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Abstract

Let M — N (resp. C' — N) be the fibre bundle of pseudo-Riemannian
metrics of a given signature (resp. the bundle of linear connections) on an
orientable connected manifold N. A geometrically defined class of first-
order Ehresmann connections on the product fibre bundle M x5 C' is
determined such that, for every connection v belonging to this class and
every Diff N-invariant Lagrangian density A on J!(M xx C), the corre-
sponding covariant Hamiltonian A" is also Diff N-invariant. The case of
Diff N-invariant second-order Lagrangian densities on J?M is also studied
and the results obtained are then applied to Palatini and Einstein—Hilbert
Lagrangians.
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1 Introduction

In Mechanics, the Hamiltonian function attached to a Lagrangian density
A = L(t,q¢',¢")dt on R x TQ is given by H = §°0L/d¢' — L, but — as it was
early observed in [16] — this is not an invariant definition if an arbitrary
fibred manifold ¢t: E — R is considered (thus generalizing the notion of an
absolute time) instead of the direct product bundle R x @ — R; e.g., see [7,
23,25] for this point of view. In this case, an Ehresmann connection is
needed in order to lift the vector field 9/0t from R to E, and the Hamiltonian
is then defined by applying the Poincaré-Cartan form attached to A to the
horizontal lift of 9/0t.

In the field theory — where no distinguished vector field exists on the
base manifold — the need of an Ehresmann connection is even greater, in
order to attach a covariant Hamiltonian to each Lagrangian density; e.g.,
see [23,24, 4.1], and the definitions below.

Let p: E — N be an arbitrary fibred manifold over a connected manifold
N,n =dim N, dim E = m + n, oriented by v, = dz' A --- A dz". Through-
out this paper, Latin (resp. Greek) indices run from 1 to n (resp. m). An
Ehresmann connection on a fibred manifold p: £ — N is a differential 1-form
v on E taking values in the vertical sub-bundle V' (p) such that v(X) = X for
every X € V(p) (e.g., see [23,24,32,34]). Once an Ehresmann connection
~ is given, a decomposition of vector bundles holds T(E) = V(p) & ker~,
where ker ~y is called the horizontal sub-bundle determined by . In a fibred
coordinate system (z7,y%) for p, an Ehresmann connection can be written as

v = (dy* + ’y}-"da:j) ® 75 € C(E).

R
oy’

According to [24], the covariant Hamiltonian A7 associated to a Lagrangian
density on J'E, A = Lv,,, L € C*°(J'E), with respect to + is the Lagrangian
density defined by,

A = ((pé)*fy—&) Awp — A, (1.1)
where, pi: J'E — J°E = E is the projection mapping, 6 = 0% ® 9/dy?,

0% = dy® — y®dz® is the V(p)-valued 1-form on J'E associated with the
contact structure, written on a fibred coordinate system (z*,y®), and wp
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is the Legendre form attached to A, i.e., the V*(p)-valued p'-horizontal
(n — 1)-form on J'E given by

.. OL .
wp = (—1) la—wza/aan ® dy®,
(2

where (2%, y; y&) is the coordinate system induced from (z*,y*) on the 1-jet
bundle and p': J'E — N is the projection on the base manifold. Locally,

L
AT = <(%‘“ +yi") qu —~ L) dz' Ao A dz™, (1.2)

From (1.1) we obtain the following decomposition of the Poincaré-Cartan
form attached to A (e.g., see [17,23,27]): Op =0 Awp+ A= (p})*yA
wp — A7

A diffeomorphism ®: E — FE is said to be an automorphism of p if there
exists ¢ € Diff N such that po ® = ¢ op. The set of such automorphisms
is denoted by Aut(p) and its Lie algebra is identified to the space aut(p) C
X(F) of p-projectable vector fields on E. Given a subgroup G C Aut(p), a
Lagrangian density A is said to be G-invariant if (®(1))*A = A for every ® €
G, where ®1): J'E — J'FE denotes the 1-jet prolongation of ®. Infinitesi-
mally, the G-invariance equation can be reformulated as Lya)A = 0 for every
X € Lie(G), XM denoting the 1-jet prolongation of the vector field X.

When a group G of transformations of F is given, a natural question
arises:

e Determine a class — as small as possible — of Ehresmann connec-
tions « such that A7 is G-invariant for every G-invariant Lagrangian
density A.

Below we tackle this question in the framework of General Relativity, i.e.,
the group G is the group of all diffeomorphisms of the ground manifold N
acting in a natural way either on the bundle of pseudo-Riemannian metrics
prv: M = M(N) — N of a given signature (n*,n~), n"™ +n~ = n, or on the
product bundle p: M xy C — N, where pc: C = C(N) — N is the bundle
of linear connections on N. Namely, we solve the following two problems:

(P): Determine a class — as small as possible — of Ehresmann con-
nections « such that for every Diff N-invariant first-order Lagrangian
density A on the bundle J'(M xy C) , the corresponding covariant
Hamiltonian A7 is also Diff N-invariant.
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Similarly to the problem (P), we formulate the corresponding problem
on J2M as follows:

(P2): Determine a class of second-order Ehresmann connections v on M
such that for every Diff N-invariant second-order Lagrangian density
A on the bundle J?M, the corresponding covariant Hamiltonian A
— defined in (4.9) — is also Diff N-invariant.

Essentially, a class of first-order Ehresmann connections on the bundle
M xn C' is obtained, defined by the conditions (Cjs) and (C¢) below (see
Propositions 3.4 and 3.5), solving the problem (P). This class of connections
also helps to solve (P2) by means of a natural isomorphism between J'M
and M x y C%™ where C¥™ denotes the sub-bundle of symmetric connec-
tions on N (cf. Theorem 4.1). Finally, this approach is applied to Palatini
and Einstein—Hilbert Lagrangians [3,4], obtaining results compatible with
their usual Hamiltonian formalisms.

2 Invariance under diffeomorphisms
2.1 Preliminaries

2.1.1 Jet-bundle notations

Let p*: J*E — N be the k-jet bundle of local sections of an arbitrary fibred
manifold p: E — N, with projections pf: J*E — J'E, pF(jks) = jls, for
k > 1, j*s denoting the k-jet at 2 of a section s of p defined on a neighbour-
hood of x € N.

A fibred coordinate system (%, y%) on V induces a coordinate system
(2%, y9), I=(i1,...,ip) €N", 0<|I| =iy + - +i, <7, on (pf) (V)=

J"V as follows: y2(jis) = (9!l(y® 0 ) /0xT)(x), with y§ = y.

Every morphism ®: E — E’ whose associated map ¢: N — N’ is a
diffeomorphism, induces a map

oM. JJE — J'E/,

, , - (2.1)
O (jr5) = ) (Posod™).

If @, is the flow of a vector field X € aut(p), then @ET) is the flow of a vector
field X(") € X(J"E), called the infinitesimal contact transformation of order
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r associated to the vector field X. The mapping

aut(p) 3 X — X € X(J'E)
is an injection of Lie algebras, namely, one has

AX +pY)™) = AX ) 4y ™),
(X, Y](r) = [X(T)’y(r)],
VA peR, VXY € aut(p).

In particular, for r =1,

7 0 e 0 i 00 fe 00
X—u 8$l+v @, u EC (N),’U EC (E)7
0 0 0 o Ot gov® ouF

(1) — 4t a 2 4 ogpe 2 o _ : — e
AT i Y e T e T Gt T gys T Vg

2.1.2 Coordinates on M(N), F(N), and C(N)

Every coordinate system (2°) on an open domain U C N induces the follow-
ing coordinate systems:

(1) (2%, y;k) on (par)~1(U), where ppr: M — N is the bundle of metrics of
a given signature, and the functions y;, = yy; are defined by,

9o = D ¥ii(90)(dz")s @ (da?)s, Vg € (par) ' (V). (2.2)

i<y

(2) (xz,xé) on (pr)~t(U), where pp: F(N) — N is the bundle of linear
frames on N, and the functions x; are defined by,

U= ((8/8:31)1, e (ﬁ/ax")x) . (m;(u)) . x=ppu),Yu e (pr) L),
or equivalently,

0
ozt

u:(Xl,...,Xn)eFI(N),Xj:x;l(u)( > 1<j<n.  (23)

(3) (af, Ail) on (pc)~1(U), where pc: C — N is the bundle of linear con-
nections on N, and the functions Ail are defined as follows. We first
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recall some basic facts. Connections on F'(INV) (i.e., linear connections
of N) are the splittings of the Atiyah sequence (cf. [2]),

(pF)«
0 — adF(N) — TGl(an)F(N) —— TN — 0,

where

(a) adF(N) =T*N ® T'N is the adjoint bundle;

(b) Tougnz)(F(N)) = T(F(N))/Gl(n, R); and

(c¢) gauF'(N) =T(N,adF(N)) is the gauge algebra of F(N).

We think of gauF'(N) as the ‘Lie algebra’ of the gauge group GauF'(N).
Moreover, po: C — N is an affine bundle modelled over the vector
bundle ®?T*N ® TN. The section of pc induced tautologically by
the linear connection I is denoted by sp: N — C. Every B € gl(n,R)
defines a one-parameter group ¢f: U x Gl(n,R) — U x GI(n,R) of
gauge transformations by setting (cf. [5]), ¢ (x, A) = (z,exp(tB) - A).
Let us denote by B € gau(pr)~(U) the corresponding infinitesimal
generator. If (E;) is the standard basis of gl(n,R), then E’]” =30,

:L‘i(?/@:n};, for i, =1,...,n, is a basis of gau(pr) 1 (U). Let E~'J’ =
EJZ mod G be the class of E; on adF'(N). Unique smooth functions
A;k on (pc)1(U) exist such that,

ON_ 0
0

= o (Aé‘k o F)ﬂfz

0
< 2.4
oo 2.4)
for every sp and A;k(Fm) = Fé (), where F;k are the Christoffel sym-

bols of the linear connection I' in the coordinate system (x?), see [20,
ITI, Proposition 7.4].

2.2 Natural lifts

Let far: M — M, cf. [30] (vesp. f: F(N) — F(N), cf. [20, p. 226]) be the
natural lift of f € Diff N to the bundle of metrics (resp. linear frame bun-
dle); namely fur(gz) = (f71)*go (resp. f(X1,..., Xn) = (fX1,. .., fiXn),
where (X1,...,X,,) € F,(N)); hence pyro far = fopa (resp. pro f=fo
pr), and far: M — M (resp. f: F(N) — F(N)) have a natural extension
to jet bundles f\7): Jr(M) — J"(M) (resp. f0): J'(FN) — J'(FN)) as
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defined in the formula (2.1), i.e.,
17 (G59) = 5wy (farogo f71)  (resp. FO (jls) = jhoy (Foso f7)).
As f is an automorphism of the principal GI(n, R)-bundle F(N ), it acts on
linear connections by pulling back connection forms, i.e., I' = f (') where
wrr = (f~H*wr (see [20, I1, Proposition 6.2-(b)], [5, 3.3]). Hence, there exists
a unique diffeomorphism fo: C — C such that,
(1) po o fo = fope, and
(2) fcosr=s j(ry for every linear connection T
If fy is the flow of a vector field X € X(NNV), then the infinitesimal gener-
ator of (fi)m (resp. fe, resp. (fi)c) in DfM (resp. Diff F(N), resp. DiffC)
is denoted by X, (resp. X, resp. X¢) and the following Lie-algebra homo-
morphisms are obtained:
X(N) — X(M), X = X,
X(N) = X(F(N)), X~ X,
X(N) — %(0), X — Xc.
If X =u'd/0z" € X(N) is the local expression for X, then
(1) From [30, equations (2) to (4)] we know that the natural lift of X to
M is given by,
X -y ou’ O x(m)
M = 8 thg Oz 5.5 Jih 3ym .
i<j
and its 1-jet prolongation,
(1) ; 0 ouh ou™ 0
X3/ = - — i
M U GY%; ZZ <a K Yhj + O .7 Yhi ayz]
0*ul 0*uh ou” ul u”
- ; (6:6181"“ Yhj + Wyhi + %yhj,k + @yhi,k + W?/ij,h)
" 0
Yij k-
—6
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(2) From [10, Proposition 3] (also see [20, VI, Proposition 21.1]) we know
that the natural lift of X to F'(N) is given by
- .0 out ;0
X =u'"— —
Y 0ut T 02l 9al

and its 1-jet prolongation

~ .0 o’ 0 .0
W) _ i L 9 i 9
X b 8xi+3x1x16x; +vjk8x;k’
out oul 0%

% %

Yjk = ol Tjk — oxk Tjp+ Oxkor! Ly

(3) Finally,

R 0 (P oy O 0 0
7 ox T \0widah  9al TN 9ak T 00i ) AL
v (1) i 0 i 0 i 9
X, = . o o Z
A Y URA LRy TR
i 0%’ out out . oul
wjk = _7axj8$k + @Ajk - w i % lk> (25)
; 63ui a2ui . 82ul : 02ul ;
Wikh = T D uh i ok + dxhdxl IF T fxhozk A = Ozhdzi Ik (26)

out ot . out oul

2 7
T o ik T gk Ailh T B Ak T gk Akl

Let p: M xn C' — N be the natural projection.

We denote by f = (far, fo) (resp. X = (Xar, X¢) € X(M xn C)) the nat-
ural lift of f (resp. X') to M x C. The prolongation to the bundle J YM x
C) of X is as follows:

X = (Xﬁ’)gg)) _ i

ozt
0 0 .0 , 0
+ Vij s — + Vijk 5 T Wik T Wikh 5 (2.7)
where
ou™ ouM
Vij = *%yh]‘ - @yhia (2.8)
9%ul A%yl ouM ouh ouM

Vijh = =gk Yhi T ek Yhi T g Yhik = 55 Yhik — 5 Yiih (2.9)

and wj-k, wj’kh are given in the formulas (2.5) and (2.6), respectively.
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2.3 Diff N- and X(IN)-invariance

A differential form w, € Q"(JY(M xy C)), r €N, is said to be Diff N-
invariant — or invariant under diffeomorphisms — (resp. X(N)-invariant) if
the following equation holds: (f(V)*w, = w,, Vf € Diff N (resp. Lioyw, =0,
VX € X(N)). Obviously, “Diff N-invariance” implies “X(N)-invariance” and
the converse is almost true (see [14,28]). Because of this, below we consider
X(N)-invariance only.

A linear frame (X7,...,X,) at z is said to be orthonormal with respect to
gz € M(N) (or simply gg-orthonormal) if g,(X;, X;) =0for1 <i<j <n,
9g( X, X;)=1for1 <i<n*t g(X;,X;)=-1fornT +1<i<n.

As N is an oriented manifold, there exists a unique p-horizontal n-form v
on M xy C such that, v, r ) (X1,...,X,) =1, for every g,-orthonormal
basis (X1,...,X,) belonging to the orientation of N. Locally v = pu,,
where p = \/(—1)"_ det(y;;) and v, = dx! A--- Adz". As proved in [30,
Proposition 7], the form v is Diff N-invariant and hence X(NV)-invariant. A
Lagrangian density A on J'(M xy C) can be globally written as A = Lv
for a unique function £ € C*®(JY(M x y C)) and A is X(N)-invariant if and
only if the function £ is. Therefore, the invariance of Lagrangian densities
is reduced to that of scalar functions.

Proposition 2.1. A function £ € C®°(JY(M xy C)) is X(N)-invariant if
and only if the following system of partial differential equations hold:

0= XL), Vi,
0=X; (L), Vh,i,

! 2.10
0=Xk(L£), Vh,i<k, (2.10)
0=X"*" (L), Vi,j<k<h,
where
~ 0
X’L - )
Bt Vi,
, 0 0 0 0 0
Xy = ~Ynhig— —Ynhjm— — Yihks—— — Yhjk i — Ysjh
h Oyii 7 Oyij 0Yii k P Oyijik ; T Oysji
+A’L a r a r a
ik o Aihaar — Shka g
J 8A§?k J 0A%, AT,
, 0 0 0 0
Ay —— — A%, ——— — A, ——— — A ——— Vh,i
+ Jk,s 8A?k’s jh,r aA‘?i’T hk,r 8Afk7r jk,h 8A§k7i7 2
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xik = o 0 o9 90 0
I Sy OYii k Yih OYkr, Y 0Yijk Yhg OYkj.i 8Alhk AL
0 8 0
+ Aks Sh S h’l‘ S
! aA?s i ! aA]k aAkrz
0 0 0
Al o h, 1<k 2.11
+ JSaAh JhaAjzk hraAfrk7 Vh, i <k, ( )
; 0 (9 0 0 0 0
Xl?kh = S S S 4+ S —
aA;k,h aA;'h,k 8A;Lk,j aAzj,k aA}vj,h aA}vh,j
Vi, h <j<k. (2.12)
Moreover, the vector fields X*, X,i, Xﬁk, Xijkh are linearly independent and
they span an involutive distribution on J*(M xx C) of rank n(n;’rg) Hence,
the number of functionally invariant Lagrangians on J*(M xx C) is
L5t 1308 502 4 3
5 ( n- +3n° —on” + n) .
Proof. According to the formula (2.7), £ is invariant if and only if,
- 0L , oL
i + Z UU + Z vl]k 319 7 + w;’kh 7 =0,
890 1<j 1<j aA aAjk,h
Yu'l € C*°(N),
and expanding on this equation by using the formulas (2.8), (2.9), (2.5) and
(2.6), we obtain
0L
0=u"—
Y O
+8u oL o oL 0L
Ozt —Yhimy — (9 3 — Yhy 8%’]‘ Z/zh,kiayii’k yhj,kiayij’k
Z y oL , OL ., 0L
th ik h ih r  ‘*hk g Ar
< 4 8Ajk J 0AY; 0A%,
oL s oL s oL , oL
+ Ajk S@Ah A]h TaA; Ahk,r 8Ask jk, haArk )
7,7 ik,r 7kt
—®
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Lot (o ar ot
Oxtoxk Yih 0Yii ke Yhj 0Yij i 8A£f”k
oL oL oL
+ Aks Sh S 21“ r
J 8Ah , J 8Ajk AL,
B o3’ oL
Ox"dxkdxI 8A§.k7h'
This equation is equivalent to the system of the statement as the values
for u”, ou’ /0, 0*ul )0z 027 (i < j), and BPu/Ox0xI0z* (i <j < k) at
a point € N can be taken arbitrarily. Moreover, assume a linear combina-
tion holds
A Xa AaXb + Z )\ Xbc + Z )\bchde
b<c b<c<d
A, AL AL AL € C(JHM xn C)). (2.13)
By applying (2.13) to 2 (resp. yqp) we obtain A\, = 0 (resp. A} = 0); again
by applying (2.13) to Ag., b < ¢ (resp. AZ., ¢ < b) and taking the expressions
of the vector fields (2.11) and (2.12) into account, we obtain Af, =0, b < c
(resp. Aj, =0, ¢ <b). Hence, (2.13) reads > ;.4 M Xbed =0, and by
applying it to Aj, ; and taking the expressions of the vector fields (2.12)
into account, we finally obtain A7 ;, = 0. The distribution
(1 1.
DMXNC = {X((]»})g,]}csr) X € %(N)v (J;QJ%SF) € Jl(M XN C)}
in T (JY(M xy C)), where X is defined in (2.7), is involutive as
[X“),Y(U} ~ ™, vx,y e x(v),
and it is spanned by X* X };,X}Zﬂ, Xg kh, as proved by the formulas above.
The rest of the statement follows from the following identities:
XX XR i <k XM h < §<kihigk=1,...,n}
=n+ ’/L2 + n(n+1) + n(n+2) — n(n;?;)’
dim J* (M x C)—n("f’) G (5n +3n® — 5n* + 3n) .
O
—6
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3 Invariance of covariant Hamiltonians
3.1 Position of the problem

On the bundle ¥ = M X  C, an Ehresmann connection can locally be writ-
ten as follows:

Y= Z (dyij + 7¢jkd$k) © 83@' * (dAé’“ + W;kldxg ©

1<j
’Yz'jkﬁ;'kl € C*(M xy C). (3.1)

oA,

In particular, for a Lagrangian density A on J'(M xy C), we obtain

oL ; - oL
A = E (’Y"k +y“,k>7 + <71‘kl +Az‘kl>7‘ —L
SN T oy TR 04y,
x dxt Ao A da,
or equivalently, LY = DV(L) — L, where
0 » ; 0
;Sj ] 17, ayij,k Jkl gkl 314%;

Remark 3.1. The horizontal form (p})*y — 0 = (v + y&) da' ® 9/dy" can
also be viewed as the p(l)—vertical vector field

G,
D7 = (v + i) o (3.2)

taking the natural isomorphism V (p}) = (p)*(p*T*N ® V(p)) into account
(cf. [23,24,32,34)).

According to the previous formulas, this means: if the system (2.10) holds
for a Lagrangian function £, then it also holds for the covariant Hamilton-
ian L7,

If X e {Xi,Xz,Xﬁk,kah}, then X (£7) = X (DY(L)), as L is assumed
to be invariant and hence X (£) = 0. Therefore

X (£7) = X (D7(£))
= [X, D] (L),

and we conclude the following:
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Proposition 3.2. The property (P) holds for an Ehresmann connection
v on M xXn C if and only if the vector field DV transforms the sections
of the distribution Dyrx yo into themselves, namely, [DY,T'(Dyrxyc)] CT

(DMXNC)'

The problem thus reduces to compute the brackets [X ",Dﬂ, [X,?L,DV],
[Xik, D], and [ngh,D'Y]. We have

0Yijk aVi‘kz 0
X" D7 J J : .
[ ’ ] Z Oxh 8yuk oxh 8A;-kl’ (33)

[ng“, D”] - ng“, Vb,c<d<a,

+ Z Nihk 5

+ Z ’Yhzk

Xh: D7 Z Yh Yabk)

a<b bk ik h<i
+ Z Vhik g — T Z itk 5 + Z Nabh 7 ——
h<j Jik
4 4 0
+ <Yfz (’Yl()lcr) - 53’%)074 + 5@'071%7" + 57?7%67" + 5?’chh) aAa ’
be,r
(3.4)
ik 1y ik 9 ik (. d 9 ik
[Xh D ] = Z Yh (7abc) 87 + Yh <7abc) 0Ad + X Yh ) (3'5)
a<b Yab,c ab,c
where
, 0 0 -0 0 0
Vi— i —— — '7—|—AZ~ _ AT _ 7"7’
h Yhi B Yhj Dy ik g A?k ihg A}% hk g Agk

Yik — _i _ i
h gAL oA’

and the following formula has been used:

ayrs,k

= ok 5r(55 + 5T58 AR
Yijn h( )

79rYs

3.2 The class of the Ehresmann connections defined

Let pr: M xyC — N, pri: M xyC — M, pry: M xnyC — C be the
natural projections. By taking the differential of pr; and pry, a natural
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identification is obtained T'(M xn C) =TM xpyn TC. Hence

Vi(p) =V(pm) xn V(pc)
= priV(pm) @ prsVipe)

and two unique vector-bundle homomorphisms exist
Y priTM — priVipu), e: pr3TC — priVipe),
such that,

V(X) = (7M (prl*X) y YC (pr2*X))7 VX € T(M XN C),
w(Y)=Y, VY cpriV(pum),
vo(Z) = Z, NZ € pr3V(pc).

If  is given by the local expression of formula (3.1), then

, . o
™M = Z (d?ﬁj + %‘jkdxk> ® Su. €= <dA§'k: + ﬁkzdﬂ?l) ® DAL
— Yi i
1<j J jk
%‘jka')’j‘kl € C®(M xy C).
3.2.1 The first geometric condition on ~
Let g: F(N) — M be the projection given by
q(le e 7Xn) = Gz
= ahwh & wh, (3.6)

where (wl, ... w") is the dual coframe of (Xi,...,X,) € Fy(N), i.e., g, is
the metric for which (Xi,...,X,) is a gy-orthonormal basis and €, = 1 for
1<h<nt', g,=—1for n" +1<h<n. As readily seen, ¢ is a principal
G-bundle with G = O(n*,n™).

Given a linear connection I' and a tangent vector X € T, N, for every u
in p~!(x) there exists a unique I'-horizontal tangent vector X/'r € T,,(FN)
such that, (pr)«X" = X. The local expression for the horizontal lift is
known to be ( [20, Chapter III, Proposition 7.4]),

aN"™ o _, .0
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Lemma 3.3. Given a metric g, € py; (2), let u € pp'(x) be a linear frame
such that q(u) = g,. The projection q*(Xf}Fz) does not depend on the linear
frame w chosen over g.

Proof. In fact, any other linear frame projecting onto g, can be written as u -
A, A € G. As the horizontal distribution is invariant under right translations
(see [20, II, Proposition 1.2]), the following equation holds: (Ra), (X/'T) =

hr
X, 4 Hence

G+ (XZL.FA) = G« ((RA)* (X]}F))
= (go Ra), (XIr)

= G« (XLLF) :
g

Proposition 3.4. An Ehresmann connection v on M xy C satisfies the
following condition:

(C): (9, L) X) = X = qu (((an)o (X)),

VX €Ty, M, u€ q '(g:), (which does not depend on the linear frame u €
q¢ 1(gz) chosen, according to Lemma 3.3) if and only if the following equa-
tions hold:

ij = — (Yar Ay, + yarAG) , (3.8)

where the functions Yy (resp. yij, resp. A;k) are defined in the formula
(3.1) (resp. (2.2), resp. (2.4)).

Proof. Letting (Xé-)gfj:l = <(x;)?]:1>7 , the dual coframe of the linear

frame u = (X1,...,Xy) € Fy(N) given in (2.3) is (w!,...,w"), w" = x}(u)
(dxk)x, 1 < h < n, and the projection ¢ is given by

q(u) = ga
- 22:1 enXp(w)x]' () (d"”k>x © (dxl)x '
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Therefore the equations of the projection (3.6) are as follows:
e pp——

" h. h
Y1 ©q = thl EnXEXT -

2\ _ NG n, nOX 9

k<l

Hence

Taking derivatives with respect to xj on the identity X,f}mf = 5?, multiplying
the outcome by X,;, and summing up over the index ¢, the following formula
is obtained: axk /0xf = _XZXZ- Replacing this equation into the expression
for q. (0/0zy),, above, we have

G <aig)u =-> {XZ(U)yaz (92) + X7 () Yak (gx)} <8§m>g$

k<l

From (3.7), evaluated at u € ¢~ *(g,.), we deduce

- (ai)h - (ai) — I, (@)af(u)g. @b) )
(a2,
+Zk<, @) () xRy (9:) + xb W (9:) }
x <a§kl>

<8x]>gz+z{F]k VYat (92) + T5i()yak (92) } <3jkz>gm

k<l

The condition (Cyps) holds automatically whenever X € V(pys). Hence,
(Cwr) holds if and only if it holds for X = (0/027),,, namely,

0 0
VElj gra x ( ) =TM ((gzyrx)a <) >
k§<:l J 8ykl oxd g
0 & \'r=
~(am), ~*(am),
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== > ATS(@)ya (92) + T51(2)yak (90)}
k<l

“ (3e)
Oy ) ,,
thus proving formula (3.8) in the statement. (]

3.2.2 The canonical covariant derivative

As is known (e.g., see [20, III, Section 1], [23, pp. 157-158]) every connection
I" on a principal G-bundle P — N induces a covariant derivative V! on the
vector bundle associated to P under a linear representation p: G — GI(m,R)
with standard fibre R™. In particular, this applies to the principal bundle
of linear frames, thus proving that every linear connection I' on N induces
a covariant derivative VI on every tensorial vector bundle £ — N.

The bundles (pc)*E, where E is a tensorial vector bundle, are endowed
with a canonical covariant derivative V¥ completely determined by the
formula:

(V%) (7)) (Ta) = (X)) (L) + (T2) (Vi 1) (), (39)

for all X € Tr,C, f € C*(C), and every local section £ of E defined on a
neighbourhood of x. The uniqueness of V¥ follows from (3.9) as the sections
of E span the sections of (pc)*E over C*°(C), see [8, 0.3.6]. Below, we are
specially concerned with the cases E = TN and E = A>T*N ® TN.

3.2.3 The 2-form associated with v,

As pc: C — N is an affine bundle modelled over @?T*N ® TN, there is a
natural identification

V(pe) = (pe)” (*T*N @ TN)

and consequently, an Ehresmann connection ¢ on C' can also be viewed as
a homomorphism vo: TC — ®2T*N ® TN. If 4¢ is locally given by

9
AL,

then

Yo = (dAé'k + 7§kldxl) ® da’
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and y¢ induces a 2-form ¢ taking values in (pc)*(T*N ® T'N) as follows:

Fo(X,Y) = e1 ((00)«(Y) @ 7c (X)) = e1 (po)«(X) @ 7e (V)
VX,Y € TFQCC,

where

cl: TNRT*N®T*N TN — T*N @ TN,
o1 (X1 ®@w ®wr ® Xa) = wi (X1)ws ® Xy,
X1, Xy € T,N, wy,wy € TFN.

If v¢ is given by (3.10), then from the very definition of 4 the following
local expression is obtained:

Fo = (dAf, + (Ve — Yon) da®) A da! @ da & R
3.2.4 The second geometric condition on ~y

Let altio: @2T*N @ TN — A?T*N @ TN be the operator alternating the
two covariant arguments.

The vector bundle (pc)* (A?T*N ® TN) admits a canonical section

™w:C — N*T*N @ TN,
() =T", ¥I,ecC,

where T' " is the torsion of T',. Locally,

. . ‘ D)
f§ : % % k
J

From the previous formulas the next result follows:

Proposition 3.5. Let v be an FEhresmann connection on M Xy C, let
v = VE with By = TN, let RYY be its curvature form, and finally, let
V® = VE2 with By = A2T*N @ TN.
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(Cc) Assume the component yo of 7y is defined on C. Then, the equations

jo =R"", (3.11)
altys o vo = V@1, (3.12)

are locally equivalent to the following ones:

’7?1‘,7“ - ’Yﬁts = A:“LmAZZ - AZmAzzv (313)
’stt - ’Y?rt = A?m (A:"r; - Ag;ﬁ) + AZL (Afm" - Aﬁm)
+ AT (Af;m - Afn5> . (3.14)

3.3 Solution to the problem (P)

Theorem 3.6. If the connectiony on M X n C satisfies the conditions (Cy)
and (C¢) introduced above, then the vector field DV satisfies the property
stated in Proposition 3.2 and, accordingly the covariant Hamiltonian with
respect to vy of every X(N)-invariant Lagrangian is also X(N)-invariant.

Proof. When v, satisfies the condition (Cjs) the brackets (3.3), (3.4), and
(3.5) are respectively given by

Mg 0
xh pr] = Dm0 3.15
[ } oxh aAék,l ( )
7 ¥ N h.i Cc.a b.a T Q 0
[Xhﬂ D ] = (Yh (’chr) - 5a7bcr + 51 Yohr + 6i7hcv’ + 61 7bch> A (316)
be,r

[ 7] = (= 5+ o (348, ot — oty
ik

a%czlbc c [ sh pi i ad i ad 0
- oAn + 0% <5d ab — OpAan — 5aAhb> 781‘%0'

In addition, if ¢ satisfies the condition (C¢), then taking derivatives with
respect to 2" in (3.13) and (3.14), we obtain

671113' 37}% 87;%[ a%@jz

oxh — oxh’  dxh Oz’
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and renaming indices we deduce
aV;jk _ aV}kj _ 371%’]' (j < k)
Oxh Oxh oxh ’
a%@kj _ 87}@'1@ . 8’Ygz'kk G < k)
arh — azh  fah VY ’ '
87}kl _ 8’713” _ 8’Ylljk _ a%lcjl _ a’Yszj _ 87}11@ k<
oxh — 9xh  Oxh  Oxh  Oxh  Ozh <k <.
From (3.15) we obtain
oy, . 1 o
h _ Jkl 5-jkl JIk xrdik
LU RS - PO =
J<k<l j<k
L Dy iy 10%55 g0
- XRki 271935 i
22 oxh ~t +68xh v
i<k
and consequently the values of [X h D“’] belong to the distribution Dysx yc-
Moreover, as y¢ is assumed to be defined on C, we have
A A A A e
Vi (Ver) = (07 A5, = 01 A3, — 03 A5) =
8Ajk
For the sake of simplicity, below we set
'\ . 9%, Sl Nber _ chi o sb
(T]?L)bcr = ;k aA]}i; - ?h 8AJ§: - ?Lk aA;}: _5a’717;cr+5i Vgcr+5§’yghr+5;fygch‘
Taking derivatives with respect to A%, equations (3.13) and (3.14) yield
oy oe : ; ; <
e — ST 551 Af, — 6162 AL, + 5]06 AL, — 010E A,
ik ik
a%ﬁlbc a’}/ll)lrc — §ige Ak 5289 Ak 5ask AT _sas5i AR 5a5kAj 5a5jAk
DA _BAS — YeVYs b 7 YsVeor T YsUber T YsYr cb+sr cb+8b cr
ik ik
b OI0E AL — 5158 AT+ 5108 AT, — 510% A%+ 518% A5,
—olokAe
—®
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From these expressions, the following symmetries of indices are obtained:
a a a
(T/i)bbc = (Tﬁ)bcb = (T}Zl)cbb (b <o),
) i\ a i\ a
(T’ll)bcc = (T’ll)cbc = (Tfll)ccb (b < C)7

a

(T)oea = M) ape = W) e = (Ti)pse = (Tn) gy = (Th) g (b < € < d),
and from (3.16) we obtain

) . 1 )
XD = 3 (T, X LS (g, X
b<e<d b<c

1 . 1 )
13 ), X (), X0
b<c

Hence [X,"l, DV] also takes values into the distribution Dy« yc-

The proof for the third bracket is similar to the previous two cases but
longer. Letting

() =~ — e 90 (sl — oy, — ot
o+ of, (O AL, — 84z, — 5147, )

the following symmetries are obtained:

. a . a . a
Tzk:) _ <Tzk> _ (T2k> b ,
( h bbc h beb h cbb( < C)
T’Lk‘) @ — (T’Lk) @ — (le) @ b ’
( h bee h cbe h cchb ( < C)

. a . a . a . a . a . a
T@k) _ (Tzk) <T2k> — (Tzk> — (Tzk) _ (T'Lk>
( ") bed h) dbe h ) cav ") bde ") dew h) cba

(b<c<d).

Hence
a a

‘ . 1 ,
xik D'y} _ (Tzk) xbed 4 2 (Tzk) bbe
[ ho 2. (T WELERE ; " e

b<e<d

1 o\ a 1 N a

1 Tzk) xoob - (Tzk) Xbb.
+2§<h et TG TRy e

and the proof is complete. O
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Theorem 3.7. The Ehresmann connections on C' satisfying equations (3.11)
and (3.12) are the sections of an affine bundle over C modelled over the
vector bundle (pc)” (S3T*N®TN). Consequently, there always exist
Ehresmann connections on M x n C' fulfilling the conditions (Car) and (C¢)
introduced above.

Proof. If two Ehresmann connections v¢,7 satisfy equations (3.11) and
(3.12), then the difference tensor field t = v, — ¢, which is a section of the
bundle (pc)* (®*T*N @ TN), satisfies the following symmetries:

t(X1, X2, X3) = t(X3, X2, X1), (3.17)
t(X1, X2, X3) = t(X2, X1, X3), (3.18)

according to (3.13) and (3.14), respectively, for all Xy, X9, X35 € T, N, ', €
Cz(N). Hence

(317) (3.17)

3.18
t(X1, X3, X2) (X2, X3, X1) 428 t(X3, X2, X1) = (X1, Xo, X3),
thus proving that ¢ is totally symmetric. The second part of the statement
thus follows from the fact that an affine bundle always admits global sections,
e.g., see [20, I, Theorem 5.7]. O

Remark 3.8. The results obtained above also hold if the bundle of linear
connections is replaced by the subbundle C*%™ = C¥™(N) C C of symmet-
ric linear connections; the only difference to be observed between both bun-
dles is that in the symmetric cases equation (3.12), or equivalently (3.14),
holds automatically.

4 The second-order formalism

In this section we consider the problem of invariance of covariant Hamilto-
nians for second-order Lagrangians defined on the bundle of metrics, i.e., for
functions £ € C*(J?M), where M denotes, as throughout this paper, the
bundle of pseudo-Riemannian metrics of a given signature (n*,n~) on N.

4.1 Second-order Ehresmann connections

A second-order Ehresmann connection on p: E — N is a differential 1-
form 72 on J'E taking values in the vertical sub-bundle V(p') such that
7?(X) = X for every X € V(p'). (We refer the reader to [29] for the basics
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on Ehresmann connections of arbitrary order.) Once a connection 72 is
given, we have a decomposition of vector bundles T(J'E) = V (p') @ ker 42,
where ker+? is called the horizontal sub-bundle determined by ~%. In the
coordinate system on J'E induced from a fibred coordinate system (27, y®)
for p, a connection form can be written as

. o )

7 = (dy* +5da’) @ 9y + (dyf* + y3da’) ® V8, € C(J'E).
(4.1)

As in the first-order case, the action of the group Aut(p) on the space of

second-order connections is defined by the formula

9
oy’

7

P47 = (@MW), 0920 (@)1, VD € Aut(p).

As @ J'M — J'M is a morphism of fibred manifolds over N, (&),
transforms the vertical subbundle V (p') into itself; hence the previous defi-
nition makes sense.

4.2 A remarkable isomorphism

Theorem 4.1. Let 'Y be the Levi-Civita connection of a pseudo-
Riemannian metric ¢ on N. The mapping (n: J'M — M xy CY™,
(N(jlg) = (92, T%) is a diffeomorphism. There is a natural one-to-one cor-
respondence between first-order Ehresmann connections on the bundle p :
M xn C¥™ — N and second-order Ehresmann connections on the bundle
py: M — N, which is explicitly given by,

7 = ((¢K)) T ey o (w).,s (4.2)
where v: T(M xy C¥™) — V(p) is a first-order Ehresmann connection,
(), TCIAM) — T(M x Co)

is the Jacobian mapping induced by (n, and (C¥), : V(pi,) — V(p) is its
restriction to the vertical bundles.
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Proof. As a computation shows, the equations of {j in the coordinate sys-
tems introduced in Section 2.1.2, are as follows:

7o (y =7,

Yij © CN = Yij,
1 . .
Aoy = §yhk(yik,j + Yjki — Yijk), 1 <7, (4.3)

where (y”) j—1 is the inverse mapping of the matrix (y;;);;_; and the func-
tions y;; are deﬁned in (2.2). Hence

2o le — 4
vij o (' = vijs
Yijk © (' = niAly + ynj Al 1< (4.4)
As the diffeomorphism (n induces the identity on the ground manifold N,

it follows that the definition of 72 in (4.2) makes sense and the following
formulas are obtained:

72 <air> = Z (’Yabr o CN Z 'ngkr s

a<b Yijk

1 Z danObi + 0aidbh

hi
Yijkr = ) 1+ op, (Yabr © CN) Yy (yjl,k + Yrij — yjk,l)

a<b
< Z ahéb] + 5(1] 5bh

1+ 0n, (Yabr © CN) Y™ (Yirk + Ykti — Vi)

a<b

+Zl+5 (’VJM <N>yhz+zl+5 (’YZLLjTOCN)yhi

+Zl+6 (%ar <N>yhj+zl+5 (’YgiroCN>yhj7

where

v = Z (dyij + ’yijkdack) ®

i<y

9 C 9
By J; (dAjk + ijzdiﬁl) ® oA,

or equivalently,

1 . .
— (4, +~id l)
3y, + G- ( ik TV ar ) ©

1
S FT— O
gl 2_5”(@/#7%3? ® OAL,
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assuming yp;r = Yihr for h >4, and 'yj}?kr = vﬁjr for j > k. Taking the sym-
metry A;-k = Aj, ; into account, we obtain

1

Vighr = 5 (Yhir © CN) Y™ (jn + Yrj — Yjk)

. Wi, L
+3 (Yngr © CN) Y™ Witk + Ykti — Yik,1)
+ (vﬁ;r o CN) Yhi + (’Vﬁw o CN) Ynj-
Hence
i 1= AR Al h : h S < (4.5)
Yijkr © CN Yhir gk + YhirAik + ijryhz + VikrYhjs > J- .

Permuting the indices i, j, k cyclically on the previous equation, we have

1 B B B
Vijr =~ Ay = 5 (ke 0 Gy = Yikir © Cv' = Whigr 0 (') 4™ (4:6)

thus proving that the mapping 7 — 7? defined in the statement, is
bijective. O

4.3 Covariant Hamiltonians for second-order Lagrangians

The Legendre form of a second-order Lagrangian density A = Lv, on the
bundle p: E — N is the V*(p!)-valued p-horizontal (n — 1)-form wy on
J3E locally given by (e.g., see [17,26,35]),

WA = iggpivn ® (LA dy™ + LY dys)

where
. 1 oL
LY — = 4.7
@ 2 — 52‘3' 8y%7 ( )
- oL 1 oL
b= _ D 4.8
“ oy ;2—% ]<8y§}-)’ 9
and
0 > o 0
Di=ga* > YI+() gya
IeN™ |I|=0

denotes the total derivative with respect to the variable x7.

The Poincaré-Cartan form attached to A is then defined to be the ordi-
nary n-form on J3E given by, O = (p3)*0% Awp + A, where 62 is the
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second-order structure form (cf. [33, (0.36)]) and the exterior product of
(p3)*6? and the Legendre form, is taken with respect to the pairing induced
by duality, V(p') x j1z V*(p') — R. The most outstanding difference with
the first-order case is that the Legendre and Poincaré—Cartan forms associ-
ated with a second-order Lagrangian density are generally defined on J3E,
thus increasing by one the order of the density.

Similarly to the first-order case (see [11,24]), given a second-order
Lagrangian density A on p: E — N and a second-order connection v? on
p: E — N, by subtracting (p3)*6? from (p3)*y? we obtain a p3-horizontal
form, and we can define the corresponding covariant Hamiltonian to be the
Lagrangian density A7 of third order,

A = ()" = (99)6°) Awa — A (4.9)

Expanding on the right-hand side of the previous equation, we obtain a
decomposition of ©, that generalizes the classical formula for the Hamil-
tonian in Mechanics; namely, Ox = (p3)*y? A wy — A", With the same
notations as in the formulas (4.1), (4.7), and (4.8) the following formula
is deduced:

2 «@ @ 7 «@ @ 7
L = (3 + yf )Ly + (v + v LY — L. (4.10)

Because of equation (4.8), ©, and LY are generally defined on J3E.

4.4 Invariant covariant Hamiltonians on J2M

Lemma 4.2. If v is a first-order Ehresmann connection on M Xy C%™
satisfying the conditions (Cyr), then the following equation holds for the
second-order Ehresmann connection v2 on M given in the formula (4.2):

Yabr © CN = —Yab,r-
Proof. Actually, from the formulas (3.8) and (4.3) we obtain
Yabr © SN = = (Umb (A7 © (V) + Yma (A7} 0 CN))
= —% {ymbymk(yrk,a + Yak,r — Yrak)
+ Yma¥™ Yk + Yok — yrb,k)}

= ~Yab,r-
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Lemma 4.3. If a first-order connection v on M Xy C®™ satisfies the con-
dition (C¢) introduced above, then the following formulas for its components

hold:

71}}ts - 'Yilst = Ah i Ah Al (411)

smAirt — “tmAirs:

Proof. As the bundle under consideration is that of symmetric connections,
the following symmetry holds: 'y(];bc = 'y{}ac, and we have

Vrts = Vhtr — (Ah w— AL Am) [by virtue of (3.13)]

rm<ist — ‘lsmAirt

rm* st sm*rrt

— ey = (Al AT - AB, AT

= (4l -+ Al AT — AL AT [by virtue of (3.13)

rm<ist — ‘HmLirs

rm* st sm*rt

— (Ab, AT AL A7)

=+ (Ah Am _ ah Am).

sm*irt tm*irs

Proposition 4.4. Let

2 (1) .72 1 Sym
Go= |, o M = T (M ey O

be the restriction to the closed submanifold J>M C J'(J*M) of the prolonga-
tion C](\}): JYIYM) — JYM xn C™) of the mapping Cy defined in Theo-
rem 4.1. For every (jlg, jiT) € JY (M x y C™) there exists a unique j2g' €
J2M such that, jlg' = jlg and j;I‘gl = jiT and the mapping »: J'(M xn
CY™) — J2M defined by »(jlg, jiT') = j2g’ is a Diff N-equivariant rectract

of (%.
Proof. From the formulas (4.3) and (4.4) we obtain

ag;‘] / g/ h / gl h
Oz = 95 (T )k + 95 (T )i

(09)h = lg/hk (agvllk n Ody. 8g§j>
ij

2 oxJ ozt Oxk
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for every non-singular metric ¢’ on N. Hence the second partial derivatives
of g;; are completely determined, namely

azgz] 69hz arh 8ghj 8Fhk

P 4 g 99h; ph
St = gat L+ omi 2 P+ oy

Moreover, the Levi—Civita connection of a metric depends functorially on
the metric, i.e. 3 ¢ 'Y =T%9 for every ¢ € DIff N. Hence, by transforming
the equations jlg' = jlg and le‘g = jlTI'Y by ¢ we can conclude. ([l

Theorem 4.5. If a first-order Ehresmann connection v on M xpy C™
satisfies the conditions (Cyr) and (C¢) introduced above, then the covariant
Hamiltonian A attached to every Diff N -invariant second-order Lagrangian
density A on M with respect to the second-order Ehresmann connection y?
on M defined in formula (4.2), is defined on J*M and it is also Diff N-
mvariant.

Proof. Given a Diff N-invariant second-order Lagrangian density A = £Lv on
M let A" = L'v be the first-order Lagrangian density on M x y C*™ given
by A’ = »*A, which is also Diff N-invariant as s is a Diff N-equivariant map-
ping according to Proposition 4.4. Moreover, as s is a retract of CJQV, we
have ({12\,)* AN = (C]QV)* A= (xo0(%)*A=A, ie, A= ((]2\,)* A’. This for-
mula is equivalent to saying £ = £’ o (%, as the n-form v is Diff N-invariant,
and it is even equivalent to L = L' o C]2V because CJQV induces the identity
on N.

We claim £7° = (L) o ¢%. This formula will end the proof as the map-
ping (% is Diff N-equivariant and (£’)” is Diff N-invariant by virtue of The-
orem 3.6.

To start with, we observe that formula (4.7) for A can be written, in the
present case, as follows:

1 oL
2 = 0ij OYab,ij’

Labij —

or equivalently, letting £%% = p~1 b

1 oL
2 — 51] ayab Ky '

£ — (4.12)
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Taking the formula in Lemma 4.2 into account, formula (4.10) for A reads
as LV = Zagb(')/abij + yab,ij)L“bij — L, or even

2 ..
L7 = (Yabij + Yabij) L — L,
a<b

where £V = p_lL”YQ. Hence £7° is defined over J2M. As Yab,ij = Yab,jis We
obtain

d(L o3
’C7 = Z Z < ’yabw + /yabjz) + Yab Z]> w — Lo <J2V

a<b i<j 3yab7z’j
- Z Z Z < PYabz] + ’Yab]z) + Yab 1]>
a<b i<j k<l
" oL’ o (2 (AZI CN) o
= - mha V7 &
Ay ") Ovavis
_ 1 hm o o
- Z 4y (’Ykmql + Vkmlq + Vimagk + Vimkq — Yklgm 'Yklmq)
k<l
oL
<8Ah O ) + Z ykm ,ql + Yim qk — ykl,qm)
ki k<l

Moreover, we have

oL’

oL’ - ,
+ 37 (i + Algy) i — L.
= ( bl b,l) 8Aab,l

'C/W: abe t Yab,c
(£) =" (a yb’)ayabc

a<b )

Hence

oL’
(‘C/)’y °© CZQV = E (7]izllq o(N + AZl,q o CN) <8Ah o <]2V> —L' o C]QV
kl,q

k<l
rh
- Z { 'Ykqu VYirkq — ’Vrqu) Yy
k<l

1 oL’
+ 5 Ukrig + Yirkq — Yklrg) yhr} ( o ]2\,> — L o (%

\)
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Consequently, the proof reduces to state that the following equation:

1 1
1 (’Yqul + Vkrlq + Virqk + Nirkq — Vklgr — ’Ykqu) = _5 (Vkqu — Vrkq — ’Yrqu)

holds true, or equivalently,
0 = (Yijrer — Yijrk) + (Yirjk — Yirkj) + (Vrjki — Vrjik) - (4.13)

According to formulas (4.5) and (3.8), we obtain

Yijkr © (' = (’Yﬁ;r - AQQA?k) Yni + (%% - A:}aA?k> Yhy

- (A:}j i+ AﬁiA?k> Yah-
The third term on the right-hand side of this equation is symmetric in the
indices k£ and r, as Aj = A% . Hence,
(Yijtr — Vigrk) © Gy = (7fkr — Ve — Al AY + AZQA?T> Yhi
+ (’Yzhkr — e — AL A+ AZaA?r) Yhg-
By composing the right-hand side of equation (4.13) and C&l, and taking the

previous formula and formulas (3.13) and (4.11) into account, we conclude
that this expression vanishes indeed. ]

5 Palatini and Einstein—Hilbert Lagrangians

Let us compute the covariant Hamiltonian density attached to the Palatini
Lagrangian. Following the notations in [20], the Ricci tensor field attached
to the symmetric connection I is given by ST (X,Y) = tr(Z — R'(Z, X)Y),
where R denotes the curvature tensor field of the covariant derivative VI
associated to I' on the tangent bundle; hence S* = (R") jldzrl ® dx?, where

(R")j0 = (R)5y,
(R")jy = Or%; /0ak — 0T foat + THTY,,, — TTL,,.

The Lagrangian is the function on J'(M x C¥™) thus given by,

Lp(j29,42T) = g7 (2)(B")ij(x)
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and local expression

Lp= yl](A?j,k - A?k,j + A?}A’zim - A%Afm)
As a computation shows, for every first-order connection v on M xp C™
satisfying (4.11) and taking the formula (1.2) into account, we obtain L}, =
0. This result is essentially due to the fact that the P-C form of the P
density Ap = Lpv = Lpw, projects onto M x y C®™. In fact, the following
general characterization holds:

Proposition 5.1. Let p: E — N be an arbitrary fibred manifold and let ~
be a first-order Ehresmann connection on E. The equation LV =0 holds
true for a Lagrangian L € C®(J'E) if and only if, (i) the Poincaré-Cartan
form of the density A = Lv, projects onto JE and, (i) L = ((p})*y —
0, dLly p))-

Proof. The equation L7 = 0 is equivalent to the equation D7L = L, where
D7 is the pj-vertical vector field defined in the formula (3.2), and the general
solution to the latter is L = f(z%,y*, v* + y2), f(z*,y% y¥) being a homo-
geneous smooth function of degree one in the variables (yf), 1 < a <m,
1 <i < mn, according to Euler’s homogeneous function theorem. As f is
defined for all values of the variables (y&), 1 <a <m, 1 <i<mn, we con-
clude that the functions L, = L/dy® must be defined on E. Hence L is
written as L = L (27, y®)y® + Lo(27,y”), but this is exactly the condition
for the P-C form of A to be projectable onto J'E = E, as follows from the
local expression of this form, namely,

_ oL
Oy

oL . . . . o OL
= @dy N9 /9ziVn + <L -y ayf‘) Up,.

O) 0% A ia/axﬁ}n + Luy,

Moreover, by imposing the condition DL = L we obtain Ly = L\~ or
in other words L = (7{* + y{")OL /0y, which is equivalent to equation (ii) in
the statement. O

The corresponding result for the second-order formalism is similar but
the computations are more cumbersome. Let us compute the covariant
Hamiltonian density attached to the Einstein—Hilbert Lagrangian. As a
matter of notation, we set S9(X,Y) = S’ (X,Y) for the metric g, I'Y being
its Levi-Civita connection, and similarly, (RY );kl = (RFg)ékl.
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The E-H Lagrangian is thus given by Lgy o j2g = (y¥ o g)(Rg)?hj. As the
Levi-Civita connection I'Y depends functorially on ¢, Ly is readily seen to
be Diff N-invariant; it is in addition linear in the second-order variables y;; x;.
By using the third formula in (4.3) the following local expression for Ly is

obtained:

1
Lgy = iy”yhd (Yaj.hi — Yij.dn — Yanij + Ynid) + Lrm

1 ..
EH = §y”‘{ym”ynwgyrd(yMJz+'yMLi—lﬁhd)

~ Y " Y n " Yidj + Yidi — Yij.a)

lhr md

+5yy (Yidj + Yjdi — Yijd) Yhrom + Ymrh — Yhmr)
L he md g, L . L
2y Yy (yld,h + Yhd,i yzh,d) (yjr,m + Ymr,j yjm,r) .

According to (4.12), for every first-order connection form vy on M x  CY™
satisfying the conditions (C)ys) and (C¢) above, we have

o 1 g y OLEn
Lpy = Z m(%bzg + yab,zJ)T

a<b ab,ij

- EEH?

and as a computation shows,

2 1 ..
Lly = 53/” (Yidjn + Yidih — Yijdh — Yidhj — Vhdij + Yinaj) Y

1 ..
+—§y”{yhmymﬁhyﬂ(w¢j+wﬁ¢w—ywd)
- yhmymr,jyrd (Yid,h + Ynd,i — Yihd)
1
—§¢@WW%M+wM—ym@@mm+%wﬁ—%mﬁ
1 hr_ md
+ §y Y (yid,h + Ynd,i — yih,d) (yjr,m + Ymr,j — yjm,r)

where the formulas (4.6), (4.11), (4.3), and Lemma 4.3 have been used. In
this case, the P—C form of the E-H density Agg = Lgnv = Lggvn,

@AEH = Z (Lglgdykl + Lgﬁldykm’) A ia/axivn + HUm (5'1>
k<l

! 1,k
H = Lgy — Z LEHykl,i7
k<l
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i 0Ly 1 0?Lgn

= - Yab,j ’
B Oy 2= 657" OyapOynaij
piikl _ 1 OLgn

B2 — 635 Oyriag|

(cf. (4.7), (4.8)) is not only projectable onto J2M but also on J'M (e.g.,
see [13]), although there is no first-order Lagrangian on J'M admitting
(5.1) as its P-C form. This fact is strongly related to a classical result by
Hermann Weyl ( [39, Appendix II], also see [18,22]) according to which
the only Diff N-invariant Lagrangians on J?M depending linearly on the
second-order coordinates y.p,; are of the form ALgp + p, for scalars A, p.
This also explains why a true first-order Hamiltonian formalism exists in the
Einstein-Cartan gravitation theory, e.g., see [37,38]. In fact, if

. 1 8LEH < ikl 6Li )
i i, EH
= Ykl hence L =
EH ™o 0ij OYklij YkL.j EH T Oy

and the momentum functions are defined as follows:

Ly
Oypr

i ki
Pri = Liy —
then
dO gy = dpri N dYkl N 1992100 + dH N vy,

and from the Hamilton-Cartan equation (e.g., see [13, (1)]) we conclude that
a metric g is an extremal for Agy if and only if|

a<pab,i o jlg) oH

0= : — i1
or? Mab °J 9
0 oH
0= awog) o ilg.
oz 8yab,i

On the other hand, it is no longer true that the covariant Hamiltonians
of the non-linear Lagrangians of the form f(Lgy), f” # 0, considered in
some cosmological models (e.g., see [1,6,9,12,19,21,31]) and those in higher
dimensions (e.g., see [15,36]) vanish. In fact, as a computation shows, one

has f(,CEH)’y2 = f’(,CEH)EEH - f(,CEH), \V/f c COO(R).
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