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Abstract

Using the example of Liouville theory, we show how the separation
into left- and right-moving degrees of freedom in a nonrational conformal
field theory can be made explicit in terms of its integrable structure. The
key observation is that there exist separate Baxter Q-operators for left-
and right-moving degrees of freedom. Combining a study of the analytic
properties of the Q-operators with Sklyanin’s Separation of Variables
Method leads to a complete characterization of the spectrum. Taking the
continuum limit allows us in particular to rederive the Liouville reflection
amplitude using only the integrable structure.

1 Introduction

The main question which motivated this work is the following: How do
conformal field theories look like if studied from the point of view of a possi-
bly existing integrable structure? There are many quantum-field theoretical
models of high interest for string theory and condensed matter physics which
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are expected to have conformal invariance, but not enough chiral symmetry
to make a solution in terms of standard methods of conformal field theory
look realistic. An interesting class of examples are nonlinear sigma models
with targets being super-groups, which have recently attracted considerable
interest both from string theory and condensed matter physics. Some of
these theories are expected to be integrable. It therefore seems reasonable
to expect that methods from the theory of integrable models can be used to
understand the spectrum of these theories.

Such a program immediately faces an obstacle: Up to now it seemed that
key features of conformal field theories like the factorization into left- and
right-moving degrees of freedom are very hard to see with the help of the
integrable structure. Using the traditional approaches based on the Bethe
ansatz one usually has to go a rather long way until some of the features
of conformal invariance become visible. We therefore looked for a simple,
but prototypical example where we can improve on this state of affairs.
The main point we want to illustrate with the example of Liouville theory
is the following: the factorization into left- and right-movers can be made
manifest in a very transparent way already on the level of an integrable
lattice regularization of a conformal field theory.

The framework in which this turns out to be the case combines the
use of Baxter’s Q-operators with the Separation of Variables technique of
Sklyanin [34, 35, 36]. In the cases under consideration we will explicitly con-
struct Q-operators Q+(u) and Q−(u) which contain the conserved charges
of left- and right-moving degrees of freedom, respectively. Within the Sep-
aration of Variables framework one may then represent an eigenstate of
Q+(u) and Q−(u) in terms of a wave-function constructed directly out of
the corresponding eigenvalues q+(u) and q−(u). The combination of these
two ingredients yields a quantum version of the Bäcklund transformation
from Liouville theory to free field theory, making the factorization into left-
and right-moving degrees of freedom transparent.

It also seems promising to view the integrable structure of conformal field
theories as a useful starting point for the study of massive integrable models.
One may expect that the integrable structure “deforms smoothly” from the
massless to the massive cases, but is simpler to study in the massless limits.
This point of view was developed in particular in the beautiful series of
works [2, 3], where conformal field theories with central charge c < 1 were
studied. One of our aims here is to study the counterpart of this theory for
c > 1. The constructions from [2] no longer work in this case due to more
severe ultraviolet problems. We will use an integrable lattice regularization
to control such problems. This will also allow us study the Sinh–Gordon
model, Liouville theory and quantum Korteweg–de Vries (KdV) theory in
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a uniform framework. We will observe that key objects of the integrable
structure like the Baxter Q-operators are indeed related to each other by
certain parametric limits.

The example chosen, Liouville theory, is of considerable interest in its own
right. It has attracted a lot of attention for more than 25 years now due to
its connections with noncritical string theory and two-dimensional quantum
gravity (see [12, 24] for reviews and references therein), as an example for
interesting non-rational conformal field theories [38, 42], and due to its rela-
tions to the (quantized) Teichmüller spaces of Riemann surfaces [37, 40].

In the study of Liouville theory, the most popular approach so far was
based on its conformal symmetry, leading to a complete solution in the sense
of the Belavin–Polyakov–Zamolodchikov bootstrap approach [8], see [10, 25,
14, 49, 32, 39] for some key steps in this program, and [38] for a more complete
list of references. Understanding Liouville theory from the point of view of
its integrable structure has also attracted considerable interest in the past,
going back to [15], and more recently being developed in [19, 20]. This
approach has also lead to beautiful results, see in particular [20].

What seemed somewhat unsatisfactory, however, was the lack of results
that can be directly compared with the conformal field theory approach.
It is the second main aim of this paper to re-derive the so-called reflection
amplitude of Liouville theory with the help of its integrable structure. The
formula for this quantity had been conjectured in [14, 49]. A derivation
for these conjectures was subsequently given in [39]. Here we are going
to re-derive this result in a completely different way, entirely based on the
integrable structure of Liouville theory.

However, we feel that the interplay between conformal and integrable
structures is still not completely understood. It seems particularly impor-
tant to integrate the lattice Virasoro algebra [16] into the picture and to
clarify the relations with the beautiful work [5] where closely related mod-
els of statistical mechanics were studied. What we do hope, however, is
that this paper lays some useful groundwork which will ultimately lead to a
better understanding of this important subject.

This paper is intended to give a reasonably concise overview over the main
constructions, ideas and results of our work. It is not self-contained. In order
to make the verification of our claims possible, we either give sketches of the
proofs or indicate references where similar arguments can be found. A more
detailed presentation is in preparation.

Note on notations: In order to distinguish objects associated to the three
different models of interest, we shall sometimes use subscripts like OShG, OLiou
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or OKdV. However, to unload the notation we shall omit these subscripts
whenever it is clear from the context which model is considered.

2 Definition of the lattice models

The aim of this section is to define three lattice models, corresponding to
the Sinh–Gordon model, Liouville theory and the scalar-free field theory,
respectively. Anticipating discussions of its integrable structure we will refer
to the scalar free field theory as KdV theory below.

2.1 Lattice discretization

The classical counterparts of the models in question are dynamical sys-
tems whose degrees of freedom are described by the field φ(x, t) defined for
(x, t) ∈ [0, R]× R with periodic boundary conditions φ(x + R, t) = φ(x, t).
The dynamics of these models may be described in the Hamiltonian form in
terms of variables φ(x, t), Π(x, t), the Poisson brackets being

{Π(x, t), φ(x′, t)} = 2πδ(x− x′).

The time-evolution of an arbitrary observable O(t) is then given as

∂tO(t) = {H, O(t)},

with Hamiltonian H being defined as

H =
∫ R

0

dx

4π
h(x),

hShG = Π2 + (∂xφ)2 + 8πμ cosh(2bφ),

hLiou = Π2 + (∂xφ)2 + 4πμe−2bφ,

hKdV = Π2 + (∂xφ)2.

(2.1)

In order to regularize the ultraviolet divergencies that arise in the quantiza-
tion of these models we will pass to integrable lattice discretizations. First
discretize the field variables according to the standard recipe

φn ≡ φ(nΔ), Πn ≡ ΔΠ(nΔ),

where Δ = R/N is the lattice spacing. Quantization is then canonical: the
variables Φn, Πn, n ∈ Z/NZ are henceforth considered as operators with
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commutation relations

[φn, Πm] = 2πiδn,m, (2.2)

that can be realized in the usual way on the Hilbert space H ≡ (L2(R))⊗N.
As another convenient set of variables let us introduce the operators fk
defined as

f2n ≡ e−2bφn , f2n−1 ≡ e
b
2
(Πn+Πn−1−2φn−2φn−1). (2.3)

This change of variables is invertible for N ≡ 2L + 1 odd. We will therefore
restrict our attention to this case in the following. The variables fn satisfy
the algebraic relations

f2n±1 f2n = q2 f2n f2n±1, q = eπib2 , fn fn+m = fn+m fn for m ≥ 2. (2.4)

These operators turn out to represent the initial data for time evolution in
a particularly convenient way, as we are going to discuss next.

2.2 Lattice dynamics

A beautiful way to define a suitable dynamics in these lattice models was
proposed by Faddeev and Volkov in [17]. This approach was adapted to the
lattice Liouville model in [19]. Space-time is replaced by the cylindric lattice

L ≡
{
(ν, τ), ν ∈ Z/NZ, τ ∈ Z, ν + τ = even

}
.

The condition that ν + τ is even means that the lattice is rhombic: the lat-
tice points closest to (ν, τ) are (ν ± 1, τ + 1) and (ν ± 1, τ − 1). We identify
the variables fn with the initial values of a discrete “field” fν,τ as

f2r,0 ≡ f2r, f2r−1,1 ≡ f2r−1.

One may then extend the definition recursively to all (ν, τ) ∈ L by

fν,τ+1 ≡ f
− 1

2
ν,τ−1 · gκ

(
fν−1,τ

)
gκ

(
fν+1,τ

)
· f−

1
2

ν,τ−1, (2.5)

with functions g defined respectively by

gκ(z) =
κ2 + z

1 + κ2z
for the Sinh–Gordon model,

gκ(z) =
z

1 + κ2z
for Liouville theory,

gκ(z) = z for KdV theory,

(2.6)
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where κ plays the role of a scale-parameter of the theory. In the massive
case it can be identified with a certain function of the physical mass [41]. We
refer to [17] for a nice discussion of the relation between the lattice evolution
equation (2.5) and the classical Hirota equation, explaining in particular how
to recover the Sinh–Gordon equation in the classical continuum limit.

In order to construct the unitary operators U that generate the time
evolution above let us, following [19] closely, introduce the special functions
wb(x) and ϕ(x) which are defined as

wb(x) =
ζe

πi
2

x2

ϕ(x)
, ϕ(x) = exp

(∫
R+i0

dt

4t

e−2itx

sinh(bt) sinh(b−1t)

)
, (2.7)

where ζ = e
πi
24

(b2+b−2). The special function ϕ(x) has been introduced in
a related context in [18]. All the relevant properties (zeros, poles, asymp-
totic behavior, functional relations) can be found in [45, 9, 5]. Out of these
functions let us construct

Gv(e2πbx) = wb(v
2 + x)wb(v

2 − x) for the Sinh–Gordon model,

Gv(e2πbx) = ζ−1 e−i π
2
(x+ v

2
)2 wb

(
v
2 − x

)
for Liouville theory,

Gv(e2πbx) = ζ−2e−i π
2
(x+ v

2
)2e−i π

2
(x− v

2
)2 for KdV theory.

(2.8)

Let us then consider the operator U, defined as

U =
N∏

n=1

G2s(f2n) · U0 ·
N∏

r=1

G2s(f2r−1), (2.9)

where U0 is the parity operator that acts as U0 · fk = f−1
k · U0. The functions

G2s(z) satisfy the functional relations

G2s(qz)/G2s(q−1z) = gκ(z), if κ = e−πbs, (2.10)

where Gv and gκ are chosen from (2.8) and (2.6) according to the case at
hand. It easily follows from (2.10) that U is indeed the the generator of the
time-evolution (2.5),

fν,τ+1 = U−1 · fν,τ−1 · U. (2.11)

One of our tasks is to exhibit the integrability of this discrete-time evolution.
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2.3 Fock space representation

Classically the Hamiltonian density of KdV theory is the one of a free field
theory. The correspondence with free field theory becomes manifest in the
lattice model if we introduce lattice analogs of the fields eb(∂t±∂x)φ as follows
[26, 43]

w+
n = qf2n+1f

−1
2n+2, w+

ν,τ ≡ qfν,τ f−1
ν+1,τ−1,

w−n = q f2n+1f
−1
2n , w−ν,τ ≡ qfν,τ f−1

ν−1,τ−1.
(2.12)

Note that the operators w+
n , w−n satisfy the following commutation relations:

w+
n w−m = w−mw+

n ,
w+

n w+
m = ωnmw+

mw+
n ,

w−n w−m = ω−1
nmw−mw−n ,

ωnm ≡
{

q2 sgn(m−n) if |n−m| = 1,

1 if |n−m| �= 1.
(2.13)

The evolution generated by the operator UKdV is represented in these vari-
ables as

w+
ν,τ+1 = w+

ν−1,τ , w−ν,τ+1 = w−ν+1,τ . (2.14)

This means that that the variables w+
n and w−n represent the right and the

left-moving degrees of freedom, respectively.

We will sometimes use an alternative representation for the Hilbert space
H, which not only makes the chiral factorization into left- and right-moving
degrees manifest for KdV theory, but will also be used in the discussion of
Liouville theory. Keeping in mind N = 2L + 1 let

p0 =
1

2πbN

L∑
n=−L

log w±n , q0 =
1
2π

N∑
n=1

φn,

a±k ≡
1

2πb

L∑
n=−L

e2i π
N

nk
(
log w±n − 2πbp0

)
.

(2.15)

We have the following commutation relations,

[a+
n , a−m] = 0, [a±n , a±m] = ±δn+m,0

sin 2ρn

ρ
, ρ ≡ π

N
,

[p0, q0] = (2πi)−1, [q0, a
±
n ] = 0, [p0, a

±
n ] = 0.

(2.16)
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Let F± be the Fock spaces generated by the harmonic oscillators (a±n , a±−n)
for n �= 0, respectively. There are representations for the Hilbert space HSG

in which either p0 or q0 are represented as multiplication operators,

HSG � HFock ≡
∫ ∞

−∞
dp F+

p ⊗F−p , p0(F+
p ⊗F−p ) = p(F+

p ⊗F−p )

� HSchr ≡
∫ ∞

−∞
dφ0 F+

φ0
⊗F−φ0

, q0(F+
φ0
⊗F−φ0

) = φ0(F+
φ0
⊗F−φ0

).

(2.17)

These representations HFock and HSchr for H will be called the Fock and the
(zero mode) Schrödinger representation, respectively.

3 Integrability

In order to exhibit the integrability of the discrete-time evolutions intro-
duced in the previous section one needs to construct mutually commutative
families Q of self-adjoint operators T such that

(A) [ T, T′ ] = 0,

(B) [ T, U ] = 0,

(C) if [T, O ] = 0,

∀T, T′ ∈ Q,

∀T ∈ Q,

∀T ∈ Q, then O = O(Q).
(3.1)

Within the framework of the quantum inverse scattering method one may
conveniently define the family Q in terms of one-parameter families T(u)
and Q(v) of operators that are mutually commuting for arbitrary values of
the spectral parameters u and v, and which satisfy a functional relation of
the form

T(u)Q(u) = a(u)Q(u− ib) + d(u)Q(u + ib), (3.2)

with a(u) and d(u) being certain model-dependent coefficient functions. The
generator of lattice time evolution will be constructed from the specialization
of the Q-operators to certain values of the spectral parameter u, making the
integrability of the evolution manifest.

3.1 T-operators

The definition of T-operators for the models in question is standard. It is
of the general form

T(u) = tr
C2M(u), M(u) ≡ LN (u)LN−1(u) · · ·L1(u). (3.3)
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In the following subsection, we will describe possible choices for the Lax-
matrices Ln(u) for the models of interest.

3.1.1 Sinh–Gordon model

For future use let us note that the L-operator of lattice Sinh–Gordon model [21,
27, 33] can be written as

Ln(u) ≡ Ln(μ, μ̄) =

(
un + μμ̄−1vnunvn μvn + μ̄−1v−1

n

μv−1
n + μ̄−1vn u−1

n + μμ̄−1v−1
n u−1

n v−1
n

)
, (3.4)

where we have used the notations

un = e
b
2
Πn , vn = e−bφn , μ ≡ −ieπb(u−s), μ̄ ≡ −ieπb(u+s).

The key point about the definition (3.4) is the fact that the commutation
relations for the matrix elements of Ln(u) can be written in the Yang–Baxter
form

R12(u− v)L1n(u)L2n(v) = L2n(v)L1n(u)R12(u− v), (3.5)

where the 4× 4-matrix R12(u− v) is

R(u) =

⎛
⎜⎜⎝

sinhπb(u + ib)
sinhπbu i sin πb2

i sin πb2 sinh πbu
sinh πb(u + ib)

⎞
⎟⎟⎠ . (3.6)

This implies as usual that the one-parameter family of operators T(u) is
mutually commutative, [T(u), T(v)] = 0.

3.1.2 Liouville theory

Faddeev–Tirkkonen [22] proposed the following L-matrix for the lattice
Liouville model,

L
+

Liou,n(μ, μ̄) =

(
un + μμ̄−1vnunvn μvn

μv−1
n + μ̄−1vn u−1

n

)
. (3.7)

This L-matrix can be obtained from LShG,n(μ, μ̄) in the limit

L
+

Liou,n(μ, μ̄) ≡ lim
s→∞ e−

π
2

bsσ3 u
s
ib
n · LShG,n(μ, e+2πbsμ̄) · u−

s
ib

n e+ π
2
bsσ3 , (3.8)
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and it also satisfies (3.5). However, it is easy to see that the corresponding
transfer matrix

T
+
(u) = tr

C2(L
+

N(u) · · ·L+

1 (u)) (3.9)

generates only L + 1 commuting operators if we have N = 2L + 1 degrees of
freedom. T

+
(u) alone will therefore not generate sufficiently many conserved

quantities.

Fortunately there exist a second reasonable limit

L
−
Liou,n(μ, μ̄) ≡ lim

s→∞ e+ π
2
bsσ3 u

s
ib
n · LSG,n(e−2πbsμ, μ̄) · u−

s
ib

n e−
π
2
bsσ3 , (3.10)

which leads to yet another solution to (3.5), namely

L
−
Liou,n(μ, μ̄) =

(
un + μμ̄−1vnunvn μvn + μ̄−1v−1

n

μ̄−1vn u−1
n

)
. (3.11)

The mutual commutativity of T
+
(u) and T

−
(v) for all u, v follows by stan-

dard arguments from the commutation relations

R′12(u− v) L
+

1 (u) L
−
2 (v) = L

−
2 (v) L

+

1 (u) R′12(u− v), (3.12)

where

R′12(u) =

⎛
⎜⎜⎝

eπb(u+ib)

eπbu 0
i sinπb2 eπbu

eπb(u+ib)

⎞
⎟⎟⎠ . (3.13)

We will later show that the splitting of the transfer matrix T(u) into T
+

Liou(u)
and T

−
Liou(v) reflects the chiral factorization of Liouville theory into left- and

right-moving degrees of freedom.

3.1.3 KdV theory

The operators T±(u) for lattice KdV theory can finally be constructed from
the Lax-matrices [26, 43]

L
+

n (μ) ≡
(

un μvn

μv−1
n u−1

n

)
, L

−
n (μ̄) ≡

(
un μ̄−1v−1

n

μ̄−1vn u−1
n

)
.

These L-matrices also satisfy (3.5) and can be obtained [43] from LShG,n(u)
and L±Liou,n(u) by certain limiting procedures similar to (3.8),(3.10).
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It was shown in Section 2.3 that the decoupling of the free field dynamics
into right- and left-moving degrees of freedom becomes manifest in the lattice
model in terms of the variables w+

n and w−n . It is possible to show [43] that
the transfer matrices Tε(u), ε = ±, can be represented as a polynomial in
the variables wε

n which is independent of w−ε
n .

3.2 Construction of Q-operators

Algebraic constructions of Q-operators have previously been given in [44]
for the KdV model1 and for the lattice Liouville theory [19, 29]. It has to
be observed, however, that only the Q-operator related to the T-operator
T+

Liou by means of a Baxter-type equation was considered in [19, 29]. We
observed in the previous subsection that the T-operator T+

Liou does not gen-
erate sufficiently many conserved quantities. This suggests that we need a
second Q-operator Q−Liou related to T−Liou by a Baxter-type relation in order
to complete the proof of the integrability of the lattice Liouville model in
the sense formulated above.

We will in the following give a uniform construction of Q-operators for
all the models in question. For our purposes it will be most convenient
to represent the Q-operators as integral operators with explicitly speci-
fied integral kernels. This facilitates the derivation of the analytic prop-
erties of the Q-operators, as first done in [9] for the Sinh–Gordon model,
considerably.

3.2.1 Representations as integral operators

In order to represent the Q-operators as integral operators it will be
convenient to use the representation where the operators ur and vr are
represented as

un = eπb(2xn−pn) vn = eπbpn , (3.14)

with xn, pn being realized on wave-functions Ψ(x), x = (x1, . . . , xN) as

xn ·Ψ(x) = xnΨ(x), pn ·Ψ(x) =
1

2πi

∂

∂xn
Ψ(x).

1More precisely its chiral half, as will become clear later.
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Out of the special function wb(x) let us form a few useful combinations:

W v−iη(x) =
wb(x− v

2 )
wb(x + v

2 )
,

W+ShG

iη+v (x) =
(
W−ShG

iη−v (x))−1 =
wb(x + v

2 )
wb(x− v

2 )
,

W+Liou

iη+v (x) =
(
W−Liou

iη−v (x)
)−1 =

ζ−1e−i π
2
(x+ v

2
)2

wb

(
x− v

2

) ,

W+KdV

iη+v (x) =
(
W−KdV

iη−v (x)
)−1 =

ζ−1e−i π
2
(x+ v

2
)2

ζ+1e+i π
2
(x− v

2
)2

,

η ≡ 1
2
(b + b−1). (3.15)

From the known asymptotic properties of the function wb(x) it is easily found
that W±Liou

v and W±KdV
v can be obtained from W±ShG

v by taking suitable
limits.

The Q-operators may then be constructed in the following general form:

Q+(u) = Y−1
∞ · Y+(u), Q−(u) = Y−(u) · Y−1

−∞, (3.16)

where Yε(u) can be represented as integral operators with kernels

〈x′|Y+(u)|x 〉 =
N∏

n=1

W u−s(x
′
n − xn)W+

u+s(x
′
n−1 + xn), (3.17)

〈x′|Y−(u)|x 〉 =
N∏

n=1

W−
u−s(x

′
n−1 + xn)W u+s(x

′
n − xn), (3.18)

whereas the operators Y±∞ have the distributional kernels

〈x′|Y±∞|x 〉 =
N∏

n=1

e∓2πix′n(xn+xn+1). (3.19)

The expressions for the kernel of the operators Yε(u) are very similar to the
remarkable factorized expressions for the matrix elements of Q-operators
found in [7] for models with related quantum algebraic structures.
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The mutual commutativity of T- and Q-operators,
[
Qε(u), Qε′(v)

]
= 0,

[
Qε(u), Tε′(v)

]
= 0, ε, ε′ = ±, (3.20)

can be shown either along the lines of [7, 31, 9] from the star-triangle relation
satisfied by the function Wu(x) [28, 45, 9, 5]2, similar to the constructions of
Q-operators in [2].

3.3 Proof of integrability

The key observation proving the integrability of the models is the fact that

U = U+ · U− U+ = Q+(s+) U− = (Q−(s−))−1, (3.21)

where we have introduced the notations s+ = s− iη, s− = −s− iη for con-
venience. The operators U+ and U− will be regarded as light cone evolution
operators. Equation (3.21) is easily proven by noting that

Q+(s+) = Y−1
∞ ·

N∏
n=1

G2s(f2n−1), (Q−(s−))−1 = Y−∞ ·
N∏

n=1

G2s(f2n−1).

(3.22)
The operator Y∞ satisfies Y−1∞ · f2n−1 · Y∞ = f2n. This implies

Q+(s+) · (Q−(s−))−1 =
N∏

n=1

G2s(f2n) · Y−1
∞ · Y−∞ ·

N∏
n=1

G2s(f2n−1).

It remains to notice that Y−1∞ · Y−∞ = U0 to conclude the proof of (3.21).

3.4 Chiral Q-operators in the lattice KdV model

Note that the Q-operators Q+
KdV and Q−KdV are indeed the direct massless

limits of Q+
ShG(s|u) ≡ Q+

ShG(u) and Q−ShG(s|u) ≡ Q−ShG(u), respectively,

Q+
KdV(u) = lim

δ→∞
Q+

ShG(s + δ|u + δ),

Q−KdV(u) = lim
δ→∞

Q−ShG(s + δ|u− δ).
(3.23)

2The papers [28, 45] derive integral identities which can be rewritten in the form of
the star-triangle relation [9, 5]. An elegant proof can be given by using arguments similar
to [6] from the Yang–Baxter equation satisfied by the corresponding R-matrix
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The Baxter equations relate the Q-operators Qε with the T-operators Tε.
In the case of KdV theory we had seen that T+ and T− depend only on
right- and left-moving degrees of freedom w+

n and w−n , respectively. This
suggests that Q+ and Q− should have the same property. And indeed, it
can be checked that

[Q+(u), w−n ] = 0, [Q−(u), w+
n ] = 0, (3.24)

making clear that Q+(u) and Q−(u) depend on the right- and left-moving
degrees of freedom only. This property implies in particular that

[Q+(u), p0] = 0, [Q−(u), p0] = 0, (3.25)

which means that Q+(u) and Q−(u) can be projected onto F+
p and F−p ,

respectively. We will use the notation Q+
p (u) and Q−p (u) for the resulting

operators acting within F+
p and F−p , respectively.

4 Analytic properties of Q-operators

It turns out that the operators Qε(u) are Hermitian up to a phase for u ∈ R,
see Section 4.3 below for the precise statement. It follows that the T- and
the Q-operators can be diagonalized simultaneously. To each eigenstate
of the evolution operator U, we therefore have a quadruple of functions
(t+(u), q+(u), t−(u), q−(u)) related to each other by equations of Baxter
type, as written out explicitly in (4.12) below.

Understanding the analytic properties of the Q-operators or (equivalently)
of their eigenvalues qε(u), ε = ± is a key step toward understanding the
spectrum of the theories in question: It turns out that the analytic properties
of the functions qε(u) following from their explicit constructions restrict the
relevant class of solutions to the Baxter equations considerably. Let us
call a pair of solutions of the Baxter equations (4.12), which has all these
analytic properties admissible. Being an admissible pair of solutions to the
Baxter equations is clearly necessary for functions qε(u), ε = ± to represent
eigenstates of U. The Separation of Variables Method of Sklyanin, developed
for the models of interest in the following section, will then allow us to
actually construct an eigenstate of U to each pair of admissible solutions to
the Baxter equations. Being admissible is therefore not only necessary, but
also sufficient for solutions to the Baxter equations qε, ε = ± to represent
eigenstates of U.
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4.1 Analyticity

The functions qε(u) are meromorphic with poles contained in the sets

Sεs ∪ (−Sεs) for the Sinh–Gordon model,
Sεs for Liouville and KdV theory,

(4.1)

where the set Ss is defined as

Ss = s− i
(
η + bZ≥0 + b−1

Z
≥0

)
. (4.2)

The proof is very similar to the one given in [9, Section 4] for the case of
the Sinh–Gordon model.

In the case of KdV theory we may furthermore discuss the dependence
of the operators Qε

p(u) with respect to the parameters p. It is meromorphic
and analytic in the strip

Sp = {p ∈ C; |Im(p)| < N Q
2 }. (4.3)

The proof becomes simple if one uses the alternative integral operator
representation (A.6) for Qε

KdV(u) given in Appendix A.

4.2 Asymptotics

Probably the most important difference between the massive and the mass-
less cases concern the asymptotic properties of the Q-operators. Whereas
we can find exponential decay of the Q-operator at both ends of the u-axis
in the case of the Sinh–Gordon model,

qShG(u) ∼
Re(u)→±∞
Im(u)=const

e±πiNs ue∓πNη u, (4.4)

in the remaining cases we find exponential decay only at one and of the
u-axis,

qε(u) ∼
Re(u)→ε∞

Im(u)=const

eεπiNs ue−επNη u, (4.5)
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while we have oscillatory asymptotic behavior at the other end: There exists
a real number p and constants N ε, Cε(p) and Dε(p) such that

qε(u) ∼
Re(u)→−ε∞
Im(u)=const

N εe−
πi
2

Nu2 (
Cε(p) e2πipu + Dε(p) e−2πipu

)
. (4.6)

Most of the properties above can be proven by straightforward extensions
of the arguments in [9]. This is not the case for the oscillatory asymp-
totics (4.6). We therefore give a sketch of the proof in Appendix A.

4.3 Hermiticity

Some of the properties of the Q-operators become most transparent in terms
of the modified Q-operators Q̂ε(u) which are defined as

Q̂ε(u) = Ξε(u)Qε(u), (4.7)

with normalization factors Ξε(u) being chosen as

Ξε(u) =
(

F (u + εs− iη)
F (u− εs + iη)

)N

for the Sinh–Gordon model,

Ξε(u) =
(

F (u + εs− iη)
F0(u− εs + iη)

)N

for Liouville and KdV theory.

(4.8)

with F (v) = (F0(v))−1Φ(v), where F0(x) = ζ2e
πi
4

(x2+ 1
2
), ζ = e

πi
24

(b2+b−2) and

Φ(x) = exp
(∫

R+i0

dt

8t

e−2itx

sinh(bt) sinh(b−1t) cosh((b + b−1)t)

)
. (4.9)

The function Φ(x) was introduced in [5]3 , where all properties relevant for
us are listed in the appendix.

We then find that the operators Q̂(u) are Hermitian for all u ∈ R,

(
Q̂(u)

)† = Q̂(u), ∀u ∈ R. (4.10)

3A relative had previously appeared in [30]
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This can be verified by using the integral identity (A.31) in [9], taking into
account the functional relation F (x + iη)F (x− iη) = (wb(x))−1 [5].

This property implies in particular that the coefficients Cε(p) and Dε(p)
that appear in (4.6) are complex conjugate to each other, (Cε(p))∗ = Dε(p).
Of particular interest will be the so-called reflection amplitude defined by

Rε(p) = (Cε(p))∗/Cε(p). (4.11)

This quantity will play an important role later.

4.4 Functional relations

4.4.1 Baxter equations

The Q-operators all satisfy Baxter-type finite difference equations of the
general form

T(u)Q(u) = A(u)Q(u− ib) + D(u)Q(u + ib). (4.12)

The coefficient functions A(u) and D(u) are model-dependent. In the mas-
sive case (Sinh–Gordon model) we find

A+(u) = A−(u) = e−πbN(u− i
2
b)
(
1 + e−2πb(s−u+ i

2
b)
)N

,

D+(u) = D−(u) = e+πbN(u+ i
2
b)
(
1 + e−2πb(s+u+ i

2
b)
)N

,
(4.13)

whereas we have for the massless cases (Liouville theory, KdV model) the
expressions

A+(u) = e−πbN(u− i
2
b)
(
1 + e−2πb(s−u+ i

2
b)
)N

D+(u) = eπbN(u+ i
2
b),

A−(u) = e−πbN(u− i
2
b) D−(u) = eπbN(u+ i

2
b)
(
1 + e−2πb(s+u+ i

2
b)
)N

,
(4.14)

The proof of the Baxter equations given in [9] for the case of the Sinh–
Gordon model which is similar to the methods of [1, 7, 31, 11] can easily be
extended to the other cases.
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4.4.2 Quantum Wronskian relations

The following bilinear functional relation is particularly useful:

Q̂ε(v + iδ+)Q̂ε(v − iδ+)− Ξε(v + iδ+)Ξε(v − iδ+)
Ξε(v + iδ−)Ξε(v − iδ−)

× Q̂ε(v + iδ−)Q̂ε(v − iδ−) = 1; (4.15)

This relation is often called the quantum Wronskian relation. The proof of
(4.15) in the case of the Sinh–Gordon model [9] can easily be extended to
the other cases.

It is worth noting that the quantum Wronskian relation fixes the absolute
value of the coefficient Cε(p) which appears in (4.6) to be

|Cε(p)|2 = (4 sinh(2πbp) sinh(2πb−1p))−1. (4.16)

The quantity |Cε(p)|−2 will later be identified as a natural spectral measure.

4.5 Scale invariance

It is worth observing that the dependence of Qε
Liou(s|u) ≡ Qε

Liou(u), ε = ±
w.r.t. the scale parameter s can (up to unitary equivalence) be absorbed
into a shift of u,

Q+
Liou(s|u) = G−s · Q+

Liou(0|u− s) · G+s,

Q−Liou(s|u) = G−s · Q−Liou(0|u + s) · G+s,
(4.17)

where G is the unitary operator G =
∏N

r=1 u
− i

b
r . A similar (even simpler)

property holds for Qε
KdV(u). This reflects the scale invariance of these

theories.

Equation (4.17) implies in particular that in the massless cases one may
represent the eigenvalues of Q+(u) and Q−(u) by functions q+(u− s) and
q−(u + s) which do not carry any dependence on s other than the one implied
by the form of the arguments, respectively.

5 Separation of variables

The construction of the Q-operator allowed us to deduce a set of conditions
that are necessary for functions qε(u) to represent an eigenvalue of Qε(u).
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It remains to show that these conditions are also sufficient, i.e. that to each
solution of these conditions there exists an eigenvector Ψq ∈ H such that
Qε(u)Ψq = qε(u)Ψq. We will now show how to construct such an eigenvector
with the help of the separation of variables method [34, 35, 36]. The upshot
is to show existence of a representation HSOV for H in which states Ψ are
represented by wave-functions Ψ(y), y = (y1, . . . , yN) such that eigenstates
of the Qε(u) can be represented in a fully factorized form

Ψ(y) =
N∏

k=1

qε(k)(yk), (5.1)

for a certain choice of ε(k). The wave functions Ψ(y) have to be normalizable
w.r.t. to the measure dμ(y) which represents the scalar product in HSOV.
The main issue is to show that the conditions on qε(u) found above ensure
the normalizability w.r.t. dμ(y).

In the case of the Sinh–Gordon model [9] the representation HSOV is
simply the spectral representation for the commutative family of opera-
tors B(u) defined as the off-diagonal element of the monodromy matrix
M(u) =

( A(u) B(u)
C(u) D(u)

)
. We will now briefly discuss how to adapt this method

to the remaining cases.

5.1 Separation of variables for the Liouville and quantum KdV
theories

The elements of the monodromy matrices M ε(u), ε = ±, satisfy the relations

R12(u− v)M ε
1(u)M ε

2(v) = M ε
2(v) M ε

1(u) R12(u− v), (5.2)

R′12(u− v)M+
1 (u)M−

2 (v) = M−
2 (v)M+

1 (u)R′12(u− v), (5.3)

where R′12(u) = diag(q, 1, 1, q) for KdV theory, while for Liouville theory

R′12(u) =

⎛
⎜⎜⎝

eπb(u+ib)

eπbu 0
i sinπb2 eπbu

eπb(u+ib)

⎞
⎟⎟⎠ , (5.4)

Let us use the notation M ε(u) =
( Aε(u) Bε(u)

Cε(u) Dε(u)

)
. The relations (5.2) imply in

particular that

Bε(u)Bε′(v) = Bε′(v)Bε(u),

Cε(u)Cε′(v) = Cε′(v)Cε(u),
ε, ε′ = ±. (5.5)



720 A. BYTSKO AND J. TESCHNER

Note furthermore that Bε(u), Cε′(u) are positive self-adjoint for all u ∈ R +
i/2b. We may therefore simultaneously diagonalize either one of the the
commutative families of operators Bε(u), ε = ± or Cε(u), ε = ±. The main
idea of the Separation of Variables method is to work within the spectral
representation for one of these families.

Let us consider the spectral representation for the operators Bε(u), ε = ±.
It will be called the B-representation. One may parameterize the correspond-
ing eigenvalues as

b+(u) = −ieπbub0

L∏
a=1

(
1− e+2πb(u−y+

a )
)
,

b−(u) = −ieπbub0

L∏
a=0

(
1− e−2πb(u−y−a )

)
,

b0 =
L∏

a=1

eπby+
a

L∏
a=0

e−πby−a . (5.6)

The spectral representation for the operators Bε(u), ε = ± is therefore equiv-
alent to a representation in terms of wave-functions Ψ(y), where y = (y+

1 , . . . ,
y+

L ; y−0 , y−1 , . . . , y−L ). Let us define operators yε
a such that yε

a ·Ψ(y) = yε
aΨ(y).

Considering the operators Cε(u), ε = ± instead yields what will be called
the C-representation in terms of variables ỹ = (ỹ−1 , . . . , ỹ−L ; ỹ+

0 , ỹ+
1 , . . . , ỹ+

L ).

5.2 The Baxter equations

5.2.1 Liouville theory

Let us define operators Aε(yε
a), Dε(yε

a) by the prescription to order the opera-
tors yε

a to the left of the operators, which appear in the expansion of Aε(u) in
powers of eπbu. It is an easy consequence of the algebraic relations (5.2) that
these operators act on wave-functions Ψ(y) as finite difference operators of
the form

Aε(yε
a) ·Ψ(y) = Aε(yε

a)δ
ε
a−Ψ(y), Dε(yε

a) ·Ψ(y) = Dε(yε
a)δ

ε
a+Ψ(y), (5.7)

where δε
a± are defined as

δε
a±Ψ(. . . , yε

a, . . .) = Ψ(. . . , yε
a ± ib, . . .).

The coefficients Aε(u), Dε(u) are constrained by the quantum determinant
condition

Δε(u) ≡ Aε(u)Dε(u− ib)− Bε(u)Cε(u− ib) =
(
1 + e−2πb(s−ε(u− i

2
b))

)N
.

(5.8)
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As anticipated by the notation we shall adopt the choice (4.14) for the
coefficients Aε(u), Dε(u).

The condition that Ψ(y) represents an eigenstate of the transfer matrices
Tε(u), ε = ±, with eigenvalues tε(u) becomes equivalent to the equations

tε(yε
a)Ψ(y) = Aε(yε

a)δ
ε
a−Ψ(y) + Dε(yε

a)δ
ε
a+Ψ(y), ε = ±. (5.9)

The eigenfunctions for Tε(u) can therefore be constructed in the following
form

Ψq(y) =
L∏

a=1

q+(y+
a )

L∏
a=0

q−(y−a ), (5.10)

where qε
p(u), ε = ± are solutions to the Baxter equations

tε(u)qε(u) = Aε(u)qε(u− ib) + Dε(u)qε(u + ib). (5.11)

Classifying eigenstates of Tε(u), ε = ± thereby becomes equivalent to finding
the proper set of solutions of the Baxter equations (5.11).

5.2.2 KdV theory

It is instructive to notice that the limit s →∞ which yields the lattice KdV
model from Liouville theory forces one of the variables y−a , by convention
chosen to be the variable y−0 ≡ y0, to diverge. The resulting parametrization
for the eigenvalue b−(u) is

b+(u) = −ieπbub0e
−πby0

L∏
a=1

(
1− e+2πb(u−y+

a )
)
,

b−(u) = −ieπbub0e
+πby0

L∏
a=1

(
1− e−2πb(u−y−a )

)
,

b0 =
L∏

a=1

eπby+
a

L∏
a=1

e−πby−a .

(5.12)
Equations (5.7) degenerate for a = 0 into

Aε(y0)Ψ(y) = A0(y0)δ0−Ψ(y), Dε(y0)Ψ(y) = D0(y0)δ0+Ψ(y),

where A0(u) = e−πbN(u− i
2
b), D0(u) = e+πbN(u+ i

2
b), respectively, so that (5.9)

for a = 0 becomes

t0Ψ(y) = A0(y0)δ0−Ψ(y) + D0(y0)δ0+Ψ(y), (5.13)
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where t0 = t+(−∞) = t−(∞). We accordingly need to modify (5.10) as

Ψq(y) =
L∏

a=1

q+(y+
a ) q0(y0)

L∏
a=1

q−(y−a ). (5.14)

Equation (5.13) is solved by the exponential functions q0(y0) = e−
πi
2

Ny2
0e2πiy0p,

with p being related to t0 as t0 = 2 cosh(2πbp). We will see that p can take
arbitrary real values.

5.3 The Sklyanin measure

Adopting the parametrization (5.6) for the eigenvalues of the operators
Bε(u), ε = ± one needs to find the set of all y ∈ C

N which parameterize
a point in the spectrum of Bε(u) via (5.6). We shall adopt the following
conjecture:

Conjecture 1. All points in the spectrum of Bε(u), ε = ± can be parame-
terized by real values of y+

1 , . . . , y+
L and y−0 , . . . , y−L .

Validity of the conjecture above is not crucial for the discussion below, we
adopt it here to simplify the exposition. However, we are rather confident
that it is correct. It can be checked in certain limits and special cases. The
conjecture implies that the B-representation can be realized on a Hilbert
space of the form

HB
SoV = L2

(
(RL/SL)× (RL+1/SL+1) ; dμB

)
.

Elements of HB
SoV are represented by wave-functions Ψ(y) that are normal-

izable w.r.t. dμB and totally symmetric under permutations among the
sets of variables {y+

a ; a = 1, . . . L} and {y−a ; a = 0, . . . L}, respectively. The
C-representation can similarly be realized on

HC
SOV = L2

(
(RL+1/SL+1)× (RL/SL) ; dμC

)
,

Elements of HC
SoV are represented by wave-functions Ψ(ỹ) that are normal-

izable w.r.t. dμC and totally symmetric under permutations among the sets
of variables {ỹ+

a ; a = 0, . . . L} and {ỹ−a ; a = 1, . . . L}, respectively.

The Sklyanin measure dμB can be found by the same method as used
in [9] from the requirement that Aε(v) and Dε(v) are positive self-adjoint.
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We have

dμB(y) = dμ+
B (y+) dμ−B (y−), (5.15)

where

L! dμ+
B (y+) =

L∏
a=1

dy+
a eπQ(L+1)y+

a
∏
b<a

2 sinh πb(y−a − y+
b )

× 2 sinh πb−1(y+
a − y+

b ),

(L + 1)! dμ−B (y−) =
L∏

a=0

dy−a eπQLy−a
∏
b<a

2 sinh πb(y−a − y−b )

× 2 sinh πb−1(y−a − y−b ).

We have a very similar expression for dμC(y).

In the case of the lattice KdV theory we get the following modifications:

dμB(y) = dμ+
B (y+) dy0 dμ−B (y−), (5.16)

where dμ+
B (y+) is unchanged, but dμ−B (y−) is now given as

L!dμ−B (y−) =
L∏

a=1

dy−a eπQ(L+1)y−a
∏
b<a

2 sinhπb(y−a − y−b )

× 2 sinh πb−1(y−a − y−b ).

It is worth observing that the small asymmetry between the Liouville-
variables y+

a and y−a disappears in the limit giving quantum KdV theory.

6 The spectra

6.1 The spectrum of quantum KdV theory

The fact that the dynamics generated by UKdV is “trivial” in the sense that
it decouples into right- and left motions (2.14) of w+

ν,t and w−ν,t, respectively,
does not mean that the lattice model characterized by the T-operators Tε

KdV,
ε = ±, is trivial as an integrable model. As in classical (m)KdV theory one
may define alternative and much less trivial evolutions from the families of
operators Tε

KdV or Qε
KdV. The diagonalization of these operators is interesting

in its own right.
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6.1.1 The spectrum of the chiral-free field

Let us first study the chiral-free field theories with Hilbert space F ε
p and

Q-operator Qε
p(u) for fixed values of ε ∈ {±} and p ∈ R. The spectral theo-

rem for the commutative family of self-adjoint operators Q̂ε
p(u) implies that

the eigenstates f ε
q ∈ F ε

p of these operators form a basis for F ε
p. This is the

case for arbitrary real values of the variable p. Let qε
p(u) be the eigenvalue

of the operator Qε
p(u) on f ε

q . It must be element of the set Qε
p, the set

of all functions qε
p(u) that possess all the analytic and asymptotic proper-

ties implied by our explicit construction of the Q-operators as discussed in
Section 4.

On the other hand let let us note that the SOV representation is realized
on the Hilbert spaces

Hε
SoV = L2(RL; dμε

B)symm. (6.1)

For a given element qε
p(u) ∈ Qε

p define

Ψε
q(y

ε) =
L∏

a=1

qε
p(y

ε
a). (6.2)

It follows from the asymptotic properties of qε
p(u) that Ψε

q(y
ε) is normalizable

w.r.t. dμε
B. There is a corresponding eigenstate f ε

q ∈ F ε
p of Qε

p(u) which has
as its eigenvalue the function qε

p(u) we had used in (6.2). We conclude that
there is a one-to-one correspondence between the elements of Qε

p and the
eigenstates of Qε

p(u) within F ε
p. The fact that the wave-function Ψε

q are
all normalizable implies in particular that the spectrum of Qε

p(u) is purely
discrete.

6.1.2 The zero mode spectrum of quantum KdV theory

To each triple q ≡ (q+
p (u), q0

p(u), q−p (u)) of solutions to the Baxter equations
(5.9) we may associate a wave-function of the form

Ψqp(y) =
L∏

a=1

q−p (y−a )q0
p(y0)

L∏
a=1

q+
p (y+

a ). (6.3)

The asymptotic behavior (4.5), (4.6) ensures the (plane-wave) normalizabil-
ity of Ψq(y). We need to identify the set of solutions of the zero mode
equation (5.13) which yields a complete set of Qε

KdV-eigenstates in this way.
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By means of induction it is easy to prove that T0 has the following form:

T0 = 2 cosh πbp0, (6.4)

where e2πbp0 ≡∏N
n=1 un. It easily follows from this observation that the

vectors Ψq(y) constructed from the choices q0
p(u) = e−

πi
2

u2
e2πipu, p ∈ R, all

represent linearly independent basis vectors for H in the sense of generalized
functions.

6.2 The spectrum of Liouville theory

We are now going to analyze the spectrum of Liouville theory in a sim-
ilar manner. To each eigenstate Ψ of the Q-operators Q+(u) and Q−(u)
there exists a complex number p and a corresponding pair of elements
qp = (q+

p , q−p ) ∈ Q+
p ×Q−p , given by the eigenvalues of Qε(u) on Ψ. Con-

versely, for a given value of p and each pair qp = (q+
p , q−p ) ∈ Q+

p ×Q−p of
admissible solutions to the Baxter equations one may construct an eigen-
state of the Q-operators Q+(u) and Q−(u) as

Ψqp(y) =
L∏

a=0

q−p (y−a )
L∏

b=1

q+
p (y+

b ). (6.5)

With the help of our explicit formulae for the Sklyanin measure and the
formulae (4.5), (4.6) for the asymptotic behavior of the functions qε

p(u) it is
possible to check that the states (6.5) are plane-wave normalizable if p ∈ R.
More precisely one may show that

(
Ψqp , Ψqp′

)
=

δ(p− p′)
4 sinh(2πbp) sinh(2πb−1p)

. (6.6)

This means that dp 4 sinh(2πbp) sinh(2πb−1p) is the natural spectral measure
for the integration over p in the spectral representation.

One should note that the spectrum of the zero mode p is real and purely
continuous. This follows from the works [28, 20], one of the main results of
which can be stated as

Spec(U+) =
{
e−2πi(Δp+m)/N; p ∈ R+, m ∈ Z/NZ

}
, (6.7)

where

Δs =
c− 1
24

+ s2, c = 1 + 24η2. (6.8)
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It is an important difference to the case of KdV theory that the eigenstates
Ψqp and Ψq−p are not independent. Indeed, it follows easily from (A.6) that
the qε

p(u) are symmetric w.r.t. p, i.e., qε
p(u) = qε−p(u). It follows that

Ψqp(y) = Ψq−p(y). (6.9)

We conclude that there is a one-to-one correspondence between triples
q = (p, q+

p , q−p ), p ∈ R
+, (q+

p , q−p ) ∈ Q+
p ×Q−p and the elements of a basis

for H consisting of generalized eigenstates of the Q-operators.

7 The relation between quantum Liouville- and KdV-theory

7.1 The Bäcklund transformations

The key point for us to observe is the fact that the sets Qε
p of admissible

solutions of the Baxter equations are the same for Liouville theory and
the quantum lattice KdV model. We may therefore construct operators
Wχ which send the eigenstate Ψq of Qε

Liou(u), ε = ± associated to a triple
q = (q; q+

p , q−p ) to the eigenstate Φq of Qε
KdV(u), ε = ±, which in the BKdV-

representation is represented by the wave-function

Φq = Wχq

L∏
a=1

q−p (y−a ) q0
p(y0)

L∏
b=1

q+
p (y+

b ), q0
p(y0) = e−

πi
2

Ny2
0e2πpy0 . (7.1)

The prefactor Wχq is required to satisfy |Wχq |2 = 4 sinh(2πbp) sinh(2πb−1p)
while its phase e2iχq ≡ Wχq

/W ∗
χq

is left arbitrary for the moment. The
operators Wχ clearly satisfy

Wχ · Qε
Liou(u) = Qε

KdV(u) ·Wχ (7.2)

and they define unitary operators W̌χ from H to the subspace H+ of H
on which the zero mode momentum p0 is positive. The operators Wχ can
be seen as representatives for (generalizations of the) quantum Bäcklund
transformations which map the interacting dynamics of Liouville theory to
the free field dynamics. They make the decoupling of left- and right-moving
degrees of freedom in Liouville theory manifest.
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7.2 Relation with scattering theory

All what is nontrivial about Liouville theory is hidden in the way the decou-
pling between left-and right-movers is disguised when studying its dynamics
in terms of the original degrees of freedom πn, φn. The operators Wχ which
trivialize the dynamics are rather nontrivial objects for which we do not
have an explicit representation at the moment.4 In the following, we shall
propose an interpretation of one of these operators related to the asymptotic
behavior of the time evolution.

7.2.1 Wave- and scattering operators

One should note that the operators Qε
Liou(u) and Qε

KdV(u) coincide in the
limit where the zero mode φ0 tends to infinity,

lim
ρ→∞〈Ψq, Q

ε
Liou(u)Φρ〉 = lim

ρ→∞〈Ψq, Q
ε
KdV(u)Φρ 〉, (7.3)

for any wave-packet Φρ that has support localized around φ0 = ρ. We
have, in particular, a similar statement for the evolution operator U. It
then follows from standard arguments that wave-packets for time τ → ±∞
are always pushed into the asymptotic region φ0 →∞ where the dynamics
becomes the free field dynamics. We may therefore define natural analogs
of the wave operators from quantum mechanical scattering theory as

W+∞ = lim
τ→∞ (UKdV)−

τ
2 · (ULiou)+

τ
2 , W−∞ = lim

τ→∞ (UKdV)+
τ
2 · (ULiou)−

τ
2 .

(7.4)
The operators W±∞ are easily seen to represent a particular case of the
Bäcklund transformations introduced in Section 7.1 above.

The scattering operator S which maps the asymptotic shape of a wave
packet for τ → −∞ to the one for τ →∞ can then be defined as S ≡ W+∞ ·
W−1
−∞. It can be described in terms of its eigenvalues Sqp in the spectral

representation.

7.2.2 Relation to space asymptotics of wave-functions

In quantum mechanical scattering theory there exist well-known results
relating the scattering operator S to the (target-) space asymptotics of eigen-
functions of the corresponding Hamiltonian. It seems fairly clear that simi-
lar relations will hold in the present context, as now to be formulated more

4Finding a more explicit representation would become possible once we had an explicit
representation for the transformation from the original to the separated variables.
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explicitly. We would like to analyze the representation of eigenstates Ψq

in the zero mode Schrödinger representation where they are represented by
wave-functions Ψq(φ0) taking values in F+

φ0
⊗F−φ0

. It follows from (7.3) that
the asymptotic behavior for φ0 →∞ of the wave-functions Ψq(φ0) can be
expanded into the eigenstates of Qε

KdV(u),

Ψqp(φ0) ∼
φ0→∞

Np

[
e2πipφ0 + Sqpe

−2πipφ0
]
(f+

q ⊗ f−q ), (7.5)

where Np is a normalization factor and f+
q ⊗ f−q ∈ F+

p ⊗F−p is an eigenstate
of both Q+

KdV(u) and Q−KdV(u) with eigenvalues q+
p (u) and q−p (u), respectively.

We claim that the so-called reflection amplitudes Sqp which appear in the
asymptotic behavior (7.5) are indeed the eigenvalues of the scattering oper-
ator S defined above.

7.3 Relation between the reflection amplitudes of Liouville and
of KdV theory

Let us finally note that there is a remarkable relationship between the scat-
tering amplitude Sqp of Liouville theory and the reflection phases Rε(p) of
KdV-theory introduced in (4.11),

Sqp
= Rq+

p
Rq−p if qp = (q+

p (u), q−p (u)). (7.6)

We have used the notation Rqε
p
, ε = ± for the ratio Rε(p) = (Cε(p))∗/Cε(p)

of the coefficients which appear in the asymptotic behavior of qε
p(u) for

u → −ε∞ according to (4.6).

The relationship (7.6) allows one to calculate the scattering operator S
from the asymptotics of the operators Qε

KdV(u) as determined in the appen-
dix. We do not go further into this direction for the case of the lattice
models as we did not yet find a sufficiently nice formula for S. The situation
becomes better in the continuum limit where (7.6) will be a key ingredient
in our calculation of the Liouville reflection amplitude.

7.3.1 Derivation of equation (7.6)

Equation (7.6) can be verified by means of arguments which are similar to
those in [41]. One may analyze the massless limit s →∞ in two different
ways.

Let us, on the one hand, consider an eigenstate Ψq in the Sinh–Gordon
model represented in the Schrödinger representation by a wave-function
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Ψq(φ0) ∈ F+
φ0
⊗F−φ0

. Note that the limit giving Liouville theory from the
Sinh–Gordon model combines the limit s →∞ with φ0 → −∞. It follows
that the limit of the operator Qε

ShG(u) for s →∞ can also be regarded as the
asymptotic behavior of Qε

Liou(u) for φ0 →∞. Arguing as in Section 7.2.2 we
conclude that the leading behavior of Ψq(φ0) for s →∞ can be described in
terms of eigenfunctions of Qε

Liou(u) as

Ψq(φ0) � (Cqp
e2πipφ0 + C∗qp

e−2πipφ0 ) (f+
q ⊗ f−q ), (7.7)

where f+
q ⊗ f−q ∈ F+

p ⊗F−p is an eigenstate of both Q+
KdV(u) and Q−KdV(u)

with eigenvalues q+
p (u) and q−p (u), respectively. The eigenstate Ψq is either

even or odd under parity. In order to evaluate this condition note that
arg Sqp = −2 arg Cqp = ρq(p)− 4πps, where ρq(p) is independent of s. For
s →∞ one gets the quantization condition to leading order as the condition
that there exists an integer n such that allowed values pn of the variable p
satisfy

4πspn − ρq(pn) = πn. (7.8)

One may, on the other hand, note that the limit s →∞ of the Q-operators
Qε

ShG(u) may according to (3.23) be described either as the asymptotics of
the Q+

KdV(u) for u → −∞ or, equivalently as the asymptotics of Q−KdV(u) for
u → +∞. This implies for the eigenvalues of Qε

ShG(u) that we have, on the
one hand

qε(u) � Np cos
(
2πp(u− s) + θ+

q (p)
)
, (7.9)

where Np = (sinh(2πbp) sinh(2πb−1p))−
1
2 , and on the other hand

qε(u) � Np cos
(
2πp(u + s)− θ−q (p)

)
. (7.10)

The compatibility between these two equations requires that there exists an
integer n such that

4πpns− θ+
q (pn)− θ−q (pn) = πn. (7.11)

The equivalence of (7.8) and (7.11) yields our claim (7.6).

7.3.2 Interpretation of equation (7.6)

It seems natural to interpret (7.6) in the following way: In the same way
as we used the evolution operator U to define the scattering operator S
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in Section 7.2.1 above, we may use the light-cone evolution operators Uε

to define light-cone scattering operators Sε for ε = ±, respectively. It is
clear that the eigenvalues of the operators S+ in a state defined by a pair
qp = (q+

p , q−p ) will not depend on q−p , and similarly for the eigenvalues of S−.
It seems natural to conjecture that the eigenvalues of Sε are precisely the
phases Rqε

p
defined from the asymptotic behavior (4.6) of qε

p. This would
mean that our relationship (7.6) is equivalent to S = S+S− which trivially
follows from the factorization U = U+U− observed in (3.21) above.

8 Continuum limit

Following arguments which are very similar to those used in [41] we may now
reformulate the conditions for the q-functions in terms of nonlinear integral
equations, which generalize the equations coming from the thermodynamic
Bethe ansatz [46, 47, 48] to arbitrary excited states. As shown in [41], one
gets a characterization of the spectrum which is completely equivalent to the
one derived above. On the level of the nonlinear integral equations it turns
out to be straightforward to pass to the continuum limit. The limit is taken
in such a way that N→∞, s →∞ such that

mR = 4 sin ϑ0Ne−πbs, ϑ0 ≡
πb2

1 + b2
(8.1)

is kept constant. As the necessary arguments are very similar to those in [41]
we will only briefly describe the resulting description of the q-functions for
the continuum theories and some of the most important consequences for
the spectrum of these theories.

8.1 Reformulation in terms of integral equations

As advertised earlier, one may express the eigenvalues of the Q-operators
in terms of the solutions of certain nonlinear integral equations. These
equations are best formulated in terms of the functions

Y ε
p

(
π
2ηu

)
= qε

p(u + iδ)qε
p(u− iδ), (8.2)

where 2δ = b−1 − b. It suffices to consider the case that p is purely imaginary
which is related the case of real p by means of analytic continuation. Assume
that qε

p(u) has M ε real zeros at positions ϑε
a, a = 1, . . . , M ε. The functions
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qε
p(u) can then be recovered from

∂ϑ log qε
p

(
2 η

πϑ
)

= −ε
mReεϑ

2 sin ϑ0
+

Mε∑
a=1

1
sinh(ϑ− ϑε

a)

+
∫

R

dϑ′

4π

1
cosh(ϑ− ϑ′)

∂ϑ′ log
(
1 + Y ε

p (ϑ′)
)
, (8.3)

The nonlinear integral equations in question have an almost universal form,

log Y ε
p (ϑ) = −mReεϑ +

Mε∑
a=1

log S(ϑ− ϑε
a − iπ

2 )

+
∫

R

dϑ′

4π
σ(ϑ− ϑ′) log(1 + Y ε

p (ϑ′)), (8.4)

where

σ(ϑ) =
d

dϑ
S(ϑ) =

4 sin ϑ0 cosh ϑ

cosh 2ϑ− cos 2ϑ0
.

It is possible to prove that for arbitrary given input data tε = (ϑε
1 . . . , ϑε

Mε),
ϑε

a ∈ R the nonlinear integral equations (8.4) have a unique solution Y ε
p,t(ϑ)

which grows for ϑ → −ε∞ as 2πε ip ϑ.5 Equations (8.4) have to be supple-
mented by the set of equations

2πεkε
a = ε mReεϑε

a +
Mε∑
b=1
b 	=a

arg S(ϑε
a − ϑε

b)

+
∫

R

dϑ

4π
τ(ϑε

a − ϑ) log(1 + Y ε
p,t(ϑ)), (8.5)

where

τ(ϑ) ≡ 4 sin ϑ0 sinhϑ

cosh 2ϑ + cos 2ϑ0
= iσ(ϑ + iπ

2 ). (8.6)

Equations (8.5) represent strong constraints on the parameters tε. The
fact that these parameters can only be real can be proven by means of an
argument similar to the one of [46, 41] using the fact that the functions
Y ε

p (ϑ) have to be real. This in turn follows from the hermiticity of the
Q-operators observed above. In the following, we shall adopt the basic
conjecture that there exists a unique solution to equations (8.5) for any

5Bear in mind that we assume p ∈ iR.
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given tuples kε = (kε
1, . . . , k

ε
Mε). If so, we can conclude that eigenstates are

uniquely labeled by p and the tuples kε.

8.2 Analytic properties of the q-functions for the continuum
theories

The integral equations characterizing the q-functions of the continuum the-
ories are equivalent to either of the following two functional equations,

tε(u)qε(u) = qε(u + ib) + qε(u− ib), (8.7)

qε(v + iη)qε(v − iη)− qε(v + iδ)qε(v − iδ) = 1. (8.8)

We observe no difference between the massive and the massless cases.

The analytic properties of the q-functions also simplify in the continuum
limit. We find:

(i) The q-functions are entire analytic in u for each of the cases considered.

(ii) The q-functions qε
p(u) are entire analytic in p for Liouville

and KdV theory. (8.9)

Important differences appear on the level of the asymptotic properties, as
we shall now discuss. In the massive case we find [41] rapid decay of qε(u)
at both ends of the real axis, more precisely,

log qε(u) ∼
Re(u)→±∞

− mR

2 sin ϑ0
e
± π

2η
u for |Im(u)| < η. (8.10)

The decay of qε(u) implies that the spectrum of the Sinh–Gordon field theory
is purely discrete.

As in the case of the lattice theory, the main difference to the massless
case is the appearance of oscillatory asymptotics at one end of the real axis,
while it remains rapidly decaying at the other end,

qε
p(u) ∼

Re(u)→−ε∞
cos(2πpu + εθq(p))√

sinh(2πbp) sinh(2πb−1p)
, for |Im(u)| < η.

log qε
p(u) ∼

Re(u)→ε∞
− mR

2 sin ϑ0
e
ε π
2η

u
.

(8.11)

One may formulate the above statements about the asymptotics of the
q-functions qε(u) for u → ε∞ more precisely by saying that there exists
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an asymptotic expansion of the form

log qε
p(u) ∼ −c0 e

ε π
2η

u −
∞∑

n=1

cn I
ε
n e
−ε π

2η
(2n−1)u

. (8.12)

For the classical continuum field theories it is well known that the coefficients
I
ε
n represent the local conserved quantitites of the model in question. The

coefficients I
ε
1 correspond to the light-cone Hamiltonians which are propor-

tional to the generators L0, L̄0 of the Virasoro algebra in the massless cases.
For these cases, it can be shown [41] that we have the following formula for
the expectation values of I

ε
n in a state characterized by p ∈ R and tuples kε:

I
ε
1 =

2π

R

(
p2 − 1

24
+

∑
a∈K

kε
a

)
. (8.13)

We clearly identify the zero-mode contribution ∝ p2 and integer-valued oscil-
lator contributions kε

a. We therefore reproduced already a good part of the
expected structure of the spectrum of the continuum Liouville theory [10].

8.3 Explicit calculation of the reflection amplitude

The reflection amplitude Sqp introduced in Section 7.2.1 represents an impor-
tant piece of data characterizing Liouville theory. We are now going to
explain how to calculate this quantity for the class of states related to the
primary states of the Liouville conformal field theory. The key observa-
tion underlying this calculation is equation (7.6) which relates the reflection
amplitude to the asymptotics of the functions qε

p of KdV theory. These
asymptotics were found in [41] based on [23]. To round off the picture, we
will now briefly recall how this works.

Let us first observe, as can be seen, e.g., from formula (8.13), that the
states with M ε = 0, ε = ±, correspond to the Fock-vacua in the sectors
labelled by p. According to (7.6), we may calculate Rp ≡ Sqp if we know
the asymptotic behavior of the q-functions qε

p(u) corresponding to the Fock-
vacua. These q-functions qε

p(u) can be characterized as the unique solutions
of the functional equations (8.7), (8.8) which have the analytic properties
(8.9), the asymptotic behavior (8.11), and the additional property to be
non-vanishing within the strip Su. It was shown in [23] that a solution to
this set of conditions is given by the Wronskian of certain solutions to the
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ordinary differential equation

[
− d2

dx2
− 4

b2
p2 + κ2

(
e2x + e−2x/b2

)]
Ψ = 0. (8.14)

This generalizes similar results for other models which go back to [13, 4].
In order to get qε

p(u), consider the solutions Ψ± to (8.14) which have the
asymptotic behavior

Ψ+ ∼
1√
2κ

exp
( x

2b2
− κb2e−x/b2

)
for x→ −∞,

Ψ− ∼
1√
2κ

exp
(
−x

2
− κex

)
for x → +∞,

(8.15)

respectively. The functions qε
p(ϑ) are then simply given as

q+
p (u) ≡ q−p (−u) ≡ Ψ+

d

dx
Ψ− −Ψ−

d

dx
Ψ+, (8.16)

provided that we identify the respective parameters as follows,6

κ = − κ0

2 sin ϑ0

mR

2
e

π
2η

u
, κ0 = − 2

√
π

Γ
(
− 1

2(1+b2)

)
Γ
(
1− b2

2(1+b2)

) . (8.17)

The characterization (8.16) of qε
p(u) in terms of the ODE (8.14) allowed the

authors of [23] to determine the asymptotics of qε
p(u). The explicit expression

for Sp = e2iθ(p) which follows from formula (177) in [23] is

Sp = −ρ−8iδp Γ(1 + 2ibp)Γ(1 + 2ib−1p)
Γ(1− 2ibp)Γ(1− 2ib−1p)

, (8.18)

in which we have used the abbreviation

ρ ≡ R

2π

m

4
√

π
Γ
(

1
2 + 2b2

)
Γ
(

1 +
b2

2 + 2b2

)
. (8.19)

We recover the expression proposed in [49], for which a full derivation was
given in [39]. We’d like to stress how different the present derivation of
the reflection amplitude — based on the integrable structure of Liouville

6Concerning the comparison with [23] note that the parameter n used there is related
to b2 via n = 2/b2.
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theory — is compared to the one in [49, 39], which was based on the confor-
mal symmetry. It would be very interesting further elucidate the interplay
between the integrable and the conformal structure of Liouville theory.

Appendix A Asymptotic behavior of Q-operators

Let us first note that the Q-operators for Liouville theory and for the KdV
model have the same asymptotic behavior. To this aim let us consider the
eigenvalue equation in the form

〈q|Qε
Liou(u)|t〉 = qε(u)〈q|t〉, (A.1)

where 〈q| is a generalized eigenstate of Qε
Liou(u) with eigenvalue qε(u), and

|t〉 is a test function from a suitable dense subspace T of H like those defined
in [9]. The left hand side of (A.1) can be represented as

∫
dx′ dx 〈q′|x′〉 〈x′|Yε

Liou(u)|x〉, (A.2)

where 〈q′| ≡ 〈q|Y−1∞ . Following [9, Section 4.2.] it is not hard to see that the
bulk of the domain of integration over x′, x gives contributions which decay
exponentially when |u| → ∞. One may observe, however, that the integra-
tion over x′ may receive contributions from the region in the integration over
x′ where xr = yr − δ, δ →∞. This is due to the fact that the wave-function
〈 q′ |x′ 〉 has plane-wave like behavior w.r.t. the zero mode x0 =

∑N
n=1 xn in

this limit. A look at the formula (A.4) for the kernel 〈x′|Yε
Liou(u)|x〉 then

reveals that it becomes equal to the kernel 〈x′ |Yε
KdV(u) |x 〉 for large δ. This

observation reduces the problem to find the asymptotic behavior of Qε
Liou(u)

to the corresponding problem for Qε
KdV(u).

To solve this problem, an alternative integral operator representation will
be useful. In order to find it, let us consider a variant of the Q-operators
defined as

Q̃+(u) = (Q+(s+))−1 · Q+(u), Q̃−(u) = (Q−(s−))−1 · Q−(u). (A.3)

One advantage of the Q-operators Q̃+(u) and Q̃−(u) is the fact that the
kernels representing these operators can be written in an even more explicit
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form,

〈x′|Q̃+(u)|x〉 =
N∏

n=1

W−
2s+iη(x

′
n + x′n+1)W u−s(x

′
n − xn)W+

u+s(x
′
n−1 + xn),

(A.4)

〈x′|Q̃−(u)|x〉 =
N∏

n=1

W−
u−s(x

′
n−1 + xn)W u+s(x

′
n − xn)W+

iη−2s(xn + xn+1),

(A.5)

Let 〈t|, t = (t1, . . . , tN) now be the generalized eigenstates of the operators
un such that 〈t|un = 〈t|eπbtn . By means of straightforward computations it
is possible to show that

〈t′|Q̃+
KdV(u)|t〉 = δ(p− p′)Ese

−πi
2

Nu2
N∏

r=1

e−2πiτrtr

×
∫

R

dxe4πipx
N∏

n=1

ϕ(u + x + τn)ϕ(u− x− τn), (A.6)

where Es is a constant, and we have used the notation 2p ≡∑N
s=1 ts and

τr ≡
∑r−1

s=1(t
′
s − ts). We are now in the position to prove that

Q̃+
KdV(u) ∼

Re(u)→−∞
Im(u)=const

Ese
−πi

2
Nu2(

e2πip0(u−s)A+
+ + e−2πip0(u−s)A+

−
)
, (A.7)

where A+
± are operators represented by the kernels

〈t′|A+
±|t〉 = δ(p− p′)

N∏
r=1

e−2πiτrtr

∫
R

dye∓4πipy
N∏

r=1

ϕ
(
y ∓ τr + i

2η
)
, (A.8)

respectively. Indeed, it is easy to see that the dominant contributions to the
asymptotics u →∞ come from the region in the integration over x where
|x| ∼ u. In order to isolate the contributions from x± u = O(1), respec-
tively, let us change the variable of integration to yε = u−s

2 ∓ x. Taking into
account that ϕ(x) ∼ 1 for x →∞ it becomes easy to verify our claim.
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