + 1-dimensional spacetime are either themselves
adinkraic or may be built from adinkraic ones [27–30].

Worldsheet supersymmetry is essential in string theory [31–34], and is
very rich in structure [35, 36]. Worldsheet theories include worldlines and
worldline-restricted (unidextrous) fields in several inequivalent ways [37–44],
which provides for exceptional constructions on the worldsheet not possible
in spacetimes of any other dimension and which provides for much of the
richness and complexity of string theory and its M - and F -theoretic exten-
sions. In addition, extending worldline supersymmetry to a worldsheet is
a stepping stone in the realization of the original proposal [7, 8] of study-
ing higher-dimensional supersymmetry via dimensional extension of world-
line results. Gates and Hübsch [16] provide a simple criterion for extending
worldline off-shell supermultiplets to worldsheet supersymmetry, which then
suffices for many string theory applications. This also significantly enhances

1For N � 32, there are >1012 inequivalent families of supermultiplets, within each of
which the supermultiplets have the same chromotopology (see below) but where the number
and variety of the component (super)field relative engineering (mass-)dimensions grows
hyper-exponentially with N [9–13]. Recently provided numerical [14,15] and graphical [16]
criteria demonstrate that a rather small fraction of off-shell worldline supermultiplets
extends to (3 + 1)- and higher-dimensional spacetime.
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the efficiency of the numerical criteria of [14,15] for extending to supersym-
metry in higher-dimensional spacetimes.

Complementary to the filtering approach of [16], the constructive
approach presented herein produces for all p, q � 0:

(1) off-shell (ambidextrous) supermultiplets of worldsheet (p, q)-super-
symmetry and

(2) on the half-shell (unidextrous) supermultiplets of ambidextrous (p, q)-
supersymmetry,

by tensoring a left- and a right-handed copy of worldline supermultiplets,
and projecting to their quotients by certain discrete symmetries. It is grat-
ifying to note that the lists obtained in such complementary ways in fact
coincide, at least for the low enough values of p+ q, where comparisons
could be made by inspection. A computer-aided mechanized computation
is clearly desirable, generalizing the one performed for worldline supermul-
tiplets [10, 11,45].

In many cases, the resulting tensor product Adinkras exhibit one or more
Z2 symmetries, which are encoded by esDE-codes (see equation (43) for
the definition). These are the even-split refinements of the error-correcting
(binary) doubly-even linear block (DE-)codes of [10,11,45], being an encryp-
tion theory consequence of the filtering condition of [16]. Very much like in
the case of worldline supermultiplets [10,11], passing to the quotient of such
a Z2 symmetry provides a new, half-sized supermultiplet, and one may do so
repeatedly using mutually commuting such Z2 symmetries. A list of these
symmetries for p+ q � 8 is depicted in figure 4 using a graphical method [19]
that may also be used for p+ q > 8.

The main results presented herein are:

(1) Constructions 2.1 and 2.3 for off-shell representations and Construc-
tion 2.2 for unidextrous (on the half-shell) representations of world-
sheet (p, q)-supersymmetry, and their listing for p+ q � 8.

(2) The definition (and a p+ q � 8 listing) of even-split (binary) doubly-
even linear block (esDE) codes (see Section 3.1) that encode possible
Z2 quotients of tensor product supermultiplets, many of which not
themselves tensor products (see Section 3.4).

(3) The definition of a twisted Z2 symmetry in Adinkras, which implies a
complex structure.

(4) A demonstration that some worldsheet supermultiplets depicted by
topologically inequivalent Adinkras are nevertheless equivalent, and
by (super)field redefinition only.
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(5) A demonstration that the same Adinkra may depict distinct super-
multiplets of the same (p, q)-supersymmetry, though at least some of
them can be shown to be equivalent, and by (super)field redefinition
only.

(6) An independent confirmation of the conclusion of [16], that ambidex-
trous off-shell supermultiplets of ambidextrous supersymmetry must
have at least three levels [9, 23], i.e., their component (super)fields
must have at least three distinct, adjacent engineering dimensions.

The paper is organized as follows: the remainder of this introduction
presents the requisite definitions, and Section 2 then presents the three con-
structions of off-shell and on the half-shell representations of worldsheet
(p, q)-supersymmetry. Section 3 discuses the role of esDE error-correcting
codes in the proposed framework for classifying off-shell representations of
worldsheet supersymmetry; in particular, Section 3.3 catalogs the maximal
such codes — and thus the minimal such supermultiplets — for p+ q � 8.
Our conclusions are summed up in Section 4, and technically more involved
details are deferred to the appendices.

Definitions and Notation: We will consider only supersymmetry
algebras without central extension, and will construct linear and finite-
dimensional off-shell or on the half-shell (see below) representations of
(1, 1|p, q)-supersymmetry. This is worldsheet (p, q)-extended super-Poincaré
symmetry, generated by p real, left-handed superderivatives2 Dα+, q real
right-handed ones, D .

β−, and the light-cone worldsheet derivatives ∂=| and
∂= . On the worldsheet, the indices α and .

α count “internal” (not spacetime)
degrees of freedom, which may well stem from a dimensional reduction of
a higher-dimensional spacetime symmetry. The defining supercommutators
of these algebras are:

Sp
1,1|p,q

:
{
Dα+,Dβ+

}
= 2i δαβ ∂=| ,

{
D .

α−,D .
β−

}
= 2i δ .

α
.
β
∂= , (1)

and all other supercommutators vanish. These generators act as first order
differential operators on functions (superfields) Φ,Ψ, etc., over (1, 1|p, q)-
superspace. The component fields

φ := Φ|, ψα+ := iDα+Φ|, ψ .
α− := iD .

α−Φ|, . . .

Fαβ=| := i
2 [Dα+,Dβ+]Φ|, etc. (2)

2While not strictly necessary to use superdifferential operators to study supersymmetry,
we find it simpler to do so, and there is no loss of generality: supersymmetry implies that
superspace exists [46].
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are — up to numerical factors chosen for convenience — defined by
projecting to the purely bosonic and commutative (1, 1|0, 0)-dimensional
worldsheet the

Da|b := Da1
1+ ∧ · · · ∧Dap

p+Db1
1− ∧ · · · ∧Dbq

q−, aα, b .α ∈ {0, 1} (3)

superderivatives of superfields. In the definitions (2), the factor i[[a|b]] is
included to insure that the component fields (2) projected with the opera-
tors (3) are real. We have

[[a|b]] :=
(|a|+|b|+1

2

)
, |a| :=

p∑
α=1

aα, |b| :=
q∑

.
α=1

b .
α, (4)

where |a|+ |b| is the Hamming weight [47] of the split binary number a|b
with binary digits a1, . . . , ap|b1, . . . , bq.

Being abelian, the worldsheet Lorentz symmetry Spin(1, 1) � R× (the
multiplicative group of non-zero real numbers, i.e., the non-compact cousin
of U(1)) has only one-dimensional (1D) irreducible representations, upon
which it acts by a multiplicative number [48, 49]. Eigenvalues of the only
Lorentz generator will be called spin for simplicity3 . For example,

spin(Dα−) = +1
2 = − spin(D .

α−), spin(∂=| ) = +1 = − spin(∂= ), (5)

and we use the “±” subscripts to count this quantity in units of ±1
2�;

superscripts count oppositely. In addition to spin, all objects also have
an engineering dimension, such as

[Dα+] = 1
2 = [D .

α−], [∂=| ] = 1 = [∂= ]. (6)

These two functions, (5) and (6), make the supersymmetry algebra (1) dou-
bly Z-graded, and all supermultiplets of interest are then finite-dimensional
unitary representations of this bi-graded superalgebra.

A superfield is off-shell if it is subject to no worldsheet differential equa-
tion (one involving ∂=| and/or ∂= , but neither Dα+ nor D .

α−). If it is sub-
ject to only unidextrous worldsheet differential equations [35,37] (involving
either ∂=| or ∂= but not both), it is said to be on the half-shell [43];
such superfields are not off-shell on the worldsheet in the standard field-
theoretic sense, but are off-shell on a unidextrously embedded worldline

3The only generator of Spin(1, 1) actually being a boost operation, this is a misnomer.
However, this can cause no ambiguity since Spin(1, 1) has no rotations with which to
possibly confuse it.
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and provide for features not describable otherwise [44]. A superfield, opera-
tor, expression, equation or other construct thereof will be called ambidex-
trous to emphasize that is not unidextrous. Following [37], the (p, 0)- and
(0, q)-supersymmetries will continue to be called unidextrous. However,
one must keep in mind that the absence of D .

α−-superderivatives in (p, 0)-
supersymmetry results in the absence of ∂= -generated unidextrous world-
sheet constraints; the parity-mirror analogue holds for (0, q)-supersymmetry.

2 Worldsheet supermultiplets

To highlight the complexity of the classification of off-shell supermultiplets,
we recall the comparatively much simpler study of multiplets of (global and
local) symmetries in particle physics.

For any Lie group G, a G-multiplet is a collection of component fields
which span a representation of G, i.e., within which the G-action closes.
That is, each component field within the multiplet is transformed by any
element of G into a linear combination of component fields within the mul-
tiplet. For example, a general element of the color SU(3)c symmetry group
transforms any particular quark of any particular color into a linear com-
bination of all three colors of the same quark. At any point in spacetime,
the component fields in a multiplet thus span a vector space, which is a
representation of the structure group: the red, blue and yellow version of
a given quark form a basis for the 3D vector space of the SU(3)c represen-
tation that particle physicists denote as “3”. This vector space then varies
over spacetime, forming a vector bundle.

All Lie groups are products of factors that are either simple or are copies
of the abelian group U(1). All simple Lie groups have an infinite sequence of
irreducible unitary finite-dimensional representations, but all of which can
be constructed from only one or maybe two “fundamental” representations
by means of the so-called Weyl construction [48, 50], by: (1) (internal) ten-
sor product, (2) “symmetrization” in various ways4 and (3) subtraction of
“traces,” i.e., contraction with invariant tensors specific to the given sim-
ple Lie group. These classification theorems rely on: (1) the existence of a
“Cartan+ladder generator” basis where the Cartan generatorsHi unambigu-
ously identify the ladder generators Eα through the non-degenerate action
[Hi, Eα] = αiEα and (2) the existence of the positive-definite Killing metric
of the given simple Lie algebra, gab := −fac

dfbd
c.

4More properly, this refers to projection on irreducible representations of the permu-
tation group acting on the factors in the tensor product V ⊗ · · · ⊗ V of the fundamental
representation V with itself.
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However, the Killing metric defined from the structure constants of any
supersymmetry algebra (without and also with central and other exten-
sions, in any spacetime dimension and signature) tends to be degenerate
and in fact vanishes completely for (1): the action of the Cartan generators,
∂=| , ∂= , on all supercharges and superderivatives is maximally degenerate —
all commutators vanish. For the study of off-shell representations of super-
symmetry, this obstructs both the standard Lie-algebraic methods and its
ensuing standard and familiar classification theorems.

In turn, we shall see that a fundamental result in Lie group representation
theory — that a representation of a tensor product of two Lie groups is
always a tensor product of representations of the respective factor groups
[48–50] — does not hold for worldsheet supersymmetry (1).

2.1 Weaving worldsheets from worldlines within

The defining relations (1) — with all other (anti)commutators understood to
vanish — clearly indicate that the worldsheet (p, q)-supersymmetry algebra
is actually a direct sum of the left- and the right-handed parts

Sp
1,1|p,q

= Sp
1|p
+ ⊕Sp

1|q
− ,

{
Sp

1|p
+ := Sp

1,0|p,0 � {Dα+, ∂=| },
Sp

1|q
− := Sp

0,1|0,q � {D .
α−, ∂= },

(7)

where both Sp
1|p
+ and Sp

1|q
− are isomorphic, respectively, to a worldline p-

and q-extended supersymmetry algebra without central charges:

Sp
1|N � {DI , ∂τ} :

{
DI ,DJ

}
= 2i δIJ ∂τ . (8)

Therefore, all representations of Sp
1|N

are also representations of Sp
1|p
+ and

of Sp
1|q
− , and their (external) tensor product is a representation of Sp

1,1|p,q
=

Sp
1|p
+ ⊕Sp

1|q
− ; this reflects the “bi-filtration” of [18] and is expected from

Lie group representation theory [48–50]. Akin to the situation with world-
line supermultiplets [10, 11], such a representation may well have a symme-
try that commutes with supersymmetry, allowing to construct the quotient
supermultiplet:

Construction 2.1 (off-shell). Let R+ and R− denote off-shell representa-
tions of two copies of the (centrally unextended) worldline supersymmetry
algebras, Sp

1|p
+ and Sp

1|q
− respectively, and let Z be a symmetry of R+ ⊗R−,

covariant with supersymmetry (1) and including the trivial case, Z = 1l. The
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Z-quotient of the tensor product5 (R+ ⊗R−)/Z is then an off-shell repre-
sentation of Sp

1,1|p,q
= Sp

1|p
+ ⊕Sp

1|q
− , but when Z 	= 1l need not itself be a

tensor product.

When the Z-action involves both the Dα+ and the D .
α−, the Z = (Z2)k

actions of [13] are specified by a refinement on the encryption codes of
[13], and the quotient (R+ ⊗R−)/Z is not a real tensor product. Unless
otherwise stated, all representations and operations considered herein are
real. At times — but not always — (R+ ⊗R−)/Z does turn out to be a
(hyper-)complex tensor product of (hyper-)complex representations; see Sec-
tion 3 for the details.

Construction 2.1 is somewhat analogous to the familiar Weyl construction
of Lie algebra representations [48–50] but exhibits important differences:

Weyl’s construction [48–50] Construction 2.1, as given here

(Internal) tensor product of repre-
sentations of the same Lie algebra

(External) tensor product of rep-
resentations of the left- and right-
handed parts of (1)

Young symmetrization: projection
to variously symmetrized and trace-
less parts

Projection to quotients by esDE-
encoded discrete symmetries

(9)
A physicist familiar with the Standard Model will find the results of Con-
struction 2.1 akin to, say, the quark doublet (uL, dL), which represents the
tensor product of the irreducible representations: the 3 of color SU(3)c and
the 2 of weak SU(2)L, and the (1/2, 0) representation of the Lorentz group,
Spin(1, 3) � SL(2,C).

Unidextrous Special Cases: By construction, R+ is Sp
1|p
− -invariant:

(D .
α−R+) = 0 = (∂= R+), and R− is Sp

1|p
+ -invariant: (Dα+R−) = 0 =

(∂=| R−). There are then two interesting special cases of Construction 2.1:

Construction 2.2 (unidextrous representations, on the half-shell). Select-
ing R− 
→ 1l− (Sp

1|p
− -constant), the tensor product representation of Con-

struction 2.1 becomes a unidextrous representations (on the half-shell) of the
(centrally unextended) worldsheet ambidextrous supersymmetry Sp

1,1|N,q
for

5Elements of R+ ⊗ R− are worldsheet supermultiplets that transform as the respective

factors under the separate action of the two summands in Sp
1,1|p,q

= Sp
1|p
+ ⊕ Sp

1|q
− , but

need not themselves factorize.
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arbitrary q > 0. Mutatis mutandis for the parity mirror-image,
Sp

1|N 
→ Sp
1,1|p,N

.

In other words, by identifying (DI , ∂τ ) 
→ (Dα+∂=| ), all off-shell repre-
sentations of (centrally unextended) worldline N -extended supersymmetry
Sp

1|N
automatically extend to (centrally unextended, left-moving) unidex-

trous representations of (centrally unextended) ambidextrous worldsheet
(N, q)-supersymmetry Sp

1,1|N,q
for arbitrary q > 0: D .

α−(R+ ⊗ 1l−) = 0 =
∂= (R+ ⊗ 1l−): such representations are constant in the right-moving (τ − σ)
light-cone direction on the worldsheet.

Such representations are not off-shell on the worldsheet in the standard
field-theoretic sense, but are off-shell on a continuum of worldlines within
the worldsheet: they are on the half-shell [43].

Corollary 2.1. Every off-shell model with (centrally unextended)
N -extended worldline supersymmetry automatically defines an (N, q)-
supersymmetric worldsheet model on the half-shell, for arbitrary q > 0.
Mutatis mutandis for the parity mirror-image.

In the special case of Construction 2.2 when q = 0 (p = 0), there are
no D .

α−’s (no Dα+’s), and unidextrous annihilation by ∂= (by ∂=| ) is not
implied:

Construction 2.3 (unidextrous supersymmetry). By identifying
(DI , ∂τ ) 
→ (Dα+, ∂=| ), all off-shell representations of (centrally unextended)
worldline N -extended supersymmetry Sp

1|N
automatically extend to fully off-

shell representations of (centrally unextended) unidextrous worldsheet (N, 0)-
supersymmetry Sp

1,1|N,0
. Mutatis mutandis for Sp

1|N 
→ Sp
1,1|0,N

.

Corollary 2.2. Every off-shell model with (centrally unextended) N -
extended worldline supersymmetry automatically defines an off-shell, (cen-
trally unextended) unidextrous (N, 0)-supersymmetric worldsheet model, as
well as its unidextrous (0, N)-supersymmetric parity mirror-image.

In turn, Construction 2.3 may also be regarded as a prerequisite to Con-
struction 2.2:

Corollary 2.3. Every off-shell supermultiplet of (centrally unextended)
unidextrous (N, 0)-supersymmetry given by Construction 2.3 extends to a
worldsheet unidextrous supermultiplet on the half-shell of the (centrally unex-
tended) ambidextrous (N, q)-supersymmetry, and for arbitrary q > 0.
Mutatis mutandis for the parity mirror-image.
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Table 1: Some off-shell and on the half-shell supermultiplets of worldsheet
(2, 2)-supersymmetry. The chiral and twisted-chiral supermultiplets admit
a complex structure as they are; the lefton and righton supermultiplets may
be complexified, thus doubling the number of their degrees of freedom.

Note the key difference:

• Construction 2.2 produces unidextrous representations Λ ∼ (R+ ⊗ 1l−)
of the ambidextrous worldsheet (N, q)-supersymmetry; such Λ are nec-
essarily on the half-shell, ∂= Λ = 0.

• Construction 2.3 produces off-shell representations A ∼ R+ of the
unidextrous worldsheet (N, 0)-supersymmetry: A need satisfy no par-
ticular worldsheet differential equation for the supersymmetry alge-
bra (1) to close on it.

The products of Construction 2.3 are representations only of unidex-
trous (p, 0)- and (0, q)-supersymmetry, and so cannot be mixed with the
products of Constructions 2.1 and 2.2 that are designed for ambidextrous
(p, q)-supersymmetry. In turn, worldsheet models with ambidextrous super-
symmetry, constructed with a mix of results from Constructions 2.1 and 2.2,
indeed exist: the authors [35,36,43,44] discuss (2, 2)-supersymmetric models
that involve both off-shell ambidextrous representations (the familiar chiral,
twisted-chiral superfields and their conjugates) and unidextrous representa-
tions (leftons and rightons) on the half-shell, and produce unique resulting
target spaces.

Foreshadowing subsequent results, a few such supermultiplets are pre-
sented in Table 1.

2.2 Some learning examples

For illustrative purposes, we restrict herein the otherwise general Construc-
tions 2.1 to 2.3 to using only adinkraic representations of (centrally undex-
tended) worldline N -extended supersymmetry defined and explored in
[9–12,17,27,51], which are easily depicted by Adinkras.
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Adinkras and Worldline Supermultiplets: Adinkraic supermultiplets admit
a basis of supersymmetry generators and component (super)fields (φA|ψB),
such that each supersymmetry generator maps each component (super)field
to precisely one other component (super)field or its (space)time derivative.
With n bosons φA and n fermions ψB, this is a (n|n)-dimensional represen-
tation.

By contrast, in non-adinkraic supermultiplets the action of at least one
supercharge on at least one component (super)field is bound to produce a
linear combination of other component (super)fields and their derivatives
— and there exists no (super)field redefinition that would turn the super-
multiplet adinkraic. Examples of non-adinkraic worldline supermultiplets
have been discussed in [10, 29, 52–54]. In spacetime supersymmetry, non-
trivial Lorentz covariance prevents many of the linear combinations of com-
ponent (super)fields within a supermultiplet. While this tends to obstruct
the non-adinkraic constructions à la [52, 53], it also tends to obstruct com-
pensating (super)field redefinitions. This leaves open the logical possibility
that adinkraic supermultiplets do not exhaust the space of finite-dimensional
unitary representations of spacetime supersymmetry.

It is thus noteworthy that Constructions 2.1 to 2.3 and Corollaries 2.1
to 2.3 apply to all representations, adinkraic or not. For now however, we
focus on adinkraic supermultiplets.

As done in [55], we introduce a collection of otherwise intact (i.e., uncon-
strained, ungauged, unprojected, etc.) component superfields à la Salam
and Strathdee [56], and pair the supersymmetry transformations with super-
derivative constraint equations6

DI ΦA = ic (LI)A
B (∂1−λ

τ ΨB)
DI ΨB = c (L−1

I )B
A (∂λ

τ ΦA)

}

⇔
{
QI φA = −c (LI)A

B (∂1−λ
τ ψB), φA := ΦA|,

QI ψB = −ic (L−1
I )B

A (∂λ
τ φA), ψB := ΨB|,

(10)

where the exponent λ = 0, 1 depends on I, A,B, and the matrices LI have
exactly one entry, ±1, in every row and in every column. This type of
(adinkraic) supersymmetry action is then depicted using the “dictionary”

6The pairing (10) derives from the superspace relation QI = iDI + 2δIJθJ∂τ between
supercharges QI and superderivatives, and the fact that if the DI act from the left then
the QI act from the right. It the follows that {QI , DJ} = 0, so that mappings defined by
means of D’s are manifestly supersymmetric.
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Table 2: Adinkras depict supermultiplets (10) by assigning:
(white/black) vertices ⇐⇒ (boson/fermion) component (super)fields;
edge-color/index ⇐⇒ DI ; solid/dashed edge ⇐⇒ c = ±1; nodes are
placed at heights equal to the engineering dimension of the depicted
component (super)field, determining λ in equations (10).

Adinkra Supersymmetry action Adinkra Supersymmetry action

DI

[
ΨB

ΦA

]
=
[ .
ΦA

iΨB

]
DI

[
ΨB

ΦA

]
=
[− .

ΦA

−iΨB

]

DI

[
ΦA

ΨB

]
=
[
iΨ̇B

ΦA

]
DI

[
ΦA

ΨB

]
=
[−i .ΨB

−ΦA

]
The edges are here labeled by the variable index I; for fixed I, they are

drawn in the Ith color.

provided in table 2. For example,

and

define two clearly distinct worldline N = 2 supermultiplets.

Given the comparative brevity and ease of comprehension, supersymme-
try transformation rules such as (11) to (12) will subsequently be depicted by
Adinkras rather than written out explicitly, except for occasional examples
to reinforce this relationship. This also permits identifying Adinkras with
the supermultiplets that they depict, which is a faithful 1–1 correspondence
except for a well-defined subclass where multiple Adinkras depict isomorphic
supermultiplets: see the Sections 3.5 and 3.6 for the worldsheet extension of
the worldline characterization of [10, 11].

Adinkras and Worldsheet Supermultiplets: Adinkras such as (11) and
(12) may well also depict worldsheet supermultiplets. To this end, the edge-
colors must now be partitioned into those that depict the action of p Dα+’s
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(which square to i∂=| ) and those that depict the action of q D .
α−’s (which

square to i∂= ). As shown in (2), component fields themselves acquire spin,
and the necessary and sufficient condition for an Adinkra to depict a world-
sheet supermultiplet [16] insures that all component fields can be assigned a
spin consistently with the Dα+- and D .

α−-action throughout the supermul-
tiplet/Adinkra.

Definition 2.1. An Adinkra together with the additional choices (partition-
ing of edge-colors into p left- and q right-moving and consistent assignment
of spin) that make it depict a supermultiplet of (p, q)-supersymmetry is thus
called a (p,q)-Adinkra.

The Adinkras presented herein will not be further complicated by annotat-
ing the edges to signify their left/right-handed partitioning, nor will nodes
be annotated to signify spin; this permits multiple duty for most of the
illustrations herein.

Complex Structures: In the superdifferential systems (11) to (12), all super-
fields Φ,Ψi,F,Bi,Ξi may be chosen real, as seen by writing the super-
derivative action in terms of supercommutators:

(DjΦ) := [Dj ,Φ], ⇒ (iΨj)† = [Dj ,Φ]† = [Φ†,D†j ] = −[Dj ,Φ] = −iΨj ,

(13a)

(D1Ψ2) := {D1,Ψ2}, ⇒ (F)† = {D1,Ψ2}† = {Ψ†
2,D

†
1}

= + {D1,Ψ2} = F, etc. (13b)

However, note that the Adinkra (12) exhibits a twisted horizontal Z2 sym-
metry: by simultaneously swapping B1 ⇐⇒ B2 and Ξ1 ⇐⇒ Ξ2, the D1

(black edges) action is preserved, but the D2-action (red edges) flips the
overall sign, depicted by swapping of the solid/dashed parity of the corre-
sponding edges. This may be seen to depict a pair of complex structures by
defining

D := 1√
2
[D1 + I D2], B := 1√

2
(B1 + IB2) and Ξ := 1√

2
(Ξ1 + I Ξ2),

(14a)

with7 I = ±i, so that the left-hand half of the Adinkra (12) plays the role
of the real part, the right-hand side the imaginary part of the new, complex
component (super)fields; also, the edges entirely within the left- or right-
hand side play the role of the real part, and the edges criss-crossing from

7The two choices of the complex structure I = ±i only have a relative distinction.
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one to the other side play the role of the imaginary part of the complex
supersymmetry transformation:

(14b)

With this, we compute

DB = iΞ , DΞ =
.

B and DΞ = 0, DB = 0. (14c)

In fact, owing to the very last of these results, the supermultiplet (B;Ξ ) =(
B; (−iDB)

)
may be considered the worldline N = 2 antichiral supermul-

tiplet. Combining these, the N = 2 supersymmetry algebra (8)

{D,D} = 0 = {D,D} and {D,D} = 2i∂τ (14d)

is satisfied on (B;Ξ ).

Corollary 2.4 (complex structure). An Adinkra admits a conjugate pair of
complex structures if it has a rendition that exhibits a twisted horizontal
Z2Z2Z2Z2 symmetry, where:

(1) the intended ‘real (imaginary) part’ nodes are in the left-hand (right-
hand) half,

(2) the left-hand side half is identical to the right-hand half and
(3) edges criss-crossing between the halves come in solid/dashed parity-

reversed pairs.

See also Section 2.3.2; also, Appendix A of [16] details a rather more
involved example.

Tensor Product Adinkras: The tensor product of Adinkras refines the stan-
dard tensor product of graphs [57] by accounting for the fact that Adinkra
nodes are bi-partitioned into bosons and fermions, drawn at a height deter-
mined by the engineering dimension, and that edges are either solid or
dashed in such a way that every 2-colored quadrangle has an odd number
of dashed edges. Tensor product (p,q )-Adinkras (Adinkras with p of the
edge-colors depicting Dα+-action and q of them D .

α−-action) are constructed
as follows:
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Construction 2.4 (tensor product (p,q)-Adinkras).

(0) Given two Adinkras A+ and A− depicting two adinkraic worldline
supermultiplets, A+ will depict the Dα+-action, and A− the D .

α−-
action in A+ ⊗A−. Each vertex in A± is drawn at the height propor-
tional to the engineering dimension of the corresponding component
field; each component field also has a definite spin.

(1) Draw a copy of A+ in the place of every node of A−, but flip the
boson/fermion (node) and solid/dashed (edge) parity in the copies of
A+ that replace fermionic nodes of A−; as convenient, exaggerate the
size of A−.

(2) For every edge E in A−, redraw a copy of E to connect like nodes in
the copies of A+ that replaced the E-connected A−-nodes.

(3) Revert any temporary size exaggeration from step 1 by repositioning
the resulting nodes to their proper height, so all edges extend precisely
one level up/down. In particular, the function of spin (5) is additive:
the spin of a product is the sum of spins of the factors, and so is the
function of engineering dimension (6).

The reason for flipping the boson/fermion and solid/dashed parity as
described in step 1 is simple: bosons correspond to the identity element
of the Z2 ⊂ Spin(1, 1) Lorentz group, whereas fermions correspond to its
non-trivial (−1) element. Since edges represent the action of supersymme-
try, between bosons and fermions, they also correspond to the non-trivial
(−1) element of Z2 ⊂ Spin(1, 1). The tensor product of a black (fermionic)
node with an entire Adinkra thus necessarily flips the association with the
+1/− 1 ∈ Z2 ⊂ Spin(1, 1) elements in that Adinkra.

To illustrate this, we now turn to construct the Adinkras depicting
ambidextrous off-shell and unidextrous (on the half-shell) (4−q, q)-super-
multiplets in this manner, for q = 0, 1, 2.

2.2.1 The building blocks

Tables 6 and 7 of [11] list 28 N = 4 worldline Adinkras, without distinguish-
ing dashed edges for simplicity and to save space.

Of these 28 Adinkras, 24 have 8 white and 8 black nodes, depicting
supermultiplets with corresponding 8 bosonic and 8 fermionic component
(super)fields. The edges in all of these 24 Adinkras form a tesseract (4-
cube) and have only one equivalence class of edge-dashing: any choice of
solid/dashed edge parity may be obtained from any other one by judi-
cious sign-changes in component (super)fields and horizontal rearrangement
of nodes that is inconsequential to the supermultiplets depicted. These
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Adinkras differ from each other solely by various height-positioning of the
nodes, i.e., engineering dimensions of the various component (super)fields.
To save space, these 24 Adinkras are not listed herein, and the reader is
referred to tables 6 and 7 of [11].

The remaining four N = 4 Adinkras are “half-sized” and each admits a
twisted version:

(15)

where an Adinkra differs from its twisted variant in the solid/dashed parity
edges of an odd number of colors — here the orange-colored ones. Together
with the 24 described in the previous paragraph, these eight
inequivalentN = 4 Adinkras add up to 32; together with their boson/fermion
flips, the 28 N = 4 Adinkras in tables 6 and 7 of [11] therefore represent 64
inequivalent N = 4 Adinkras, all of which depict inequivalent off-shell super-
multiplets of N = 4 worldline supersymmetry.

In addition, we may make use of the N = 3 Adinkras:

(16)

their boson/fermion flips, as well as the N = 2 Adinkras(11) to (12), their
boson/fermion flips and the N = 1 Adinkras in table 2.

2.2.2 Tensor product (4,0)-Adinkras

By Construction 2.3, the 64 inequivalent N = 4 worldline off-shell super-
multiplets are interpretable as 64 inequivalent (4, 0)- and (0, 4)-Adinkras,
depicting 64 inequivalent off-shell supermultiplets of unidextrous worldsheet
(4, 0)- and (0, 4)-supersymmetry, respectively.

The size of these Adinkras — 8 + 8 nodes in 24 of the N = 4 Adinkras
versus 4 + 4 nodes in the remaining 8, lined up in (15) — correlates with the
following quality: the 8 Adinkras (15) and their boson/fermion flips are all
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“2-color decomposable” in that it takes deleting all edges of any two colors
for the Adinkra to decompose into disjoint Adinkras of lower supersymmetry.
By contrast, the other 48 N = 4 Adinkras are all “1-color decomposable”:
they decompose into two disjoint Adinkras of lower supersymmetry upon
deleting the edges of any one color.

Below, we will see example Adinkras in which this n-color decomposability
is not as uniform over the edge-colors. However, this quality is correlated
with the fact that Adinkras that exhibit a higher n-color decomposability
(corresponding to supermultiplets of smaller size) may be obtained from
Adinkras of lesser n-color decomposability (corresponding to supermultiplets
of larger size) by projection with respect to certain Z2 symmetries; these will
be explored in Section 3.

2.2.3 Tensor product (3,1)-Adinkras

The non-trivial aspects of Construction 2.4 are illustrated by constructing
(3, 1)-Adinkras. We begin with

(17)

where we have temporarily exaggerated the size of A− in step 1, retained
the relative alignment of the nodes between steps 1 and 2, arranging them
finally at their proper heights in step 3. Up to flipping the sign of the three
right-hand side component (super)fields in the middle row and the top-most
one8 , the nodes in the Adinkra (17) depict the tesseract of superderivatives
used to project component fields [9, 35], shown in figure 1.

The topology of the resulting Adinkra (17) and the one in figure 1 is by
construction a tesseract, i.e., a 4-cube, being the tensor product of a usual
cube and an interval (17). The topology of an Adinkra together with a fixed

8Flipping the sign of a component (super)field depicted by the node n also flips the
solid/dashed parity assignment of each edge incident to n; edges connecting two sign-
flipped nodes remain unchanged.
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Figure 1: The tesseract of superderivative operators used in projecting
component fields of worldsheet (3, 1)-superfields. Edges are associated with
the superderivatives: D1+ ⇐⇒ red, D2+ ⇐⇒ green, D3+ ⇐⇒ blue and
D− ⇐⇒ orange; see table 2 for more details.

edge-color assignments is called a chromotopology [10]; an Adinkra addition-
ally exhibits the solid/dashed parity of the edges and the height arrangement
of the nodes. In addition, to represent worldsheet (p, q)-supermultiplets, the
collection of edges in a (p, q)-Adinkra is also split into those corresponding
to the Dα+ versus those corresponding to the D .

α−.

By virtue of the evident isomorphism between the Adinkra (17) and the
one in figure 1, the resulting (3, 1)-Adinkra (17) is easily seen to depict the
supermultiplet also represented by the intact (3, 1)-superfield with compo-
nent fields computed in the manner of (2). This same Adinkra also turns
up in the list of Section 2.2.2, the difference being that there all edges cor-
respond to either Dα+-action for (4, 0)-supersymmetry or to D .

α−-action in
(0, 4)-supersymmetry; here, the edges of all but one (orange) color corre-
spond to Dα+-action and edges of the fourth (orange) color correspond to
D .

α−-action.

The remaining (3, 1)-Adinkras obtained as tensor products of N = 3 and
N = 1 Adinkras are:

(18)

(19)
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where the zig-zagging arrow denotes some horizontal node rearrangements
(see Section 2.3.2),

(20)

and

(21)

We notice that the upside-down boson/fermion-flipped rendition of (18) is
the same as (20) upon horizontal reshuffling of the nodes and a judicious sign-
change in a couple of component (super)fields, i.e., nodes. In a simpler sense,
the upside-down renditions of (17) and (21) are equivalent to the originals,
and the upside-down rendition of (19) is equivalent to the boson/fermion
flip of the original.

Thus, the five Adinkras (17) and (18) to (21) and their boson/fermion flips
represent ten inequivalent (3, 1)-Adinkras, and depict ten corresponding,
inequivalent off-shell supermultiplets of worldsheet (3, 1)-supersymmetry.
Swapping the roles of {Dα+, ∂=| } and {D .

α−, ∂= }, each (3, 1)-Adinkra may
be reinterpreted as a (1, 3)-Adinkra, resulting in the depiction of ten inequiv-
alent off-shell (1, 3)-supermultiplets.

2.2.4 Tensor product (2,2)-Adinkras

Construction 2.4 is illustrated also by considering the product

(22)

The resulting Adinkra (22) is easily seen to be equivalent to (17) by changing
the sign of the component (super)fields corresponding to the 2nd, 3rd and
6th middle-level node from the left, as well as the top-most node. Its reinter-
pretation from depicting an off-shell supermultiplet of (3, 1)-supersymmetry
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to depicting an off-shell supermultiplet of (2, 2)-supersymmetry owes to the
reassignment of the blue and orange edges from D3+- and D−-action, respec-
tively, in (17) to D1−- and D2−-action in (22).

The (2,2)-Adinkra (22) thus (also) depicts the intact off-shell supermul-
tiplet of worldsheet (2, 2)-supersymmetry:

(23)

and also represented by the intact (2, 2)-superfield with component
(super)fields projected à la (2), by means of the tesseract of superderivatives
displayed in figure 2. In addition to (22), Construction 2.1 also yields:

(24)

where the zig-zagging arrow indicates additional horizontal rearrangement
of nodes; see Section 2.3.2. Next, we have

(25)

where step 3 was not necessary in this third example. Note that the (2, 2)-
Adinkra (25) has the same number of nodes at the same heights as does
the (2, 2)-Adinkra (24) and they depict isomorphic worldline supermulti-
plets. This may be seen by swapping the edge-colors corresponding to the
A+ ⇐⇒ A− swap, horizontally reshuffling the nodes and changing the signs
of four of the white nodes in the second row from above, which swaps the
solid/dashed parity of the edges incident to those nodes. However, the
worldsheet supermultiplets depicted by the (2, 2)-Adinkras (24) and (25)
are inequivalent: they are each other’s Dα+ ⇐⇒ D .

α− mirror-images, via
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Figure 2: The tesseract of superderivative operators used in project-
ing component (super)fields of worldsheet (2, 2)-superfields. Edges are
associated with the superderivatives: D1+ ⇐⇒ red, D2+ ⇐⇒ green,
D1− ⇐⇒ blue and D2− ⇐⇒ orange; see table 2 for more details.

the A+ ⇐⇒ A− swap. Alternatively, one may say that the equivalent
worldline supermultiplets depicted by the Adinkras (24) and (25) extend to
inequivalent worldsheet (2, 2)-supermultiplets. Finally, we also have

(26)

The chromotopology of the Adinkras (22) to (26) is the same, the 4-cube;
the differences between them lie in (1) the height assignments of the nodes —
the engineering dimensions of the corresponding component (super)fields,
(2) the left/right splitting of the edges between (24) and (25) and (3) some
sign-redefinitions of some of the nodes, i.e., component (super)fields.

2.3 Additional structures

As mentioned above, two similar features in Adinkras are of special interest:

(1) A Z2 symmetry, which affords projecting to a Z2 quotient.
(2) A twisted Z2 symmetry, which indicates the admission of a complex

structure on the depicted, a priori real supermultiplet.

2.3.1 ZZZ2-symmetry and projection

The Adinkras (26) and (21) depict both different worldline supermulti-
plets and different worldsheet supermultiplets. In fact, and unlike (21), the
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Adinkra (26) exhibits a Z2 symmetry which is made evident as follows [16]:
first, we rearrange the nodes in (26) horizontally,

(27)

then flip the sign of the component (super)fields represented by the encir-
cled four nodes, in the (2, 2)-Adinkra obtained in the middle of (27). Of
these (2, 2)-Adinkras, the resulting one makes its Z2 symmetry manifest as
a perfect horizontal mirror symmetry, so that its right-hand half may be
identified — node-by-node and edge-by-edge — with its left-hand half:

(28)

resulting in a half-sized (2, 2)-Adinkra. By identifying instead the negative
of each right-hand side node with its corresponding left-hand side node, the
orange (left–right criss-crossing) edges flip their solid/dashed parity, and we
obtain the twisted version of the half-sized (2, 2)-Adinkra:

(29)

The definite identification and naming convention was made [9] comparing
with the original definitions of these worldsheet supermultiplets [58]. When
depicting worldline supermultiplets, these are identical to the pair stacked
second from the right in (15).

Projected (p, q)-Adinkras such as the two depicted in (29) have a hall-
mark that distinguishes them from the unprojected, N -cubical ones such
as (27): 4k distinctly colored edges in every projected Adinkra form closed
4k-gons, wherein the product of signs associated with dashed edges varies
with the order of the permutation of the 4k colors9 . For example, beginning
with the bottom-left-hand node in the chiral Adinkra in (29) and proceeding

9This graphical hallmark was recognized in [9], generalized for classification purposes
and related to certain error-correcting codes in [10, 11, 19] and used to define a character
in [27] — all for worldline (reductions of) supermultiplets. Herein, these notions are
extended to worldsheet supermultiplets.
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clockwise, there is a red-green-blue-orange bow-tie shaped tetragon. Asso-
ciating factors of (−1) with dashed edges, the product along this path is
(+1)(−1)(+1)(+1) = −1. In the similar tetragon where we permute the
colors, say in the last two edges, the red-green-orange-blue tetragon has
(+1)(−1)(−1)(+1) = +1 associated with it. The same result is obtained
starting from any white (bosonic) node (and ending back at it), but the
opposite result is obtained when starting and ending at a black (fermionic)
node — or when starting from any white (bosonic) node of the twisted-chiral
Adinkra.

Being that edges are associated with the supersymmetry and superderiva-
tive action, and since these two tetragons both lead back to the same
node (as do all others, in such projected Adinkras), we have that in super-
multiplets depicted by projected Adinkras there exist operatorial relations
such as

Chiral hallmark relation:

(D2−)−1 ◦D1− ◦ (D2+)−1 ◦D1+ � −(−1)F 1l, (30a)

i.e., D2−D1−D2+D1+ � −(−1)F(i∂= )(i∂=| ), (30b)

where F = 0 for a white (bosonic) initial/final node and F = 1 for a black
(fermionic) initial/final node. The color-permutation dependent sign-
changes are evidently a consequence of the anticommutivity of the D’s.
Straightforwardly,

Twisted-chiral hallmark relation:

(D2−)−1 ◦D1− ◦ (D2+)−1 ◦D1+ � (−1)F 1l, (31a)

i.e., D2−D1−D2+D1+ � (−1)F(i∂= )(i∂=| ). (31b)

and the relative sign difference in the right-hand side of (30) versus the
right-hand side of (31) unambiguously detects the relative twisting — not
only between the chiral and twisted-chiral supermultiplets of [58], but com-
pletely generally [9, 10]; see also [27], where the numerical eigenvalue of an
operator closely related to the superdifferential operators on the left-hand
side of (30) and (31) was defined as a character of a worldline (reduction of
a) supermultiplet.

It is not difficult to verify the consistency of the (−1)F factor on the
right-hand side of equations (30) and (31): suppose that the relation (30)
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holds when applied on a bosonic component (super)field, Φ:

Π11|11
+ Φ :=

[
D2−D1−D2+D1+ + (i∂= )(i∂=| )

]
Φ,

=
[
D1+D2+D1−D2− + (i∂= )(i∂=| )

]
Φ � 0. (32)

Applying the twisted operator, say, on the fermion (D1+Φ) produces

Π11|11
− (D1+Φ) =

[
D1+D2+D1−D2− − (i∂= )(i∂=| )

]
(D1+Φ),

= −D1+

[
D1+D2+D1−D2− + (i∂= )(i∂=| )

]
Φ

= −D1+Π11|11
+ Φ � 0. (33)

Note that by applying the superderivatives (3) on any one component
(super)field one obtains all the other component (super)fields in a supermul-
tiplet or their worldsheet derivatives. Then, proceeding in the manner (32)
and (33), it follows that if a bosonic component (super)field in a supermul-
tiplet is annihilated by Π11|11

+ , all bosonic component (super)fields are anni-
hilated by the same Π11|11

+ , whereas all fermionic component (super)fields
are annihilated by the complementary Π11|11

− .

A comparison of the relations (30) and (31) implies:

Corollary 2.5. Boson/fermion (white/black) node assignment flipping in
the Adinkras (29) is, up to node rearrangement, equivalent to its twisting.

Projections generalizing (28) — and the corresponding hallmark 4k-gon
relations generalizing (30) and (31) — have been explored and catalogued
in [11] for worldline supermultiplets. Using the simple results (28) to (31) as
a template, the general results of [10–13] are adapted to worldsheet super-
multiplets and explored in more detail in Section 3.

Before we turn to that, considering the graphical details of the projec-
tion (28) we can immediately generalize Corollary 2.5 to conclude:

Corollary 2.6. When an Adinkra is rendered so as to exhibit a (literal) left–
right Z2 symmetry, the number of colors of the criss-crossing edges must
be odd for the twisted variant of the projection to this Z2 quotient to be
inequivalent from the untwisted one.

If the criss-crossing edges came in an even number of colors, the twisting
(identifying the negative of the left-hand nodes with the right-hand ones)
will flip the solid/dashed parity of the edges in those even number of colors.
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This can always be compensated by a judicious component (super)field sign-
change, whereupon all edges incident to the sign-changing nodes change their
solid/dashed parity, and so the twisting is removed.

2.3.2 Complex structure

The Adinkras (19), (24) and (25) all depict equivalent worldline supermulti-
plets, but inequivalent worldsheet supermultiplets. The particular arrange-
ment of (24) makes the horizontal twisted Z2 symmetry in these Adinkras
obvious — as per specification in Corollary 2.4. In turn, the same structure
is evident in the Adinkras (19) and (25) by the facts that:

(1) the nodes and the edges of a chosen pair of colors form multiple copies
of (12) and

(2) nodes in any such copy of (12) are connected to the nodes of any
other such copy by perfectly like edges (same color, same solid/dashed
parity) of the remaining colors.

When depicting worldsheet supermultiplets, the (2, 2)-Adinkras (24) and (25)
are each other’s Dα+ ⇐⇒ D .

α− mirror-images, whereas the Adinkra (19)
depicts a (3, 1)-supermultiplet and its (1, 3)-supersymmetric mirror-pair.
Both (19) and (25) can be brought into the twisted left–right symmetric
form of (24) by a horizontal repositioning of nodes. Using the complex basis
à la (14), these Adinkras may be used to depict the supermultiplets that are
also known as semi-chiral superfields [59,60]. For the (2, 2)-Adinkras (24) to
(25), this has been demonstrated explicitly [16] by reading off the supersym-
metry transformation rules from the Adinkras and comparing them with the
complex superfield results.

In the same manner, a complex structure is detected in the first and third
(4, 0)- and (0, 4)-Adinkras in both their twisted and untwisted versons (15).
With a little horizontal rearrangement, this can be made evident:

(34)

where now the bottom-row Adinkras satisfy the specifications of Corol-
lary 2.4 and may be used to depict complex supermultiplets of (4, 0)- or
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Table 3: A side-by-side comparison between literal and twisted Z2

symmetries.

(Literal, left–right) Z2Z2Z2 symmetry Twisted Z2Z2Z2 symmetry

Both types of Adinkras can be drawn to have identical left- and right-
hand halves.

Left–right criss-crossing edges are
pair-wise identical; see, e.g. (28)

Left–right criss-crossing edges appear
in solid-dashed pairs; see, e.g. (34)

Used to project to a half-sized
supermultiplet; see, e.g. (28)

Used to indicate that a supermultiplet
admits a complex structure; see (14b)

(0, 4)-supersymmetry. Although these are not the originally so-named (2, 2)-
supermultiplets in [58,61], we adopt that terminology, just as has been done
for worldline supermultiplets in [9–12, 19]. In fact, the left-hand half of the
Adinkras (34) admit a quaternionic structure; see Section 3.4.

Finally, the (2, 2)-Adinkras (29) are identical with the right-hand half of
the Adinkras (34), and so admit a conjugate pair of complex structures in
just the same way. Thus, the (2, 2)-Adinkras (29) indeed depict the complex
chiral and twisted-chiral supermultiplets as well as their conjugates, which
are also represented by the superfields of the same name, as introduced
in [58].

The difference between the (literal) left–right Z2 symmetry, exemplified
in (28), and the twisted Z2 symmetry, exemplified by the Adinkras in the
lower row of (34) or the detailed illustration (A.5) is highlighted in table 3.

2.3.3 Summary

Table 4 summarizes the results of this section. In addition, off-shell super-
multiplets of worldline (N < 4)-supersymmetry readily extend to worldsheet
supermultiplets on the half-shell. For example by identifying DI 
→ DI+

and ∂τ 
→ ∂=| , the two off-shell supermultiplets of (N = 2)-extended super-
symmetry (11) and (12) extend to left-moving supermultiplets of world-
sheet (2, q)-supersymmetry for arbitrary q > 0; these supermultiplets are on
the half-shell, being annihilated by D .

α− and ∂= . The supermultiplets (11)
and (12) also extend to right-moving supermultiplets of worldsheet (p, 2)-
supersymmetry for arbitrary p > 0 and are annihilated by Dα+ and ∂=| .

Completeness: the list presented in table 4 provides a complete list of
adinkraic off-shell and on the half-shell supermultiplets of various world-
sheet (p, q)-supersymmetries, all of which are obtained by tensoring world-
line (N � 4)-extended supersymmetry. The preceding then suggests:
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Conjecture 2.1 (completeness). The application of Constructions 2.1, 2.2
and 2.3 together with the projections of the kind (28) — detailed in
Section 3 — generates all (p, q)-Adinkras and so also all adinkraic off-shell
worldsheet (p, q)-supermultiplets — for all p, q � 0.

Redundancy: While Constructions 2.1, 2.2 and 2.3 together with the pro-
jections of the kind (28) certainly generate a number of (p, q)-Adinkras and
corresponding worldsheet supermultiplets, some of these may turn out to
be equivalent. This phenomenon has been noted in worldline supermul-
tiplets [11], where a criterion for determining when that happens was also
given. The phenomenon is likely to also occur amongst worldsheet supermul-
tiplets for large enough p+ q, and is clearly inherited verbatim in extensions
to unidextrous (N, 0)- and (0, N)-supersymmetry. Section 3.5 explores a
few examples of this phenomenon amongst (p, q)-supermultiplets; the full
extent to which this equivalence of supermultiplets with distinct Adinkras
also extends to ambidextrous (p, q)-supersymmetry remains an open ques-
tion for now.

3 Supersymmetry and error-correcting codes

For N � 4, certain adinkraic worldline supermultiplets admit Z2 symme-
tries and corresponding projections to smaller supermultiplets — akin to
the projection described in (27) to (29). The action of such symmetries is
encoded by error-detecting and error-correcting (binary) doubly-even linear
block codes [10, 11], “DE-codes” for short. Herein, we explore their world-
sheet analogues.

3.1 Encoding worldsheet supermultiplets

Since component fields within a superfield are defined using the N -cube of
superderivatives such as in figures 1 and (2), the component-wise identifica-
tions such as made in (28) must translate into identification relations among
the component-defining superderivatives (3) and take the general form using
the binary exponent notation (3) and (4):

∂
n+
=| ∂

n−
= Dx|y ± ∂n′+

=| ∂
n′−
= Dx′|y′ � 0, (35)

where x and x′ have no common bit10 : x ∧ x′ = 0 = y ∧ y′ so the rela-
tions (35) would not induce purely worldsheet differential constraints (with

10Herein, � denotes bitwise addition (Xor), and ∧ is bitwise multiplication (And).
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neither Dα+ nor D .
α−) on the component (super)fields. Applying separately

Dx,y or Dx′,y′ from the left, we obtain superderivative relations that are,
after clearing common factors, of the general form

Πa|b
± := 1

2

[
(i∂=| )

1
2
|a|(i∂= )

1
2
|b| ±Da|b] � 0. (36)

Such operators then provide the generalization of the hallmark 4k-gon
relations generalizing (30) and (31). A few remarks are in order:

(1) With engineering dimension homogeneity and Spin(1, 1)-covariance,
the split binary exponents a|b fully encode the operators (36) except
for the (again binary) choice of the relative sign between the two sum-
mands in (36).

(2) The choice of the relative sign is called the twist , and coincides with the
standard terminology such as in chiral versus twisted-chiral superfields
[58]; see below, and [10] for the worldline variant of the statement.

We now turn to explore these to features in more detail.

Binary Encoding: Superdifferential operators such as (36) are quite familiar
from the superspace formalism in 3 + 1-dimensional spacetime [1, 4]. These
are quasi-projection operators11 , in that they must be quasi-idempotent
and mutually orthogonal:

(Πa|b
± )2 != (i∂=| )

1
2
|a|(i∂= )

1
2
|b|Πa|b

± , and Πa|b
± Πa|b

∓
!= 0. (37)

The first of these conditions yields

(Πa|b
± )2 = 1

4

[
(i∂=| )|a|(i∂= )|b| + Da|bDa|b ± 2(i∂=| )

1
2
|a|(i∂= )

1
2
|b|Da|b], (38)

which equals (i∂=| )
1
2
|a|(i∂= )

1
2
|b|Πa|b

± if and only if

Da|bDa|b = +(i∂=| )|a|(i∂= )|b|. (39)

Direct computation yields

Da|bDa|b = (−1)|a||b| (−1)(
|a|
2 ) D2a1

1+ ∧ · · · ∧D2ap

p+ · (−1)(
|b|
2 ) D2b1

1− ∧ · · · ∧D2bq

q− ,

= (−1)(
|a|+|b|

2 ) (i∂=| )|a|(i∂= )|b|, (40)

11The authors [1,4] construct proper projection operators by formally dividing by space-
time derivatives. This is well defined only when acting on eigenfunctions of those spacetime
derivatives with non-zero eigenvalues; herein we refrain from such on-shell restrictions.
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so that the first of the conditions (37) holds precisely if(|a|+ |b|
2

)
∈ 2Z. (41)

The second condition (37) is then satisfied automatically.

In turn, for the (super)differential operators (36) to be local, |a| and |b|
must both be even, whereupon their sum is also even. From this, we have:

both
(|a|+ |b|

2

)
and |a|+ |b| ∈ 2Z ⇒ |a|+ |b| = 0 (mod 4).

(42)

That is, the binary exponent in (36) with digits a1, . . . , ap, b1, . . . , bq must
be doubly-even, and also split into even (not necessarily equal) parts:

|a|+ |b| = 0 (mod 4), |a|, |b| = 0 (mod 2). (43)

For any desired system of identification relations (35), the corresponding
system of quasi-projection operators (36) will consist of k independent12

relations. The corresponding k split binary numbers (codewords) gi :=
(a|b)i then generate an even-split (binary) doubly-even linear block (esDE)
code, C| , that consists of all binary linear combinations �icigi; one says that
C| has rank k.

This implies a refining corollary of the results of [10] and the “even-split
refinement” of the DE-codes defined therein:

Corollary 3.1. When p, q 	= 0, only the DE-code-encoded Z2 symmetries
that admit an even-split (esDE-codes) define off-shell Z2 quotient worldsheet
(p, q)-supermultiplets.

See figure 4 below for a depiction of esDE-codes for p+ q � 8.

Twisting: In the general case, there exist several (k) mutually commuting
relations of the type (36); each defines an even-split binary number (code-
word), gi = (a|b)i, which jointly generate an esDE-code C| . Each relation of
the type (36) exhibits a choice of the relative sign, whereupon there exist 2k

different combinations of such quasi-projective operators, and correspond-
ingly 2k choices of self-duality type superderivative relations of the type (49).

12A collection of k relations (realized by quasi-projection operators) are independent if
the imposition of any k − 1 of them on any supermultiplet does not render the action of
the kth one trivial.
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For worldline supermultiplets, the same abundance of sign-choices was
shown to nevertheless result in only one untwisted–twisted pair of super-
multiplets [10,11] — and only in cases where the total number of supersym-
metries is N = 0 (mod 4). There exist two separate types of isomorphisms
that so effectively reduce the number of inequivalent sign-choices:

Outer: On the worldline — all N supersymmetry generators may be
freely permuted. Graphically, all N edge-color assignments may be
freely permuted. Within a given model, this operation clearly affects
all supermultiplets and so is global .

Inner: The other employs the fact that changing the sign of a particular
component (super)field induces a change in the sign of each superderi-
vative of that component (super)field. Graphically, every edge incident
with the node representing the sign-changed component (super)field
changes its solid/dashed parity. A judicious application of this oper-
ation alone can change the solid/dashed parity of edges of any even
number of colors [10, 11]. Within a given model, this operation may
be performed on any one supermultiplet at a time and so is local to a
supermultiplet.

Within worldsheet (p, q)-supersymmetry, any permutation of supersym-
metry generators must preserve Lorentz Spin(1, 1)-covariance: the Dα+ may
be permuted freely amongst themselves, as may the D .

α−, but there can exist
no permutation that would mix the Da+ with the D .

α−. This restriction
on the possible outer equivalence isomorphisms between the 2k sign-choices
in (36) may well, in general, prevent transforming one (un)twisted projected
supermultiplet into another.

In turn, however, the inner equivalence isomorphisms within a worldsheet
(p, q)-supermultiplet remain as free as they are within worldline supermul-
tiplets, leading thus to the same conclusion as in [10,11]:

Corollary 3.2. Only in case of p+ q = 0mod 4 and only for Z2-projected
supermultiplets does twisting produce inequivalent classes of supermultiplets,
and precisely two of them. Their Adinkras differ in the solid/dashed parity
of edges of an odd number of colors.

Extending from Worldline to Worldsheet: The above results may be
rephrased in terms of extending the worldline constructions and classification
of adinkraic off-shell supermultiplets in [10–12] to worldsheet supersymmetry
as follows. Let C be a DE [N ; k]-code, that is, a collection of N -digit binary
numbers that are all:

(1) doubly even (the sum of digits is divisible by 4),
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(2) closed under bitwise binary addition (�, i.e., Xor) and
(3) binary linear combinations of some k generators.

The ambidextrous extension of C and its use in projecting worldsheet super-
multiplets — as was the case in (28) — requires that we split the N worldline
supersymmetries into p left-moving and q = (N−p) right-moving supersym-
metries in such a way that the corresponding left portion and the right
portion of each codeword in C is even. It follows that both the left and the
right portions of the codewords separately form (simply) even binary linear
block codes. Such a splitting

DE [N ; k]-code C −→ esDE [p, q; k′]-code C| , k′ � k (44)

may turn out to be: (1) impossible, (2) unique or (3) multiple, for any given
[N ; k]-code and any desired extension Sp

1|N → Sp
1,1|p,N−p

= Sp
1|p
+ ⊗Sp

1|N−p

− .

Consider now the special case of (36), when b = 0:

Πa|0
± := 1

2

[
(i∂=| )

1
2
|a| ± Da|0] � 0. (45)

These quasi-projection operators are evidently the unidextrous {DI , ∂τ} 
→
{Dα+, ∂=| } extension mapping of the worldline quasi-projection operators
employed in [10–12]. Thereby, the classification therein translates verbatim
into a classification of one of the following two:

(1) Ambidextrous supermultiplets of unidextrous worldsheet (N, 0)-
supersymmetry, where there exist no D .

α−-superderivatives, so that
annihilation by ∂= is not implied and such supermultiplets are free to
be off-shell. Such supermultiplets are constructed by means of pro-
jecting the result of Construction 2.3 using the quasi-projection oper-
ators (45).

(2) Unidextrous supermultiplets of ambidextrous worldsheet (N, q)-
supersymmetry are constructed by means of projecting the result of
Construction 2.2 using the quasi-projection operators (45), and for
arbitrary q. Such supermultiplets are annihilated by the D .

α−-
superderivatives and therefore also by ∂= , and so are on the half-shell .

The parity mirror-images of these constructions are evidently obtained by
means of the unidextrous {DI , ∂τ} 
→ {D .

α−, ∂= } extension mapping instead.
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3.2 Supermultiplet reduction

While quasi-projection operators (36) permit reading off the esDE-code,
the complete and strict identifications that hold on a projected supermulti-
plet are not generated by the quasi-projectors (36), but by self-duality type
relations of the form (35), where n±, n′± have been chosen to be minimal,
typically zero. This subtlety has been detected already for worldline super-
multiplets [12], and becomes only more prominent for worldsheet supermul-
tiplets. We thus have:

Definition 3.1. Let an even-split doubly-even code C| be generated by k gen-
erators (a|b)i, with i = 1, . . . , k. Then, to each generator (a|b)i i = 1, · · · , k
there corresponds a system of “self-duality” superderivative operators

Σ(a|b)i±
α...| .α...

:=
[
Dα+· · ·D .

α−· · · ± 1
( 1
2 |a|)!

1
( 1
2 |b|)!

εα...
β... ε .α...

.
β...D .

β+
· · ·D .

β−· · ·
]
,

(46)

where the indices α, β, . . . range over those values at which positions the
binary number a has 1’s, and the range of values for .

α,
.
β, . . . is similarly

determined by the 1’s in b; see, e.g., (49).

To see the need for the operators (46), consider the example (30), rewrit-
ten in lexicographic order: applying D1+ from the left13 , we obtain

D1+ ·
(
D1+D2+D1−D2− � ∂= ∂=|

)
⇒ i∂=| D2+D1−D2− � ∂= ∂=| D1+.

(47)

Applying now D1− produces:

D1− ·
(
i∂=| D2+D1−D2− � ∂= ∂=| D1+

)
⇒ −i∂=| D2+(i∂= )D2−

� −∂= ∂=| D1+D1−, ∂=| ∂= D2+D2− � −∂=| ∂= D1+D1−. (48)

Of these conditions, (47) is vacuous on right-moving functions on the world-
sheet, and (48) is vacuous on harmonic functions. Thus, attempting to
reduce a supermultiplet by imposing the hallmark quasi-projections (30)
would not result in a proper off-shell supermultiplet, being defined only up
to fully unrestricted unidextrous and harmonic summands in many of its
component (super)fields.

13Since such relations by definition hold when applied from the left on superfields, any
additional operator must be applied from the left.
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Following [12], the necessary proper conditions are then generated from
the “self-duality” relations (46). For the d2,2 even-split doubly-even code,
which has a single generator, 11|11, the “self-duality” operators are:

Σ11|11+
1|1 := D1+D1− + D2+D2− � 0 and

Σ11|11+
1|2 := D1+D2− −D2+D1− � 0, (49)

meaning that these operators annihilate component (super)fields in any d2,2-
projected supermultiplet. Applying D1+ and then D1− on the first of these
then results

D1−·D1+·Σ11|11+
1|1 = D1−·D1+·

[
D1+D1− + D2+D2−

]
= D1−·

[
(i∂=| )D1− + D1+D2+D2−

]
,

=
[
(i∂=| )(i∂= ) + D1+D2+D1−D2−

]
= Π11|11

+ , (50)

the vanishing of which is equivalent to (30). Similar manipulations show
that the two operatorial relations (49) are both mutually consistent and
consistent with (30).

Applying the relations (49) on the supermultiplet (23) to reduce it does
produce an off-shell supermultiplet, albeit in a rather unexpected way. The
operators (49) evidently produce identification relations within (23) only
from the middle-level upward. To be precise, by applying one superderiva-
tive from left at a time, the generating relations Σ produce:

D-relation Comp. field relation

D1+D1− � D2+D2− ⇔ F11 � F22

D1+D2− � −D2+D1− ⇔ F12 � −F21

i∂=| D1− � D1+D2+D2− ⇔ i∂=| Ψ1− � Ξ=
2−

−i∂=| D1+ � −D2+D1−D2− ⇔ i∂= Ψ1+ � Ξ=|
2+

−D1+D2+D1− � i∂=| D2− ⇔ −Ξ=
1− � i∂=| Ψ2−

D1+D1−D2− � −i∂=| D2+ ⇔ Ξ=|
1+ � −i∂= Ψ2+

∂=| ∂= � −D1+D2+D1−D2− ⇔ ∂=| ∂= Φ � −FFFF
i∂=| D1−D2− � −i∂= D1+D2+ ⇔ ∂=| F= � −∂= F=|

(51)

These identifications may be traced to be body-diagonal within the
Adinkra (23). The first two of the component (super)field identifications (51)
simply identify two pairs of component superfields; the next five express the
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Figure 3: The effects of imposing Σ11|11+
1+1− � 0 � Σ11|11+

1+2− on the intact (2, 2)-
supermultiplet.

five component superfields (Ξ=|.
α−,Ξ

=.
α−;FFFF) in terms of derivatives of compo-

nent (super)fields of lower engineering dimension.

However, the last relation, ∂=| F= � −∂= F=| —instead of identifying a lin-
ear combination of the existing component (super)fields F=| and F= — may
be “solved” in terms of a new component (super)field:

∂=| F= � −∂= F=| ⇒ F=| = ∂=| f & F= = −∂= f . (52)

These identifications are depicted in figure 3. In the second, cut Adinkra,
the highlighted 4th and 6th (previously) middle-level nodes from the left
change signs, whereupon the incident edges change their solid/dashed parity
as shown in the third Adinkra. Upon this, the 4th and 5th node from left
in this row are identified with the 3rd and 2nd node, respectively.

The 1st and the 6th (previously) middle-level nodes are shown grayed as
they are related by a worldsheet differential condition, rendering both of
them a derivative of a boson which is in the final, right-most rendition rep-
resented at the bottom level, and labeled “f ”. Thus, part of the self-duality
type relations (49) in effect imply not an identification of two component
(super)fields with each other, but with worldsheet derivatives of a new com-
ponent (super)field of lower engineering dimension; this is depicted by the
simultaneous (1) fusion of two nodes and (2) lowering of the resulting node.

Therefore, imposing

either Σ11|11+
1+1− � 0 � Σ11|11+

1+2− or Σ11|11−
1+1− � 0 � Σ11|11−

1+2− (53)

on the intact supermultiplet (23) is necessary and sufficient: it generates
all the requisite relationships between the component superfields so as to
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reduce the off-shell supermultiplet (23) into

(54)
Upon flipping the signs of Ψ2−,F11 and F12 in the twisted-chiral Adinkra,
and of F11 and F12 in the chiral Adinkra, these become identical to those
shown in (29).

In the analogous worldline construction, there exist three self-duality type
relations,

Σ1111+
12 := D1D2 + D3D4 � 0, and

Σ1111+
13 := D1D3 −D2D4 � 0, Σ1111+

14 := D1D4 + D2D3 � 0.
(55)

With the mapping {D1,D2,D3,D4} 
→ {D1+,D2+,D1−,D2−}, it is clear that
the first of these,

putative Σ11|11+
1+2+ := D1+D2+ + D1−D2− (56)

would violate Spin(1, 1) Lorentz symmetry, and so cannot be used. Never-
theless, as the analysis (49) to (54) shows, the remaining self-duality type
constraints that are Spin(1, 1)-covariant do in fact generate precisely the
required identifications to reduce the intact off-shell supermultiplet (23) to
a “half-size” off-shell projection (54). It seems reasonable to expect that
this generalizes to all esDE-codes:

Conjecture 3.1. Given an esDE-code C| with k generators, the correspond-
ing maximal set of linearly independent and Spin(1, 1)-covariant self-duality
type relations — as given in (35) and with minimal n±, n′± — reduce
the intact supermultiplet to one of its 2−k-sized C| -encoded (Z2)k-quotients,
together with requisite instances of “node-lowering,” as in (52).

Now, on the worldline, the supermultiplet obtained by reducing the intact
supermultiplet via imposing the self-duality relations (55) on it is indeed a
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sub-supermultiplet of the original intact supermultiplet:

(57)

The quotient Vint./κ(M′
tch.) is well known to represent the 1D reduction

of the off-shell vector supermultiplet of simple (N = 1) supersymmetry in
(3 + 1)-dimensional spacetime, and in the Wess–Zumino gauge [12].

However, in stark contrast with this worldline result, the worldsheet off-
shell supermultiplet obtained by reducing a supermultiplet by means of
imposing self-duality constraints of the type (46) need not be a strict sub-
supermultiplet of the initial off-shell supermultiplet, in the sense of the def-
inition [11]. It is evident from considering the initial and final Adinkra in
figure 3, that the mapping from the reduced (twisted-chiral) supermultiplet
to the intact supermultiplet

f (58)

is local, but its inverse, shown in figure 3 is not. The quotientMint./κ(Mtch.)
is then evidently not an off-shell supermultiplet, the mapping κ is not a strict
homomorphism of off-shell supermultiplets, and Mtch. 	⊂ Mint..

3.3 Some low-(p, q) split codes

We consider some of the lower values of p+ q, and the possible extension of
the worldline supermultiplet projections to their analogue within worldsheet
(p, q)-supersymmetry. The 4k-gon graphical method of [19] may be adapted
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Figure 4: A graphical method (depicting (36)-type hallmark 4k-gon rela-
tions) for finding maximal split doubly-even binary linear block codes for
4 � (p+ q) � 8. Warning: the 4k-gon colors are independent of edge-colors
in Adinkras and serve merely to distinguish the hallmark 4k-gon relations:
here, black vertices depict the Dα+’s and the white ones the D .

α−’s — or the
other way around.

to determine the possible ways of splitting the DE-codes, and the result for
p+ q � 8 is shown in figure 4.

Maximal Projections: Already the p+ q � 8 listing, presented graphically in
figure 4 and detailed below, reveals a feature of maximal esDE-codes that is
unlike the maximal DE-codes as used in [10–12]! The number of generators
of maximal DE-codes equals

κ(N) :=

⎧⎪⎨⎪⎩
0 for N < 4,⌊ (N−4)2

4

⌋
+ 1 for N = 4, 5, 6, 7,

κ(N−8) + 4 for N > 7, recursively,
(59)

and depends only on N , the length of the codewords [10]. In turn, for any
DE [N, k]-code C , the chromotopology of a C -projected supermultiplet is
IN/(Z2)k and it has 2N−k component (super)fields, half bosonic and half
fermionic. Consequently, supermultiplets projected by maximal DE-codes
have 2N−κ(N) component (super)fields and so are minimal off-shell super-
multiplets of N -extended worldline supersymmetry.
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In contrast, figure 4 and the listing (69) to (73) below show that the num-
ber of generators in maximal esDE-codes varies for a fixed p+ q, and depends
on the (p, q)-split. In particular, for a specified (p, q)-supersymmetry, there
exist maximal esDE-codes which are not a split of a maximal DE-code, but
of a subcode. Consequently, the total dimension of a minimal, C| -projected
off-shell worldsheet supermultiplet is on several occasions strictly larger than
2p+q−κ(p+q).

Decomposing: In the projection (28), the graph identification may be taken
to either identify the corresponding component (super)fields on the left-hand
half with the component (super)fields on the right-hand half, or the nega-
tives thereof. The two resulting “half-sized” supermultiplets are distinct —
see (66) below. In general, the so-obtained “half-sized” supermultiplets
may in fact be inequivalent as (66) are, or may turn out to be equivalent
through a redefinition of the basis for the component (super)fields and/or the
superderivatives, i.e., the supersymmetry generators. For worldline super-
symmetry, [11] provides an algorithm to resolve this question on a case-by-
case basis; this may have to be revised for application to supermultiplets of
worldsheet (p, q)-supersymmetry with p, q 	= 0.

Indeed, a supermultiplet that can be so projected to two “half-sized”
supermultiplets is said to be decomposable, and (28) demonstrates that this
is equally possible for worldsheet supermultiplets. See the appendix for the
details of this decomposition.

We now read the esDE-codes from the graphics in figure 4 in turn, and
discuss the implications for worldsheet supermultiplets, and so provide a list-
ing of them for worldsheet (p, q)-supersymmetry with p+ q � 8, employing
to the above-derive constraints.

p + q = 4: For the worldline 4-extended supersymmetry, there is only the
d4 code, generated by the single codeword, 1111. There are then only two
possibilities:

(1) The unidextrously split d4,0, for the unidextrous worldsheet (4, 0)-
supersymmetry or its parity-reflection, d0,4 for worldsheet (0, 4)-
supersymmetry. A d4,0-projected (4, 0)-supermultiplet must be anni-
hilated by one of the two operators:[
(i∂=| )2 + D1+D2+D3+D4+

]
or

[
(i∂2

=| )−D1+D2+D3+D4+

]
, (60)

or, equivalently, by the systems[
Dα+Dβ+ − 1

2εαβ
γδDγ+Db+

]
or

[
Dα+Dβ+ + 1

2εαβ
γδDγ+Db+

]
. (61)
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Stated another way, on any of the components of a d4,0-projected
supermultiplet, the action of D1+D2+D3+D4+ is indistinguishable from
either +∂2

=| or −∂2
=| . This then imposes component (super)field iden-

tifications of the type

D1+D2+D3+D4+Φ| = +∂2
=| Φ| or

D1+D2+D3+D4+Φ| = −∂2
=| Φ|, etc. (62)

The analogous holds for a d0,4-projected (0, 4)-supermultiplet. Thus,
the d4-projected worldline 4-extended supermultiplets can extend both
to unidextrous worldsheet (4, 0)-supersymmetry and to (0, 4)-
supersymmetry simply by reinterpreting, say, ∂τ → ∂=| and DI → Dα+.

(2) The ambidextrous split, d2,2 for worldsheet (2, 2)-supersymmetry. d2,2-
projected (2, 2)-supermultiplets must be annihilated by one of the two
operators:[
∂=| ∂= + D1+D2+D1−D2−

]
or

[
∂=| ∂= −D1+D2+D1−D2−

]
, (63)

or, equivalently, by the systems

[
D1+D .

α+ + 1
2ε

.
α

.
βD2+D .

β−
]

or
[
D1+D .

α+ − 1
2ε

.
α

.
βD2+D .

β−
]
. (64)

Stated another way, on any of the components of a d2,2-projected
supermultiplet — such as (29), i.e., (54), the action of D1+D2+D1−D2−
is indistinguishable from one of ∓∂=| ∂= . This then imposes component
(super)field identifications of the type

D1+D2+D1−D2−Φ| = −∂=| ∂= Φ| or

D1+D2+D1−D2−Φ| = +∂=| ∂= Φ|, etc. (65)

The (2, 2)-Adinkra (29) depicts such multiplets. As discussed in [11]
and above, this graph admits a “twist,” whereby the solid/dashed par-
ity assignments of the edges of an odd number of colors is flipped; (29)
and its so twisted version are equivalent (by sending D2− → −D2−):

(66)

but usefully distinct: although the transformation D2− → −D2− maps
one into the other, when used jointly in a model, their coupling pro-
vides for features not describable with only one or only the other [58].
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(3) None of the (1, 3)- and (3, 1)-supermultiplets admits a projection.
Conversely, none of the d4-projected supermultiplets of worldline 4-
extended supersymmetry extend to worldsheet either (1, 3)- or (3, 1)-
supersymmetry.

To summarize, the minimal off-shell supermultiplets

(1) of (4, 0)- (0, 4)–supersymmetry have 4 + 4 components and are
depicted in (15);

(2) of (3, 1)- and (1, 3)-supersymmetry have 8 + 8 components; and
(3) of (2, 2)-supersymmetry have 4 + 4 components and are depicted

in (29).

It is gratifying that the last case recovers the well-known chiral and twisted-
chiral supermultiplets — and their complex conjugates, as specified in
Corollary 2.4.

p + q = 5: For the worldline N = 5-extended supersymmetry, there is only
the d4 ⊕ t1 DE-code, where the tn summand denotes the trivial (empty) code
of length n, i.e., the binary codeword 0 . . . 0 with n zeros. This denotes the
fact that the fifth supersymmetry generator is not involved in any hallmark
4k-gon relation. For p+ q = 5, there are three maximal split codes14 (see
figure 4):

d4,0 ⊕ t1,0 = [ 11110 ], d4,0 ⊕ t0,1 = [ 1111 0 ], d2,2 ⊕ t1,0 = [ 11 110 ], (67)

respectively, for worldsheet (5, 0)-, (4, 1)- and (3, 2)-supersymmetry. These
are all depicted by means of a tensor product Adinkra such as:

(68)

The first two of (67) are straightforward extensions of the N = 5 worldline
d4-projected supermultiplet to the worldsheet (5, 0)- and (4, 1)-
supersymmetry, respectively, where:

(1) the Adinkra A1 depicts a representation of Sp
1|4
+ (could be any one

of the 8 N = 4 inequivalent Adinkras listed in (15) and their boson/
fermion flips) and

14The trivial code tp,q consists of only the split binary codeword with p + q zeros:
0 . . . 0|0 . . . 0.
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(2) the fifth edge-color and A2 depict either the D5+- or the D1−-action for
either the unidextrous (5, 0)- or the ambidextrous (4, 1)-
supersymmetry, respectively.

In the third case, d2,2 ⊕ t1,0 for (3, 2)-supersymmetry, A1 depicts a rep-
resentation of Sp

1,1|2,2
(could be any one of the Adinkras (22), (24), (25), (29)

and their boson/fermion flips) with the assignments, say: red = D1+,
green = D2+, blue = D1− and orange = D2−, whereupon, say, purple = D3+.

Lastly, any off-shell supermultiplet of the unidextrous (5, 0)-supersym-
metry may always be extended to a left-moving (unidextrous) supermultiplet
of the ambidextrous worldsheet (5, q)-supersymmetry, for arbitrary q; all
such supermultiplets are on the half-shell, i.e., are annihilated by ∂= . As
this can always be done with off-shell representations of (p, 0)- and (0, q)-
supersymmetry, it will no longer be pointed out explicitly.

Thus, minimal supermultiplets of (p, 5−p)-supersymmetry all have 8 +
8 components, for all choices 0 � p � 5. Recall however that there do
exist adinkraic supermultiplets with 16 bosonic and 16 fermionic component
(super)fields that do not decompose into direct sums of minimal supermulti-
plets, the prime example being the straightforward, (p, 5−p)-supersymmetric
generalization of (22).

It is quite evident that the resulting Adinkra (68) is 1-color-decomposable,
since deleting the purple, D3−-edges decomposes the Adinkra. However,
when deleting edges of any color other than the fifth one (purple), one must
delete edges of two colors for the Adinkra to decompose — since the factor-
Adinkra A1 is 2-color-decomposable.

p + q = 6: For the worldline N = 6-extended supersymmetry, d6 is the maxi-
mal DE-code. For p+ q = 6, there are four maximal split codes (see figure 4):

Supersymmetry: (6, 0) (5, 1) (4, 2) (3, 3)

Maximal Code:
d6,0 d4,0 ⊕ t1,1 d4,2 d3,3[

111100

001111

]
[ 11110 0 ]

[
1111 00
0011 11

] [
110 110
011 011

]
Minimal Dim.: (4|8|4) (8|16|8) (4|8|4) (4|8|4)

(69)

Notice that the minimal supermultiplets of the unidextrous (5, 1)- and (1, 5)-
supersymmetry have 16 + 16 component (super)fields, as opposed to the half
as large, (8|8)-dimensional (super)fields of the other (p, 6−p)-supersymmetry
cases.
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For illustration, a minimal d3,3-projected off-shell supermultiplet of world-
sheet (3, 3)-supersymmetry may be constructed by decomposing, in the
manner of (28), the tensor product of two N = 3 so-called valise
supermultiplets:

⊗
(70)

Since the d3,3 code has two generators, the “/d3,3” annotation denotes a
d3,3-encoded (Z2)2-quotient, which reduces the (4|4)⊗ (4|4) = (16|32|16)-
dimensional tensor product (3, 3)-Adinkra (not shown in (70)) to the (4|8|4)-
dimensional one shown. Conceptually, this is the (3, 3)-supersymmetric
generalization of the (2, 2)-supersymmetric construction (26) to (29). The
analogous d4,2-quotient (4, 2)-supermultiplet is obtained in a similar way:

⊗
(71)

Note that the left-hand factor in the tensor product is already a d4,0-quotient,
so that this subcode d4,0 ⊂ d6,2 acts trivially when passing to the final result
in (71).

Clearly, there exist many (16 + 16)- and (32 + 32)-dimensional represen-
tations which do not exhibit two commuting Z2 symmetries — because of
the vertical positioning of the nodes — so as to be so decomposed. The
simplest example is the intact supermultiplets, which are the straightfor-
ward, (p, 6−p)-supersymmetric generalizations of (22). These supermulti-
plets are reducible, in that they may be reduced to smaller supermultiplets
by means of (now two mutually commuting sets of) self-dual type relations
such as (46) and akin to the procedure shown in figure 3. These smaller,
reduced supermultiplets always have a higher n-color-decomposability than
the bigger ones, prior to the reduction.

p + q = 7: For the worldline N = 7-extended supersymmetry, e7 is the
maximal DE-code. For p+ q = 7, there are four maximal split codes
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(see figure 4):

Supersymmetry: (7, 0) (6, 1) (5, 2) (4, 3)

Maximal Code:
d7,0 d6,0 ⊕ t0,1 d4,2 ⊕ t1,0 e4,3[

1111000
0011110
1010101

] [
111100 0
001111 0

] [
01111 00
00011 11

] [
1111 000
0011 110
1010 101

]
Minimal Dim.: (8|8) (16|16) (16|16) (8|8)

(72)

Recall that there do exist adinkraic supermultiplets with up to 64 bosonic
and 64 fermionic component (super)fields that do not decompose into direct
sums of minimal supermultiplets. The simplest example is the intact super-
multiplets, which are the straightforward, (p, 7−p)-supersymmetric gener-
alizations of (22). These supermultiplets can be reduced by means of the
self-duality type equations such as (46).

p + q = 8: For the worldline N = 8-extended supersymmetry, e8 is the maxi-
mal DE-code. For p+ q = 8, there are five maximal split codes (see figure 4):

Supersymmetry: (8, 0) (7, 1) (6, 2) (5, 3) (4, 4)

Maximal Code:
d8,0 e7,0 ⊕ t0,1 d6,2 e4,3 ⊕ t1,0 e4,4⎡⎣ 11110000

00111100
00001111
10101010

⎤⎦ [
1111000 0
0011110 0
1010101 0

] [
111100 00
001111 00
000011 11

] [
11110 000
01010 101
00110 110

] ⎡⎣ 1111 0000
0011 1100
0000 1111
1010 1010

⎤⎦
Minimal Dim.: (8|8) (16|16) (16|16) (16|16) (8|8)

(73)

For illustration, a minimal e4,4-projected off-shell supermultiplet of world-
sheet (4, 4)-supersymmetry may be constructed by decomposing, in the man-
ner of (28), the tensor product of two N = 4 valises:

⊗
(74)

Since the e4,4 code has four generators, the “/e4,4” quotient denotes a e4,4-
encoded (Z2)4-quotient. However, both factors in the tensor product are
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already d4,0-, i.e., d0,4-quotients, respectively. These subcodes

d4,0, d0,4 ⊂ e4,4 : [ 1111 0000 ]⊕ [ 0000 1111 ] ⊂
⎡⎣ 1111 0000

0011 1100
0000 1111
1010 1010

⎤⎦ (75)

therefore act trivially in passing to the final quotient in (74). Thus, the
(4|4)⊗ (4|4) = (16|32|16)-dimensional tensor product (4, 4)-Adinkra (not
shown in (74)) is reduced only by the (Z2)2-quotient encoded by the two
generators of e4,4/(d4,0 + d0,4), producing the (4|8|4)-dimensional Adinkra
shown.

It is worth noting that in the Adinkra (74), the factor A+ is chiral and
A− is twisted-chiral, as can be verified by checking the hallmark 4k-gon
relations (30) and (31); these relations remain valid in the final quotient of
the tensor product (4, 4)-Adinkra. By transforming D4− → −D4−, A− is
turned into a chiral Adinkra, and the tensor product (4, 4)-Adinkra also
changes into its twisted variant; an equivalent result is obtained by trans-
forming D4+ → −D4+, which turns A+ into a twisted-chiral Adinkra. In
fact, the simultaneous change (D4+,D4−) → (−D4+,−D4−) can always be
compensated by a judicious sign-change in some component (super)fields,
and so leads to an equivalent supermultiplet.

As before, there exist adinkraic supermultiplets with up to 128 bosonic
and 128 fermionic component (super)fields that do not decompose into direct
sums of minimal supermultiplets, the prime example being the intact super-
multiplet, which is the straightforward, (p, 8−p)-supersymmetric general-
ization of (22). These supermultiplets can be reduced by means of the
self-duality type equations such as (46). As before, iterated Z2 projection
increases n-color-decomposability, and it is not hard to see that the end
result in (74) is 4-color-decomposable.

3.4 Ground fields versus tensor products

In the discussion (13) to (14d) leading to Corollary 2.4, it was shown that
certain supermultiplets admit a complex structure. This means that:

(1) pairs of nodes at the same height may be combined into a “complex
node,” which depict pairs of component fields combined as real and
imaginary parts of a complex component field and

(2) two pairs of edges (of two colors) connecting two “complex nodes” at
adjacent heights combine into a single “complex edge,” depicting the
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complex supersymmetry transformation from one complex component
field to another, as depicted in (14b).

Combining nodes and edges in this manner in the chiral Adinkra shown in
the left of (29), we obtain that the real (2|4|2)-dimensional supermultiplet
of real (2, 2)-supersymmetry may also be thought of as a complex (1|2|1)-
dimensional supermultiplet of complex (1, 1)-supersymmetry. In turn,
reverse-engineering Construction 2.4, this complex (1|2|1)-dimensional
(1, 1)-supermultiplet is obtainable as the (external) tensor product of two
complex (1|1)-dimensional supermultiplets:

(2|4|2)(2,2)

R
= (1|2|1)(1,1)

C
= (1|1)1C+ ⊗ (1|1)1C−. (76)

Note that one transforms this into the twisted-chiral supermultiplet by
changing the sign of an odd number of real DI -actions. By choosing this to
be the one identified as the imaginary part of the complex D−-action, we
effectively conjugate the complex structure of the (1|1)1

C− factor.

On the other hand, we have that

(1) The (2|4|2)(2,2)

R
supermultiplet is the d2,2-specified Z2 quotient of the

(4|8|4)(2,2)

R
supermultiplet; see (28).

(2) The (4|8|4)(2,2)

R
supermultiplet is the (real) tensor product of a left- and

a right-handed copy of the (2|2)2
R

supermultiplet; see (26).

This proves that

(2|2)2R+ ⊗ (2|2)2R−
/d2,2−−−−→ (2|4|2)(2,2)

R
chiral

= (1|2|1)(1,1)

C
= (1|1)1C+ ⊗ (1|1)1C−,

(77)

(2|2)2R+ ⊗ (2|2)2R−
/d2,2−−−−→ (2|4|2)(2,2)

R
tw.-chiral

= (1|2|1)(1,1̄)

C
= (1|1)1C+ ⊗ (1|1)1

C−,

(78)

where over-bar indicates complex conjugation; recall that left- and right-
handed objects can be handled independently on the worldsheet.

That is, the chiral Adinkra shown in the left of (29) and indicated in
the middle of (77) is not a real tensor product of real supermultiplets, but
is a complex tensor product of complex supermultiplets. For brevity, we
will say that the chiral Adinkra shown in the left of (29) does not factorize
over R, but does factorize over C. Moreover, it follows that the 2-color
decomposability and other details of the connectivity specified by the d2,2

esDE-code in the chiral Adinkra stem from the complex tensor product (78).
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It is then reasonable to ask: (1) which real quotients of real tensor prod-
ucts turn out to factorize over C or H and (2) if there exist real quotients
of real tensor products that factorize over no ground field. We now turn to
answer these, at least within the scope of the examples presented herein.

Complex Tensor Products: Modeling on the extended equality (78) consid-
ered in reverse, considering here only a dimension-count and assuming the
supermultiplets to admit the indicated complex structures, we compute:

(d1|d1)
p
C+ ⊗ (d2|d2)

q
C− = (d1·d2|2·d1·d2|d1·d2)

p,q
C

= (2·d1·d2|4·d1·d2|2·d1·d2)
2p,2q
R

. (79)

In turn, we know that, for any particular number N of edge-colors, Adinkras
are largest when not projected, and have 2N−1 + 2N−1 nodes. Selecting
d1 = 2p−1 and d2 = 2q−1, we have

(2p−1|2p−1)p
C+ ⊗ (2q−1|2q−1)q

C− = (2p+q−2|2p+q−1|2p+q−2)p,q
C

= (2p+q−1|2p+q|2p+q−1)2p,2q
R

. (80)

Since an intact, real 2(p+ q)-supermultiplet is (22p+2q−1|22p+2q−1)-
dimensional and the result (87) is only (2p+q|2p+q)-dimensional, it must
be that (80) is a (Z2)p+q−1-quotient, which had to have been specified by
a (p, q)-split esDE-code with p+ q − 1 generators. If the quotient admits a
complex structure and factorizes over C, it must be that

(22p−1|22p−1)2p
R+ ⊗ (22q−1|22q−1)2q

R+

/C|2p,2q−−−−→ (2p+q−1|2p+q|2p+q−1)2p,2q
R

= (2p−1|2p−1)p
C+ ⊗ (2q−1|2q−1)q

C− (81)

for 0 � p, q ∈ Z, and for some rank-(p+ q−1) esDE-code C| 2p,2q.

In this sense, such esDE-codes C| 2p,2q may be said to stem from complex
tensor products, and in all the cases considered herein, C| 2p,2q = d2p,2q in fact.
Since the rank-(p+ q−1) esDE-codes d2p,2q are maximal except when p+
q ≡ 0 (mod 8), and Adinkras with N edge-colors have at most (2N−1|2N−1)
nodes, it follows that the relation (81) is saturated except when p+ q ≡
0 (mod 8): on the right-hand sideof (81), factor Adinkras with more nodes
would have to decompose into direct sums, and Adinkras with fewer nodes
would require a quotient code violating (59). On the left-hand side of (81),
the factor Adinkras can be smaller only if they have been “pre-quotiented”
by some esDE-code Z ′. Then, the esDE-code C| 2p,2q could always be made
to subsume this Z ′, reverting the left-hand side factor Adinkras into the
intact ones used in (81). Since the indicated projection code is maximal,
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the left-hand side of (81) is also saturated. The exceptional cases with
p+ q ≡ 0 (mod 8) turn out to involve quaternions; see (89).

Suffice it here to recall that the conditions of Corollary 2.4 and rela-
tions (80) and (81) are necessary. While finding the sufficient conditions is
of considerable interest, it turns out to be rather involved (see below), and
will have to be deferred to a later effort.

Quaternionic Tensor Products: Although satisfying both the conditions of
Corollary 2.4 and relations (80) and (81), the (4|4)-dimensional (valise)
supermultiplets in the left-hand half of (34) do not admit a simple complex
structure, but a quaternionic structure instead. For example, by judicious
identification of the nodes in the lower left-most (chiral valise) Adinkra

(82)

the supersymmetry transformation rules are completely captured by the
quaternionic equation

1
4 [D1 + iD2 + jD3 + kD4]× (φ1 + iφ2 + jφ3 + kφ4)

= (iψ1) + i(iψ2) + j(iψ3) + k(iψ4). (83)

The imaginary unit i plays a double role: both as one of the three quater-
nionic units, and as the imaginary unit from the right-hand side of (1). This
can be rearranged

1
4 [(D1 + iD2) + k(D4 + iD3)]× [(φ1 + iφ2) + k(φ4 + iφ3)]

=
(
(iψ1) + i(iψ2)

)
+ k

(
(iψ4) + i(iψ3)

)
(84)

to indicate the i-complex combinations,

[D12 + kD43]× (φ12 + kφ43) = (iψ12) + k(iψ43), (85)

where D2 and D3 play the roles of i-imaginary parts and correspond to
the edges criss-crossing between the two sides in (82). Expanding the k-
real and k-imaginary parts of (85), we obtain a k-complex (2|2)-dimensional
supermultiplet effectively depicted by the Adinkra (12), where however both
the nodes and the edges are already i-complexified. The two (i- and k-)
complex structures (84) admitted by the real Adinkra (82) are independent
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and generate the quaternionic structure (83):

(4|4)4R = (2|2)2C = (1|1)1H. (86)

Considering again only a dimension-count and assuming the supermultiplets
to admit the indicated quaternionic structures, we retrace the equality (87)
with quaternionic tensor products on the left-hand side instead of complex
ones:

(2p−1|2p−1)p
H+ ⊗ (2q−1|2q−1)q

H− = (2p+q−2|2p+q−1|2p+q−2)p,q
H

= (2p+q|2p+q+1|2p+q)4p,4q
R

. (87)

Since a real Adinkra with N edge-colors can have no fewer than 2N−κ(N)−1

white (and as many black) nodes, and must decompose into a direct sum
of Adinkras if it has more than 2N−1 white (and as many black) nodes, we
impose the extended condition

24p+4q−κ(4p+4q)−1 � 2p+q+1 � 24p+4q−1, (88)

which is satisfied only when p+ q = 1, 2. This produces only one ambidex-
trous case:

(8|8)4R+ ⊗ (8|8)4R+

e4,4−−−→ (4|8|4)(4,4)

R
= (1|1)1H+ ⊗ (1|1)1H− (89)

and several unidextrous cases. Allowing for the quaternionic Adinkras to
decompose as direct products again permits many more cases, and we defer
their study to a subsequent effort.

Read Quotients versus (Hyper-)Complex Tensor Products: Summarizing
the results (76) to (89), table 5 lists the non-trivial real quotients (R+ ⊗
R−)/(Z2)k discussed above, which factorize as (hyper-)complex tensor
products.

More importantly however, note that the supermultiplet (70)

(4|4)3R+ ⊗ (4|4)3R−
/d3,3−−−→ (4|8|4)(3,3)

R
(70′)

cannot factorize over (hyper-)complex numbers, for the simple reason that
the odd numbers (three each) of Dα+- and D .

α−-actions cannot be com-
bined into (hyper-)complex D±-actions. The same reasoning shows that
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Table 5: Non-trivial real quotient Adinkras that are unprojected
(hyper-)complex tensor products.

Real Adinkra Listed Factorization

Chiral (2|4|2)(2,2)

R
(29)-right, (54)-right,
(66)-left

= (1|1)1
C+ ⊗ (1|1)1

C−

Twisted-chiral (2|4|2)(2,2)

R
(29)-left, (54)-left,
(66)-right

= (1|1)1
C+ ⊗ (1|1)1

C−

(4|8|4)(4,2)

R
(71) = (2|2)2

C+ ⊗ (1|1)1
C−(

(32|32)6
R+ ⊗ (2|2)2

R−
)
/d6,2 = (8|16|8)(6,2)

R
; see (73) = (4|4)3

C+ ⊗ (1|1)1
C−

Ultra multiplet [55]‡ (74) = (1|1)1
H+ ⊗ (1|1)1

H−
‡As shown in (74), the worldline ultra multiplet of [55] extends to the

worldsheet.

the examples

(16|16)5R+ ⊗ (2|2)2R−
/(d4,2⊕t1,0)−−−−−−−→ (8|16|8)(5,2)

R
, (90)

(8|8)4R+ ⊗ (4|4)3R−
/e4,3−−−→ (4|8|4)(4,3)

R
, (91)

(16|16)5R+ ⊗ (4|4)3R−
/(e4,3⊕t1,0)−−−−−−−→ (8|16|8)(5,3)

R
, (92)

are all real quotients of real tensor products of real representations that are
not themselves tensor products over either of ground fields R,C,H. In fact,
five of the nine ambidextrous codes for 4 � p+ q � 8 give rise to such non-
factorizable real quotients of real tensor products, indicating that a seizable
fraction of worldsheet supermultiplets obtained by Construction 2.1 do not
factorize over either of ground fields R,C,H.

The explicit examples (70′) and (90) to (92) then suffice to prove:

Corollary 3.3. There exist real, esDE-code C| -encoded quotients (R+ ⊗
R−)/C| of tensor products of left- and right-handed representations, R+ of
Sp

1|p
+ and R− of Sp

1|q
− , which are not themselves tensor products over any of

the ground fields R,C,H, and are off-shell representations of Sp
1,1|p,q

.

As compared with the standard representation theory of Lie algebras, this
result may well come as a surprise.
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3.5 Worldsheet Adinkra degeneracy 1

Doran et al. [11] show that worldline supermultiplets with different chro-
motopology may nevertheless be equivalent, and provides both a crite-
rion for this to happen and an explicit isomorphism. Whereas this type
of equivalence evidently extends to chiral worldsheet (N, 0)- and (0, N)-
supersymmetry, it is non-trivial to determine under what circumstances —
and if at all — this type of equivalence can extend to ambidextrous world-
sheet (p, q)-supersymmetry.

As an example, consider the worldsheet (8, 2)-supermultiplets with the
chromotopology

I8,2/d8,2 versus I8,2/(e8,0 ⊕ t0,2), (93)

where t0,2 = 0 is the trivial code of length 2, i.e., 00. The explicit proof of the
supermultiplet equivalence [11] starts with valise supermultiplets, which are
in 1–1 correspondence with the known representations of Clifford algebras.
Since in such Adinkras all bosonic nodes are on one level and all fermionic on
another level, any attempt at an extension to any ambidextrous worldsheet
supersymmetry would be ruled out by the twin theorems of [16] and the
consequent extension criterion. Furthermore, we also have that

I8,2/(e8,0 ⊕ t0,2) = (I8/e8)+ ⊗ (I2/t2)− = (I8/e8)+ ⊗ (I2)− = I8,2/e8,0

(94)

is a left–right tensor product worldsheet representation as obtained in Con-
struction 2.1, whereas I8,2/d8,2 is not, making an isomorphism unlikely. Nev-
ertheless, in view of the somewhat surprising equivalence mapping discov-
ered in [11], it behoves to explore this a little further. First, akin to (26),
we construct

(95)

where generators of the e8 code in the left factor are found by tracing (closed)
hallmark 4-color tetragons; a convenient basis is given by:

(96)
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and the product results in

(97)

where the e8 code encodes relations entirely amongst the Dα+.

On the other hand, I8,2/d8,2 is not a tensor product but a quotient thereof,
since the d8,2 code involves all the Dα+,D .

α−. However, a d8,0 subcode
encodes relations entirely amongst the Dα+, whereupon a fourth genera-
tor must encode the mixed d2,2-type relations such as (49). Thus, we can
construct

(98)

and then impose that final, mixed relation to obtain

(99)

in direct analogy with (70), (71) and (74): the d8,0 subcode of d8,2 acts
trivially on the factors, but the d2,2 � d8,2/d8,0 part acts non-trivially and
produces the resulting Adinkra. Tracing (closed) hallmark 4-color tetragons
in the left-hand factor of the product (98) a convenient basis is given by:

(100)
where the subcode relationship is easily spotted by comparing the 4k-gon
diagrams at the far ends. A final, fourth closed hallmark 4-color tetragon
may be found in (99) to correspond to 10001000|11, thus giving a convenient
basis

(101)

Again, the relationship between e8,0, d8,2 and the common subcode d8,0 ⊕ t0,2

is easily spotted on comparing the 4k-gon diagrams in (100) and (101). In
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terms of superderivatives, we have that

⎡⎢⎢⎣
∂2
=| −D1+D2+D5+D6+

∂2
=| −D2+D3+D6+D7+

∂2
=| −D3+D4+D7+D8+

∂2
=| −D1+D2+D3+D4+

⎤⎥⎥⎦
e8,0

� 0 in (97), versus

⎡⎢⎢⎣
∂2
=| −D1+D2+D5+D6+

∂2
=| −D2+D3+D6+D7+

∂2
=| −D3+D4+D7+D8+

∂=| ∂=−D4+D8+D1−D2−

⎤⎥⎥⎦
d8,2

� 0 in (99), (102)

so that the two are seen to differ only in the fourth generating hallmark
superderivative relation, depicted in blue in the 4k-gon diagrams (100)
and (101).

The isomorphism between (97) and (99) is now constructed [11] by chang-
ing the component (super)field basis of (97): seeing that the fourth generator
of the e8,0 code, [∂2

=| −D1+D2+D3+D4+], does not produce a closed quadran-
gle in the Adinkra (99), but maps any component (super)field into the one
obtained by following the formal action of the formal operator

D̂1111 0000|00 := (D1+)±1 ◦ (D2+)±1 ◦ (D3+)±1 ◦ (D4+)±1, (103)

where, say, (D1+)−1 indicates following D1+ “in reverse,” i.e., finding the
pre-image of D1+. That is (D1+)−1φ denotes the component (super)field
— or a linear combination thereof — upon which the application of D1+

produces φ. The powers in the definition (103) are chosen depending on the
component (super)field upon which the operator is acting, and so that the
path of the corresponding edges remains in the given Adinkra.

For example, if we start with the left-most lower node, applying
D̂1111 0000|00 one factor at a time, we identify the highlighted path:

(104)

Notice that the initial and the final node are at the same height, i.e., the cor-
responding component (super)fields have the same engineering dimension.
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They also have the same spin, since

spin
[
D̂1111 0000|00(φ)

]
= (−1

2) + (+1
2) + (−1

2) + (+1
2) + spin[φ] = spin[φ].

(105)

It is not hard to verify that the same is true for any other starting node
in (99). This makes the linear combination of any component (super)field
and its D̂1111 0000|00-image consistent with both engineering dimension homo-
geneity and Spin(1, 1) Lorentz-covariance. Finally, since the D’s anticom-
mute with supersymmetry generators, the mapping defined by D̂1111 0000|00

is manifestly supersymmetry-covariant.

The construction of the new basis starts with defining φ′+ :=
1
2
[1l + D̂1111 0000|00](φ) — indicated in (104) by the dotted arrow — as a

new component (super)field. It is not hard to ascertain that the formal
operators 1

2
[1l± D̂1111 0000|00] act as complementary projection operators, are

closely related to (36), and

Π̂1111 0000|00
− φ′+ := 1

2
[1l− D̂1111 0000|00]φ′+ = 0. (106)

The remainder of this new basis of component (super)fields is obtained by
applying the 10-cube of (8, 2)-superderivatives (3) on φ′±. The resulting col-
lection of component (super)fields is then manifestly just a (super)field redef-
inition of the supermultiplet depicted by (99). However, in this new basis,
the path corresponding to D̂1111 0000|00 is a closed hallmark 4-color tetragon,
thus manifesting the e8,0 ⊕ t0,2 rather than the d8,2 code and ensuring that
the resulting Adinkra must take the form of (97). Equivalently and owing
to (106), each component (super)field in this new basis is annihilated by
Π̂1111 0000|00
− .

Needless to say, the converse can be done as well: in (97), we start from
a component (super)field and now identify its image under the action of
D̂0001 0001|11 (where 0001 0001|11 is a generator of d8,2 that is not also in
e8,0 ⊕ t0,2),

(107)

The new component (super)field basis is defined by starting with the lin-
ear combination component (super)field [1l + D̂0001 0001|11]ϕ. The remain-
ing component (super)fields are then obtained by applying the 10-cube of
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(8, 2)-superderivatives (3) on ϕ′+. The resulting Adinkra will then have
D0001 0001|11 generate a hallmark 4k-gon relation, and so will be depicted by
the Adinkra (99).

— � —

The necessary and sufficient criterion to determine if two worldline
Adinkras depict isomorphic supermultiplets involves the definition of the
“node choice group” (NCG) [11]. This is the symmetry generated by the
horizontal permutations of nodes that result in the same Adinkra. NCG is
encoded by the binary exponents of the formal D-monomials required to con-
nect the component (super)fields which correspond to the permuted nodes,
and these exponents form a binary (not necessarily doubly) even linear block
code, N . For two Adinkras A1 � IN/C1 and A2 � IN/C2 to depict isomor-
phic supermultiplets, it is necessary and sufficient for both adinkras must
have the same NCG encoded by N , and that C1 ⊂ N as well as C2 ⊂ N .

Clearly, this criterion translates to worldsheet Adinkras, but the NCG
is now encoded by a split binary even linear block code. Thereupon, the
criterion is virtually the same:

Corollary 3.4. Let H| denote the split even linear block code encoding the
horizontal permutation of nodes in a given worldsheet Adinkra, and let two
Adinkras, Ai, have the split chromotopology Ip,q/C| i, i = 1, 2. They depict
supermultiplets that are isomorphic, and by (super)field redefinitions only,
precisely if:

(1) both Adinkras have the same NCG of symmetries, encoded by H| , and
(2) both C| 1 ⊂H| and C| 2 ⊂H| ,
(3) spin[Da|b] = 0 for both Da|b ∈ (C| 1 � C| 2) and Da|b ∈ (C| 2 � C| 1).

3.6 Worldsheet Adinkra degeneracy 2

Whereas Section 3.5 shows that there exist inequivalent Adinkras that nev-
ertheless depict equivalent worldsheet supermultiplets, we now show that
some DE-codes have more than one inequivalent splits. Consequently, an
Adinkra with the chromotopology IN/C may be used to depict two inequiv-
alent worldsheet supermultiplets, one with the split chromotopology Ip,q/C| 1
the other with Ip,q/C| 2.

The simplest example is constructed by splitting the d8 code in two dis-
tinct ways, as shown in table 6. The inequivalence d4,4 
� d′4,4 is easy to see
as follows. Unlike for d′4,4, all three generators (and therefore also all ele-
ments) of d4,4 are split symmetrically: each codeword has the same weight
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Table 6: Two inequivalent splits of the d8 DE-code. The same Adinkra
depicts inequivalent supermultiplets via inequivalent assignment of edge-
colors to the (4,4)-supersymmetry generators.

Code Generators Adinkra

4k-gon Codewords Top.

d8

⎡⎣ 11001100
01100110
00110011

⎤⎦ I8/d8

d4,4

[
1100 1100
0110 0110
0011 0011

]
I4,4/d4,4

d′4,4

[
1111 0000
0011 1100
0000 1111

]
I4,4/d′4,4 = (I4,0/d4,0 × I0,4/d0,4)/d2,2

on the left- and the right-hand side of the partition. In turn, d′4,4 contains
the d4,0 and d0,4 subcodes, while d4,4 contains no (non-trivial) unidextrous
subcode.

Now, neither is d8 a maximal DE-code, nor are d4,4 and d′4,4 maximal
(4, 4)-split esDE-codes. Indeed, d8 ⊂ e8, and d4,4 ⊂ e4,4, and d′4,4 ⊂ e′4,4:

(108)

Finally, it is not hard to show that the two versions of e4,4 are in fact
equivalent, so that d4,4 and d′4,4 are inequivalent esDE-subcodes of the same
maximal esDE-code e4,4.

Projections by the inequivalent esDE-codes such as d4,4, d
′
4,4 depicted in

table 6, clearly define inequivalent Adinkras, each of which depicts a distinct
supermultiplet. An isomorphism between two such supermultiplets may
again be constructed in the manner described in (95) to (107). Consider,
for example the two worldsheet supermultiplets depicted by the Adinkra
in table 6, and projected, respectively, by d4,4 and d′4,4. A comparison of
the 4k-gon diagrams of the two codes indicates one common generator (the
middle one):

(109)
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which suggests reordering D2+ �→ D3+ �→ D4+ �→ D2+ and D2− �→ D3− �→
D4− �→ D2− in d′4,4, which results in

(110)

which makes the middle generator, 0110|0110, common to both. In addition,
the �-sum of the first and the third generator in both codes, 1111|1111, is
also a common codeword and may itself be used as a generator. In both
d4,4 and d′4,4, one more codeword is needed to act as the third generator, the
requirement being only that it be linearly independent15 from the common
generators 0110|0110 and 1111|1111. To this end, we may well use the bases

d4,4 =
[

1111 1111
0110 0110
0011 0011

]
versus d′4,4 =

[
1111 1111
0110 0110
0000 1111

]
, (111)

which now has a single differing generator, and is in this respect in the same
situation as were e8,0 and d8,2 in (102). We then start from a particular
component (super)field, φ, in a d4,4-projected supermultiplet and apply the
superdifferential operator D̂0000|1111 encoded by the differing generator from
d′4,4 in such a way that the result has the same spin as the initial field, and
define:

φ′± := 1
2

[
1l− (D1−)−1 ◦ (D2−) ◦ (D3−)−1 ◦ (D4−)

]
φ. (112)

Using either of φ′± as a starting point, we reconstruct the remainder of the
supermultiplet by applying all superdifferential operators from the (4, 4)-
basis (3). In the Adinkra depicting the so reconstructed supermultiplet,
the hallmark 4k-gon relations encoded by the esDE-code d′4,4 will all trace
closed hallmark 4k-gons, rather than the ones encoded by d4,4 and which
were closed before the component (super)field basis redefinition started
with (112).

We have thus constructed an isomorphism between the component
(super)field basis for the supermultiplet depicted by the d4,4-projected
Adinkra to the component (super)field basis for the supermultiplet depicted
by the d′4,4-projected Adinkra, proving that the two are merely two distinct
bases for the same supermultiplet.

15In the context of binary codes, “linear independence” refers to �-addition of binary
multiples.
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A few comments are in order: first, the esDE-codes d4,4 and d′4,4 are not
maximal esDE-codes: they are both distinct subcodes of the e4,4 esDE-code,
as shown in the display (108) and the subsequent text. One may suspect that
the above isomorphism is in fact due to this non-maximality, and dismiss
the distinction d4,4 
= d′4,4 as irrelevant for constructing supermultiplets that
are not equivalent by (super)field redefinitions.

However, there do exist maximal esDE-codes that are inequivalent even-
splits of the same DE-code. For example,

(113)

are evidently (p, q) = (6, 6) even-splits of d12, and are inequivalent in pre-
cisely the same manner as are d4,4 and d′4,4. It is clear that every DE-code
d4k for k = 2, 3, 4 . . . has such two inequivalent even-splits, d2k,2k and d′2k,2k.
Of these, the DE-codes d4k and the esDE-codes d2k,2k and d′2k,2k with odd
k — starting with d6,6 and d′6,6 in (113) — are also maximal.

In this case, the bases for the d6,6 and d′6,6 may again be changed so as
to exhibit a maximum (three) of common generators,[

001100 001100
011110 011110
110011 110011

]
(114)

corresponding in turn to the 4k-gons C, B�D and A�E on both sides
of (113). Let D̂1, D̂2 be the formal superderivative operators correspond-
ing to two generators of d6,6 that are not in d′6,6, and D̂′1, D̂′2 be the formal
superderivative operators corresponding to two generators of d′6,6 that are
not in d6,6. The supermultiplet isomorphism is then constructed by start-
ing with φ a component (super)field from a d6,6-projected supermultiplet,
identifying

φ′ := 1
2

[
1l− D̂′1

]
1
2

[
1l− D̂′2

]
φ (115)

with a starting component (super)field in the new basis, and reconstruct-
ing the remainder of the supermultiplet by acting with the (6, 6)-super-
derivatives (3) upon φ′. In the so-constructed basis and starting with any
(new) component (super)field, both D̂′1 and D̂′2 will sweep out closed hall-
mark 4k-gons; therefore, the Adinkra depicting this new basis for the d6,6-
projected supermultiplet will have the topology of I6,6/d′6,6 rather than
I6,6/d6,6 from which we started. This then constructs the isomorphism
between the d6,6-projected supermultiplet and the d′6,6-projected one.
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We have thus demonstrated that there exist DE-codes that have inequiva-
lent esDE-code splits, and some of which are maximal, but that the Adinkras
projected by at least some of those inequivalent esDE-code splits of DE-codes
in fact depict isomorphic supermultiplets.

As the number for inequivalent esDE-codes grows combinatorially with
(p, q), a computer-aided listing of the type done for DE-codes [10, 11, 45] is
clearly necessary for their classification, and for a consequent classification
of all off-shell supermultiplets of worldline (p, q)-supersymmetry, e.g., for
p+ q � 32, which limit is expected from M -theory considerations [34].

4 Conclusions

In the foregoing analysis, the classification efforts of [10–12] are generalized
so as to outline the analogous classification of off-shell supermultiplets of
(p, q)-extended worldsheet supersymmetry. In particular, the main results
are as follows.

(1) Section 2 provides three constructions, 2.1, 2.2 and 2.3, by which
off-shell and on the half-shell representations of worldsheet
(p, q)-supersymmetry are obtained as tensor products of left- and
right-moving worldline supermultiplets. A complete listing of such
supermultiplets for p+ q � 8 is given in Section 3.3.

(2) Generalizing the situation with worldline supermultiplets, certain
worldsheet off-shell supermultiplets decompose into a direct sum of two
half-sized supermultiplets, while others reduce to half-sized supermul-
tiplets. Possible iteration of such Z2 decompositions and reductions
is encoded by even-split doubly-even linear block (esDE) codes, which
are discussed and classified for p+ q � 8 in Section 3 and depicted in
figure 4. Such decompositions and reductions produce the minimal
supermultiplets for given (p, q)-supersymmetry.

(3) Corollary 2.4 identifies a type of twisted Z2 symmetry that signals the
existence of a complex structure. Section 2.3.2 verifies this amongst off-
shell worldsheet (p, q)-supermultiplets for p+ q = 4. Section 3.4 shows
that some esDE-quotients of real tensor product supermultiplets are
(hyper)complex tensor products of (hyper)complex supermultiplets,
but that many are not. Therefore, the results listed above under #1
and #2 (Construction 2.1) produces some genuinely novel off-shell
supermultiplets of worldsheet (p, q)-supersymmetry.

(4) Sections 3.5 demonstrates that some worldsheet supermultiplets
depicted by topologically inequivalent Adinkras are nevertheless
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equivalent, by adapting the analogous worldline result of [10]. Corol-
lary 3.4 specifies the appropriate conditions for this isomorphism.

(5) In turn, Section 3.6 constructs inequivalent splits of the same doubly-
even linear block code, producing inequivalent esDE-codes, and
whereby the same (p, q)-Adinkra is made to depict distinct world-
sheet supermultiplets. At least some of such distinct supermultiplets
however may be shown to be equivalent by adapting the analogous
worldline result of [10].

(6) Gates and Hübsch [16] observe that, as a necessary avoidance of the
obstruction defined for its “twin theorems 2.1 and 2.2”, ambidextrous
off-shell supermultiplets of ambidextrous supersymmetry must have at
least three levels16 , i.e., their component (super)fields must have at
least three distinct, adjacent engineering dimensions [9, 23]. Herein,
we see this to follow as an elementary consequence of Adinkra ten-
sor products, as defined in Constructions 2.1 and 2.4, and exempli-
fied in Sections 2.2.3 and 2.2.4; for and ambidextrous supersymmetry,
p 
= 0 
= q and R+ 
= 1l 
= R− in these constructions. Since the mini-
mal level of R± 
= 1l is two, the minimal level of (R+ ⊗R−)/C| can-
not, by construction, be less than three; see (26) to (29) for a simple
illustration.

Owing to the combinatorial growth of these tasks with p+ q, a mechaniza-
tion of the methods presented herein would be welcome, perhaps in synergy
with those reported in [16], so as to extend the classification of worldsheet
supermultiplets beyond p+ q � 8 through p+ q � 32.
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Many of the Adinkras were drawn with the help of the Adinkramat c© 2008
by G. Landweber.

Appendix A. Details of the d2,2-encoded ZZZZ2-symmetry

To help with translating the Adinkra manipulations that turn (22) into (27)
and then this into (28), let us revisit the same depictions, but annotated
with corresponding superderivatives, as taken from (2). To save space, we
use the binary exponent notation (3), modified so as to absorb ∂=| and ∂=

factors, so for example

D00|00 = 1l, D01|00 = D2+, D20|10
=| := i∂=| D1−,

D11|20
= := i∂= D1+D2+, etc. (A.1)

We start with (2) and define a supermultiplet depicted by the Adinkras
in (27):

(A.2)

The maneuver indicated by the lilac dashed arrow resembles “node raising”
of [9–11,19]. However, since individual nodes of an Adinkra cannot be raised
if it is to continue depicting an off-shell worldsheet (p, q)-supermultiplet with
p, q 
= 0 [16], the indicated sub-Adinkra is the minimal contiguous portion
that can be consistently raised. The maneuver depicts the consequence of
defining a superfield Ψ .

α− to be a superderivative of an intact superfield Φ:
the highlighted component (super)fields of Ψ .

α− (on the right) are identified
with the ∂= -derivatives of the highlighted component (super)fields of Φ (on
the left).
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A similar maneuver produces (we display only the exponents for brevity):

(A.3)

To bring the result into the shape shown in (28), some horizontal reshuf-
fling is needed, and a subsequent change in the signs of a six highlighted
superderivatives:

(A.4)

This is finally the Adinkra shown on the left-hand side in (28). To see what
this symmetry implies, we revert from the cryptic annotations to the implied
(super)derivatives:

(A.5)

where the tilde on F̃α
.
α denotes the sign-changes performed in (A.4).

The horizontal (literal) mirror identifications across the vertical divide
indicated in (28) are now seen as identifications of superderivatives that are



966 T. HÜBSCH

complementary within D1+D2+D1−D2−: literally so in the bottom row:

(D1+D1−)(D2+D2−) = −D1+D2+D1−D2− = (−D2+D1−)(D1+D2−), (A.6)

and padded with appropriate ∂=| - and ∂= -factors in the middle and top
row to match the engineering dimension and spin. Note that the particular
assignment of superderivatives to the Adinkra nodes (A.5) is the only one
(up to sign-changes) that permits the horizontal (literal) mirror symmetry
of the Adinkra to reflect in the superderivatives.

Thus, the formal identifications in (28) imply that, when acting on the
components of the mirror-identified “half-sized” supermultiplets, the super-
derivatives satisfy relations such as

[D1+D1− ±D2+D2−] � 0, [D2+D1− ∓D1+D2−] � 0, (A.7a)

[i∂=| D1− ±D1+D2+D2−] � 0, [D1+D2+D1− ± i∂=| D2−] � 0, (A.7b)

[−∂=| ∂= ±D1+D2+D1−D2−] � 0, etc. (A.7c)

fully consistent with (63).

We may thus define a supermultiplet in terms of an Adinkra of intact
superfields:

(A.8)

where, directly generalizing(11) to (12), the edges specify the superdifferen-
tial relations:

D1+Y1+1− = iΨ=
1−, D2+Y1+1− = iΞ=

1−,

D1−Y1+1− = iΨ=|
1+, D2−Y1+1− = −iΞ=|

1+, (A.9a)
D1+Y2+1− = iΞ=

1−, D2+Y2+1− = −iΨ=
1−,

D1−Y2+1− = iΨ=|
2+, D2−Y2+1− = iΞ=|

2+, (A.9b)
D1+Y1+2− = iΨ=

2−, D2+Y1+2− = −iΞ=
2−,
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D1−Y1+2− = iΞ=|
1+, D2−Y1+2− = iΨ=|

1+, (A.9c)
D1+Y2+2− = iΞ=

2−, D2+Y2+2− = iΨ=
2−,

D1−Y2+2− = iΞ=|
2+, D2−Y2+2− = −iΨ=|

2+, (A.9d)

D1+Ψ=
1− =

=|
Y1+1−, D2+Ψ=

1− = −
=|
Y2+1−,

D1−Ψ=
1− = Z= =| , D2−Ψ=

1− = −Z=|
1+2+, (A.9e)

D1+Ξ=
1− =

=|
Y2+1−, D2+Ξ=

1− =
=|
Y1+1−,

D1−Ξ=
1− = Z=|

1+2+, D2−Ξ=
1− = Z=| = , (A.9f)

and so on for a total of 64 relations;
=|
Y := ∂=| Y (in the likeness of

.
Y := ∂τY)

to save space.

The projection (28) is then seen as the imposition of one of the
(anti-)self-duality constraints:

Yα
.
α = εα

β ε .α
.
β Y

β
.
β

or Yα
.
α = −εα

β ε .α
.
β Y

β
.
β
. (A.10)

The corresponding projection relations between the Ψ’s and Ξ’s, and the
Z’s then follow by combining (A.10) and (A.8). Each of the sign-choices
in (A.10) reduces the number of independent component (super)fields in
{Y;Ψ,Ξ;Z} by a factor of two, and the two possible sign-choices produce
the supermultiplets

{
(Yα

.
α + εα

βε .α
.
βY

β
.
β
); · · · } versus

{
(Yα

.
α − εα

βε .α
.
βY

β
.
β
); · · · } (A.11)

as depicted in (29); the particular linear combinations of the Ψ’s and Ξ’s,
and the Z’s that were omitted are recovered by comparing the notation
defined by (A.8) with the operators (A.5).

— � —

The supermultiplet (A.8) decomposes into a direct sum of the chiral and
twisted-chiral supermultiplets (29). In turn, the supermultiplet (23) is not
decomposable, but may be reduced to either the chiral or the twisted-chiral
supermultiplet; see (49) to (54) and figure 3. In retrospect, the fact that the
sequence of transformations (A.2) to (A.5) is local in one direction but not
in the other indicates the inequivalence of the non-decomposable (23) and
the decomposable (A.8).
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Appendix B. Solving superdifferential relations

Since the superfields {Yα+
.
α−;Ψ=.

α−,Ξ
=.
α−,Ψ

=|
α+,Ξ

=|
α+;Z==| ,Z=|

=| ,Z=
= ,Z=| = }—

and so also their complementary linear combinations (A.11) — are other-
wise completely free, they may be used in a completely unrestricted path-
integration to define a partition functional. Admittedly, however, this is an
unwieldy description.

Instead, following such well-known practices [1–4] and Theorem 7.6 of [9]
in particular, the supermultiplet (A.5) may be “solved” (and simplified) in
terms of a single intact (unconstrained, ungauged, unprojected, etc.) super-
field, U, by identifying the array

{Y;Ψ,Ξ;Z : (A.8)} �→ U : Yα
.
α := (Dα+D .

α−U), (B.1)

and where the remaining component superfields are obtained by applying
the tesseract of superderivatives in figure 2 on the relations (B.1).

The worldsheet evaluations of (B.1) themselves simply give the component
(super)fields depicted by the bottom four nodes. Application of additional
superderivatives followed by worldsheet evaluation yields either the compo-
nent (super)fields depicted by the middle- and top-level nodes, or produces
∂=| - and ∂= -derivatives of these component (super)fields.

However, such “solutions” of superdifferential relations typically exhibit
gauge invariances. In the case at hand, the component U=| := i

2 [D1+,D2+]U|
does not occur directly in the supermultiplet Yα

.
α, as defined in (B.1).

Instead, Yα
.
α contains (∂=U=| ). Consequently, we are free to replace

U=| → U=| + V=| , where ∂=V=| = 0. (B.2)

The analogous is true of U= , which is undefined up to the addition of a
right-moving summand: U= � U= +W= with ∂=|W= = 0. Similarly, only
∂= - and ∂=| -derivatives of the fermions ψα+ := iDα+U| and ψ .

α− := iD .
α−U|,

respectively, occur within Yα
.
α. These fermions are thus undefined up to the

addition of a unidextrous fermion: ψα+ � ψα+ + χα+ and ψ .
α− � ψ .

α− + ω .
α−

where ∂=χ1+ = 0 and ∂=| ω .
α− = 0. Finally, only the D’Alembertian of u :=

U| occurs within Yα
.
α and so is undefined up to the addition of an arbitrary

harmonic function, u � u+ (v + w) where ∂= v = 0 and ∂=| w = 0.

Whereas for worldline supermultiplets such “gauge” degrees of freedom
were merely the first few terms in a Taylor series — a few constants — in
“solving” the superderivative relations amongst worldsheet superfields, the
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gauge degrees of freedom form entire unidextrous supermultiplets:

∂= {v;χα+;V=| } = 0 and ∂=| {w;ω .
α−;W= } = 0. (B.3)

Hence, the array of quadratic superderivatives Dα+D .
α− provides a

surjection:

Dα+D .
α− : U � Yα

.
α =

(
Dα+D .

α−(U � U + {v;χα+;V=| }+ {w;ω .
α−;W= })

)
.

(B.4)

Were it not that the supermultiplets (B.3) are unidextrous and were it not
that a harmonic function on the worldsheet is a sum of two unidextrous func-
tions, these would span precisely the degrees of freedom gauged away in the
Wess–Zumino gauge from the Hermitian “vector” superfield in N=1 super-
symmetry in 3 + 1-dimensional spacetime [1–4]. In that 3+1-dimensional
case, the gauge degrees of freedom are in fact themselves off-shell.

In this sense, worldsheet “solving” superderivative relations is “half-way”
between the worldline and the higher-dimensional spacetime cases:

Dim. Gauge Degrees of Freedom and Their Nature/Occurrence

1 + 0 Constants First few terms in Taylor series
1 + 1 Unidextrous Supermultiplets on the half-shell
1 + n Off-shell (n > 1) Off-shell supermultiplets;

(B.5)

This analogous adaptation of Theorem 7.6 of [9] to Adinkras that depict
worldsheet (p, q)-supermultiplets then guarantees:

Corollary B.1. Each Adinkra depicting an off-shell supermultiplet of world-
sheet (p, q)-supersymmetry without central charges admits — up to unidex-
trous gauge degrees of freedom — a superfield representation in terms of an
intact (p, q)-superfield modifying the steps in Theorem 7.6 of [9] by judi-
ciously replacing ∂τ by ∂=| or ∂= so as to insure Spin(1, 1)-covariance.

Closely related to Theorem 7.6 of [9] is also the general construction of
ghost-free kinetic Lagrangian terms for worldline supermultiplets reported
in [51]. The close relationship of these to Corollary B.1 would then seem
to suggest the existence of an adaptation of this construction of ghost-free
kinetic Lagrangian terms for all worldsheet supermultiplets.

— � —
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Consistent with the conclusion of the previous appendix is the fact that
the off-shell supermultiplets {Y;Ψ,Ξ;Z} depicted in (A.8) and U depicted
by the Adinkra (23) differ by the unidextrous supermultiplets (B.3). The
mapping Dα+D .

α− : U � Yα
.
α is therefore not a strict homomorphism of off-

shell supermultiplets (which may be adopted verbatim from [11]), and the
two supermultiplets must be regarded as strictly inequivalent off-shell super-
multiplets.
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G.D. Landweber, A superfield for every dash-chromotopology, Int. J.
Mod. Phys. A 24 (2009), 5681–5695; arXiv:0901.4970.

[13] C.F. Doran, M.G. Faux, S.J. Gates, Jr., T. Hübsch, K.M. Iga,
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[41] S.J. Gates, Jr. and T. Hübsch, Calabi–Yau heterotic strings and unidex-
terous sigma models, Nucl. Phys. B 343 (1990), 741–774.

[42] R. Amorim and A.K. Das, Unidexterous versus ambidexterous gravities,
Phys. Rev. D 54 (1996), 4177–4180.
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