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Abstract

We discuss a natural form of Ricci-flow conjugation between two dis-
tinct general relativistic data sets given on a compact n ≥ 3-dimensional
manifold Σ. We establish the existence of the relevant entropy functionals
for the matter and geometrical variables, their monotonicity properties,
and the associated convergence in the appropriate sense. We show that
in such a framework there is a natural mode expansion generated by
the spectral resolution of the Ricci conjugate Hodge–DeRham operator.
This mode expansion allows one to compare the two distinct data sets
and gives rise to a computable heat kernel expansion of the fluctuations
among the fields defining the data. In particular, this shows that Ricci-
flow conjugation entails a natural form of L2 parabolic averaging of one
data set with respect to the other with a number of desirable properties:
(i) It preserves the dominant energy condition; (ii) It is localized by a
heat kernel whose support sets the scale of averaging; (iii) It is character-
ized by a set of balance functionals, that allow the analysis of its entropic
stability.
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1 Introduction

The study of initial data sets for Einstein equations [6] is a well-developed
part of mathematical relativity with seminal interactions with geometric
analysis. Examples abound, and a fine selection is provided by the interplay
between minimal surfaces, mean curvature flow, and asymptotically flat data
[40, 41], by the connection between the positive mass theorem and the proof
of the Yamabe problem [2, 3, 50], and most recently by the engineering of new
data sets out of sophisticated gluing techniques [20, 21, 22]. These results
often go beyond the motivating physics, and clearly indicate that being the
carrier of an Einstein initial data set Cg(Σ) is an important geometrical
characterization for an n-dimensional Riemannian manifold Σ.

If we denote by T(Σ,g)Met(Σ) the tangent space (at (Σ, g)) to the manifold
Met(Σ) of Riemannian metrics g on Σ, by C∞(Σ,R+) the space of smooth
non-negative functions, and by C∞(Σ, TΣ) the space of smooth vector fields
on Σ, then a (generalized) Einstein initial data set, (Fig. 1),

Cg(Σ) := (g,K, �, J) ∈ T Met(Σ)× C∞(Σ,R+)× C∞(Σ, TΣ), (1.1)

is defined by a Riemannian metric g ∈Met(Σ), a symmetric bilinear form
K ∈ T(Σ,g)Met(Σ),1 a scalar field � ∈ C∞(Σ,R+), and a vector field J ∈
C∞(Σ, TΣ), constrained by the dominant energy condition � ≥ |J |, and by
the Hamiltonian and the divergence constraints

R(g)−
(
2Λ + |K|2g − (trg K)2

)
= 16π�, (1.2)

2∇a

(
K ab − g ab (trg K)

)
= 16πJb. (1.3)

Here Λ is a constant (the cosmological constant), |K|2g := Ka
bK

b
a, trg K :=

g abKab, and R(g) is the scalar curvature of the Riemannian metric g. This
characterization of Cg(Σ) is a natural generalization of the notion of
3-dimensional initial data set for Einstein equations where the symmetric
tensor field K can be interpreted as the extrinsic curvature of the embed-
ding it : Σ →M (4) of (Σ, g) in the spacetime (M (4) � Σ× R, g(4)) resulting
from the Einstein evolution of Cg(Σ), whereas � and J can be respectively
identified with the mass density and the momentum density of the mate-
rial self-gravitating sources on (Σ, g). In full generality, to (1.2) and (1.3)
one should also add the set of additional constraints of non-gravitational
origin associated with the dynamics of the sources. In order to avoid speci-
fying the precise nature of the matter fields, here we represents these fields
in the initial data with the pair (ρ, J), only requiring that the dominant

1We can think of the pair (g, K) as a point of the tangent bundle T Met(Σ) to Met(Σ).
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Figure 1: The initial data set Cg(Σ) as a point in the space T Met(Σ)×
C∞(Σ,R+)× C∞(Σ, TΣ).

energy condition ρ ≥ |J | holds. From a geometric perspective it is worth-
while recalling that the set of solutions to the constraint equations (1.2) and
(1.3) is, under suitable conditions, an ∞-dimensional submanifold (Fig. 2) of
the configurational space T Met(Σ)× C∞(Σ,R+)× C∞(Σ, TΣ), [5, 19, 27].
This is related to the fact that, from a geometric analysis point of view,
the constraints (1.2) and (1.3) provide an undetermined system of cou-
pled (elliptic) partial differential equations (PDEs) [6, 16, 43]. It is precisely
such a property that allows for a subtle interaction with the additional
geometrical structures the manifold Σ may be endowed with, and is respon-
sible for the geometrical richness of the notion of Einstein initial data sets
alluded above. Among the additional structures that may decorate the
constraints configurational space TMet(Σ)× C∞(Σ,R+)× C∞(Σ, TΣ) the
one that interests us in this article is related to the Ricci-flow introduced by
Hamilton [37] (Fig. 3)

∂

∂β
gab(β) = −2Rab(β),

gab(β = 0) = gab, 0 ≤ β < T0,
(1.4)

where Rab(β) is the Ricci tensor of the metric gik(β). This weakly parabolic
diffusion–reaction PDE defines a flow on the space of Riemannian metrics
Met(Σ)2 , which extends naturally to the constraints configurational space
via linearization and via the (Ricci-flow-induced) scalar and vector heat

2The Ricci-flow is not the only natural (i.e., Diff(Σ)-equivariant) geometric flow on
Met(Σ), other examples that may come to mind are the Yamabe flow and the Cross-
curvature flow. In our setting the Ricci-flow comes to the fore because it interacts with
the constraints configurational space in a very natural way, as will be evident from the
analysis presented here.
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Σ

Figure 2: Under suitable conditions initial data sets Cg(Σ) can be consid-
ered as points of a submanifold in the constraints configurational space
T Met(Σ)× C∞(Σ,R+)× C∞(Σ, TΣ).

flows on C∞(Σ,R+)× C∞(Σ, TΣ). In particular, the linearized Ricci-flow
and the backward conjugated linearized Ricci-flow induce on T Met(Σ)×
C∞(Σ,R+)× C∞(Σ, TΣ) a parabolic conjugation with strong averaging
properties [15]. This suggests that there may be a non-trivial interplay
between Ricci-flow and Einstein initial data sets. The key idea in such
a scenario is that the Ricci-flow, even if it cannot evolve along the con-
straint manifold3 , may interpolate in the configurational space T Met(Σ)×
C∞(Σ,R+)× C∞(Σ, TΣ) between distinct initial data sets (Fig. 4). The
above remarks suggest that when a Ricci-flow interpolation exists it is a
form of parabolic conjugation and as such it may provide a natural geo-
metrical way of comparing an Einstein data set Cg(Σ) := (g,K, �, J) with a
given reference data set Cg(Σ) := (g,K, �, J).

In order to make such heuristic remarks more precise we introduce the
following set of definitions characterizing Ricci-flow conjugation.

Definition 1.1 (Physical data versus Reference data). Let Cg(Σ) :=
(g,K, �, J) and Cg(Σ) := (g,K, �, J) denote two distinct initial data sets on a
C∞ compact n ≥ 3-dimensional manifold without boundary Σ. Both Cg(Σ)
and Cg(Σ) are supposed to satisfy the corresponding dominant energy condi-
tion and the Hamiltonian and divergence constraints. For Cg(Σ):=(g,K, �, J)
these are provided by (1.2) and (1.3), while for Cg(Σ) := (g,K,

3This is a consequence of the weak-parabolicity of the Ricci-flow and of the fact that
the constraints are in involution with respect to the hyperbolic evolution associated with
the evolutive part of the Einstein equations.
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Figure 3: Ricci-flow in the space of Riemannian metrics Met(Σ).

�, J) they are explicitly given by � ≥ |J |, and

R(g)−
(
2Λ + |K|2g − (trg K)2

)
= 16π�, (1.5)

2∇a

(
K

ab − g ab (trg K)
)

= 16πJb
. (1.6)

where Λ is a cosmological constant, (possibly distinct from Λ), and ∇
denotes4 the Levi–Civita connection associated with the Riemannian mani-
fold (Σ, g). The data set Cg(Σ) := (g,K, �, J) will be conventionally referred
to as the Physical Data on Σ, whereas Cg(Σ) := (g,K, �, J) will be called
the Reference Data.

In such a general setting, Ricci-flow conjugation can be defined whenever
the metric tensors g and ḡ, associated with the two distinct data sets Cg(Σ)
and C̄ḡ(Σ), are connected by a fiducial, non-collapsing, Ricci-flow β 
−→ g(β)
of bounded geometry on Σ× [0, β∗].

Definition 1.2 (Interpolating fiducial Ricci-flow). A fiducial Ricci-flow
of bounded geometry interpolating between the two Riemannian manifolds
(Σ, g) and (Σ, g) is a non-collapsing5 solution of the weakly-parabolic initial

4In what follows, we will often omit the overline over ∇, since the meaning will be clear
from the geometrical context.

5The assumption of non-collapsing is necessary since torus bundles over the circle admit
smooth Ricci-flows with bounded geometry, which exist for all β ∈ [0,∞), and collapse as
β → ∞ [39].
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Figure 4: Ricci-flow in the space of Riemannian metrics Met(Σ) may induce
a flow in the configuration space T Met(Σ)× C∞(Σ,R+)× C∞(Σ, TΣ),
which interpolates between distinct initial data sets.

value problem

∂

∂β
gab(β) = −2Rab(β),

gab(β = 0) = gab, 0 ≤ β ≤ β∗,
(1.7)

such that gab(β∗) = ḡab, and such that there exists constants Ck > 0 for
which |∇kRm(β)| ≤ Ck, k = 0, 1, . . . , for 0 ≤ β ≤ β∗. We assume that any
such a flow is contained in a corresponding maximal solution, β → gab(β),
0 ≤ β ≤ β∗ < T0 ≤ ∞, with the same initial metric gab(β = 0) = gab.

Recall that the maximal interval of existence, [0, T0), for the flow (1.7) is
either T0 →∞ or limβ↗T0 [supx∈Σ |Rm(x, β)|] = ∞, whenever T0 <∞, [37,
38, 51] where Rm(x, β) denotes the Riemann tensor of (Σ, g(β)) evaluated
at the generic point x ∈ Σ.

If between the two Riemannian manifolds (Σ, g) and (Σ, g) supporting
the Einstein data Cg(Σ) and C̄ḡ(Σ) there exists an interpolating Ricci-flow
of bounded geometry then the conjugation between Cg(Σ) and C̄ḡ(Σ) is char-
acterized by the

Definition 1.3 (Ricci-flow conjugation [15]). Two distinct initial data
set Cg(Σ) and C̄ḡ(Σ) are said to be Ricci-flow conjugated on Σ× [0, β∗] along
an interpolating Ricci-flow of bounded geometry β 
−→ g(β), 0 ≤ β ≤ β∗, if
they are connected by the flows C(β) ∈ C∞(Σ× [0, β∗],⊗p

S T
∗Σ) and C̄�(η) ∈

C∞(Σ× [0, β∗],⊗p
S TΣ), p = 0, 1, 2, η := β∗ − β,

β 
→ C(β) :=

⎛

⎝
�(β)
Ji(β)
Kab(β)

⎞

⎠ , η 
→ C�(η) :=

⎛

⎜
⎝

�(η)
J

i(η)
K

ab(η)

⎞

⎟
⎠ , (1.8)
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respectively defined, along β 
−→ g(β), by the solutions of the
Hodge–DeRham–Lichnerowicz (HDRL) heat equation

∂

∂β
C(β) = ΔdC(β),

C(β = 0) = Cg(Σ), 0 ≤ β ≤ β∗,
(1.9)

and of the corresponding backward conjugated heat flow

∂

∂η
C̄�(η) = ΔdC

�(η)−R(g(η))C̄�(η),

C̄�(η = 0) = C̄�
g(Σ), 0 ≤ η ≤ β∗, η := β∗ − β,

(1.10)

along the time–reversed Ricci evolution η 
→ g(η).

Remark 1.4. Here Δd := −(d δg(β) + δg(β) d) is the Hodge Laplacian, with
respect to Ricci evolving metric β 
−→ g(β), thought of as acting on C∞(Σ×
[0, β∗],⊗p

S T
∗Σ), p = 0, 1, 2, (recall that formally the Hodge Laplacian on

symmetric bilinear forms acts as the Lichnerowicz–DeRham Laplacian; see
below for notation). It is also worthwhile to stress that the flows (1.9) and
(1.10) directly arise from the linearization of the Ricci-flow (Fig. 5) along a
metric perturbation g(ε)

ab (β) := gab(β) + ε hab(β), ε > 0,

∂

∂β
hab(β) = −2

d

dε
R(ε)

ab (β)|ε=0
.= −2DRic(g(β)) ◦ hab(β)

hab(β = 0) = hab, 0 ≤ β ≤ β∗.
(1.11)

Indeed, by considering scalar induced perturbations hab(β) := 2∇a∇b �(β),
vector-induced perturbations hab(β) := ∇aJb(β) +∇bJa(β), and tensor per-
turbations hab(β) := Kab(β), one easily reduces (1.11) to (1.9) by naturally
fixing the action of the group of diffeomorphisms Diff(Σ), ([1], (see also
Chap. 2 of [18]). A similar procedure generates the conjugate flow (1.10).

As already stressed, the parabolic nature of the interpolating flows β 
→
(g(β), C(β)) and η 
→ (g(η), C̄�(η)) implies that they do not pointwise satisfy
the constraints, (1.2) and (1.3), for 0 < (β, η) < β∗. Rather, they entail a
form of parabolic L2-averaging of one data set Cg(Σ) with respect to the
other C̄ḡ(Σ) (this latter taken, according to Definition 1.1, as the refer-
ence data set). In this paper, we discuss these averaging properties in full
detail. In particular, we prove the existence of the relevant entropy func-
tionals for the matter variables, their monotonicity property, and the asso-
ciated convergence in the appropriate L2-sense. We also show that in such
a framework Perelman’s energy F characterizes the energy-increasing and
energy-decreasing reference trajectories associated with the divergence-free
part of K ab(η).
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Figure 5: The linearized Ricci-flow induces a heat flow conjugation in the
configuration space T Met(Σ)× C∞(Σ,R+)× C∞(Σ, TΣ). In this picture,
the planes denote the Diff(Σ) orbits Og and Og(β) of the manifolds (Σ, g)
and (Σ, g(β)). The orthogonal planes depict slices L2-orthogonal to the
orbits. They parametrize infinitesimally close orbits sampled by a (poten-
tially) non trivial linearized Ricci-flow and its conjugate flow. The bell-
shaped curves emphasize that the linearized Ricci-flow and the conjugated
linearized Ricci-flow can be reduced to geometrical heat flows.

1.1 Outline of the paper

We end this introductory section by presenting a commented list of the main
results proved and discussed in this work. Throughout the subsection we
let β 
→ (g(β), C(β)) and η 
→ (g(η), C�(η)) be the flows solution of (1.9) and
(1.10) defining the conjugation (Fig. 6) between the physical data Cg(Σ) and
the reference data Cg(Σ) on Σ× [0, β∗].

A first group of results concerns the localization properties of the distri-
bution of the physical matter variables (�, J) with respect to the reference
data (�, J). We have the

Theorem 1.5. The relative entropy functional

S[dΠ(β)|d�(β)] :=
∫

Σ
�(β) ln �(β) d�(β), (1.12)

where d�(β) := �(β) dμg(β) and dΠ(β) := �(β) d�(β), is monotonically non-
increasing along the flow β 
→ (g(β), d�(β)). Moreover, the matter distribu-
tion �(β) is localized in the entropy sense around �(β) according to

1
2
‖dΠ(β)− d�(β)‖2

var ≤ S[dΠ(β)|d�(β)] ≤ e−2
∫ β
0 τ(t) dtS0[dΠ|d�], (1.13)
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Figure 6: Under Ricci-flow conjugation we evolve the matter variables (�, J)
with respect to the reference distribution (�, J). Parabolic conjugation
implies that the associated relative entropy is monotonic and that the dom-
inant energy condition is preserved.

where S0[dΠ|d�] := S[dΠ(β)|d�(β)]β=0, τ(β) > 0 is a β-dependent log-
Sobolev constant, and where ‖ ‖2

var denotes the total variation norm
defined by

‖dΠ(β)− d�(β)‖var
.= sup

‖φ‖b≤1

{∣∣
∣
∣

∫

Σ
φdΠ(β)−

∫

Σ
φd�(β)

∣
∣
∣
∣

}
. (1.14)

Finally, the dominant energy conditions

�(β) ≥ |J(β)|, �(η) ≥ |J̄(η)|, (1.15)

hold along the flows β → (�(β), J(β)), 0 ≤ β ≤ β∗ and η → (�̄(η), J̄(η)), 0 ≤
η ≤ β∗.

Let us note that, following a standard notational idiosyncrasy, the relative
entropy S[dΠ(β)|d�(β)] is minus the physical relative entropy, thus the above
result states that, as expected, −S[dΠ(β)|d�(β)] is non-decreasing along the
forward flow β → �(β). Also, we should stress that we are emphasizing mat-
ter rather than volume preservation and consequently the fiducial Ricci-flow
is not volume-normalized. As follows from the above result, this strategy
is a posteriori justified since it provides a good control on the localization
properties of the flow β 
→ �(β) with respect to the reference backward flow
η 
→ �(η). The proof of Theorem 1.5 and a number of related properties are
discussed at length in Section 5.
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A second group of results concerns the general properties of the geo-
metric flows conjugating the extrinsic curvature tensors K and K. These
properties are a direct offspring of the nature of the Lichnerowicz heat
equation ©dKab(β) = ( ∂

∂β −Δd)Kab(β) = 0 and of its Ricci-flow conjugate

©∗
dK

ab(η) = ( ∂
∂η −Δd +R)K ab(η) = 0. The resulting flows β 
→ Kab(β)

and η 
→ K
ab(η) naturally give rise to a perturbation of the forward and of

the backward fiducial Ricci-flow

β 
→ gab(β) + εKab(β), (1.16)

η 
→ g ab(η) + εK
ab(η), ε > 0,

and a basic issue in Ricci-flow conjugation is to understand the relation
between these perturbed flows and the underlying Ricci-flow geometry. This
is discussed in general terms in Section 2.2 also in relation with the properties
of the Berger–Ebin splitting of T(Σ,g(β))Met(Σ) along the Ricci-flow. An

important characterization of the reference backward flow η 
→ K
ab(η) is

contained in the, (see Theorem 2.8 of the paper, and [15]),

Theorem 1.6. Let η 
→ K
ab(η) be the solution of the Ricci-flow conjugate

Lichnerowicz heat equation ©∗
dK

ab(η) = 0 on Σ× [0, β∗], then along η 
→
(g(η),K ab(η)),

d

dη

∫

Σ
Rab(η)K

ab(η)dμg(η) = 0, (1.17)

d

dη

∫

Σ
(gab(η)− 2η Rab(η))K

ab(η)dμg(η) = 0. (1.18)

To set this result in a proper perspective let us recall that the evolution of
the reference matter density η 
→ �(η) along the fiducial Ricci-flow is strictly
related to the Perelman energy functional [48] F : Met(Σ)× C∞(Σ, R) → R
associated with the pair (g(β), �(η)) and defined by

F [g(η), �(η)] .=
∫

Σ
(R+ |∇ ln �|2) d�(η)

=
∫

Σ
(R+ |∇f |2)e−f dμg = F [g(η), f(η)], (1.19)

for g evolving along the fiducial Ricci-flow β 
→ g(β), and η 
→ f = − ln �(η)
evolving backward according to ∂f(η)

∂η = �g(η)f − |∇f |2g(η) +R(η). A well-
known property of the Perelman functional [48] implies that F [g; f ] is
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Figure 7: The initial K ∈ Cg(Σ) characterizes the F [g(η), �(η)]-energy
increasing or decreasing nature of the perturbed conjugate flow η 
→ K(η).
Since K provides a privileged direction in T Met(Σ), the linearization
DF [g(η), �(η)] ◦K can be used to define a natural notion of entropic sta-
bility of the Ricci-flow conjugation between data.

non-decreasing along the defining (forward) flows, and we have

d

dβ
F [g(β), �(β)] = 2

∫

Σ
|Rik(β)−∇i∇k ln �(β)|2 d�(β) ≥ 0, (1.20)

where �(β) := �(η = β∗ − β).

It is natural to discuss how F [g(η), �(η)] behaves on the perturbed ref-
erence flow η 
→ g ab(η) + εK

ab(η), as ε↘ 0+. In particular, one expects
that Ricci-flow conjugation is a sensible mapping between Einstein data
sets if the fiducial Ricci-flow interpolating between (Σ, g) and (Σ, g) is, in a
suitable sense, stable under the perturbation induced by the reference data
Cg(Σ) at η = 0. If the fiducial flow is a generalized fixed point of the Ricci-
flow, e.g. a Ricci flat or a shrinking soliton then the problem reduces to the
known (second-order) stability analysis around the given Ricci-flow, (see,
e.g., [14, 34, 52]). More generally, if we interpolate along a generic Ricci-
flow, we have to consider a form of first-order entropic stability around the
fiducial flow. We have (Fig. 7)

Theorem 1.7. For ε > 0 small enough and 0 ≤ β ≤ β∗, let Ωε(g(β))

:=
{
g(β) + h(β)|h ∈ T(Σ,g(β))Met(Σ), ‖h(β)‖L2(Σ,dμg(β))

< ε
}
,

denote the (affine) ε-tubular neighborhood of the fiducial Ricci-flow β 
→ g(β)
in Met(Σ). We assume that β 
→ g(β) is not a Ricci-flat soliton over
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Σ× [0, β∗]. If KTT is the trace-free and divergence-free part of K ∈ Cg(Σ),
then the reference flow η 
→ (g(η), C�(η)) is F [g(η), �(η)]-energy decreasing
(increasing) in Ωε(g(β)), i.e.

d

dε
F [g(ε)(η), �(η)]

∣
∣
∣
∣
ε=0

< 0 (> 0), (1.21)

and the Ricci-flow conjugation between the two data sets Cg(Σ) and Cg(Σ)
is F-stable (unstable) in the K-direction if for η = 0 we have

F(g,K) :=
∫

Σ

(
RabK

ab
TT +

1
n
R trg K

)
dμg > 0 (< 0). (1.22)

This theorem (proved in Section 7), states that under the initial con-
dition (1.22), (it is important to stress that (1.22) is a statement on the
reference data Cg(Σ) at η = 0), the initial data set Cg(Σ) generates, for ε >
0 small enough, a perturbed Ricci-flow η 
→ g ab(η) + εK

ab(η) in Ωε(g(β))
which is F [g(η), �(η)]-energy decreasing (increasing) with respect to the
fiducial (backward) Ricci-flow. Thus, if F(g,K) > 0 we have stability, in
Ωε(g(β)), of the flow under such first–order linear perturbation. Conversely,
if F(g,K) < 0 the perturbation increases the F [g(η), �(η)]-energy and the
Ricci-flow conjugation is energetically unstable in the reference direction K.
Roughly speaking the direction K with respect to which we compare the for-
ward evolution β 
→ Kab(β), (note that

∫
ΣKab(β)K ab(β) dμg(β) is preserved

by parabolic conjugation), generates a perturbed Ricci-flow that respect to
the fiducial one is energetically more favored and tends to drive the conju-
gation away from the given β 
→ gab(β).

The actual comparison between the two data sets Cg(Σ) and Cg(Σ) is
realized by exploiting the spectral resolution (Fig. 8) of the elliptic operator
−Δd +R(ḡ) on (Σ, g), (i.e., at η = 0), and a number of properties that
allow one to compare Fourier coefficient along the conjugated flows β 
→
(g(β), C(β)) and η 
→ (g(η), C�(η)) solution of (1.9) and (1.10). We have the

Theorem 1.8 (Data comparison). Along the fiducial backward Ricci-flow
η 
−→ g(η) on Σ× [0, β∗], let η 
→

{
Φ�

(n)(η)
}

denote the flows defined by

©∗
d Φ�

(n)(η) = 0, Φ�
(n)(η = 0) := Φ�

(n), n ∈ N, (1.23)

where
{

Φ�
(n), λ

(d)
(n)

}
is the discrete spectral resolution of the elliptic operator

−Δd +R(ḡ) on the reference (Σ, g), and ©∗
d := ∂

∂η −Δd +R(g(η)) is the
backward HDRL heat operator along η 
→ g(η). If (�(β∗), Ji(β∗),Kab(β∗))
denote the forward evolved (�, Ji,Kab) ∈ Cg(Σ) along β → C(β) then we
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Figure 8: The spectral resolution of the elliptic operator −Δd +R(ḡ) on
the reference (Σ, g) gives rise to Fourier coefficients, which have remark-
able properties under Ricci-flow conjugation. These properties generate a
mode expansion of the physical fields (�, J,K) with respect to the reference
geometry (Σ, g).

can write

�(β∗) =
∑

n

Φ (n)
[∫

Σ
�Φ(n) dμg

]

β=0

, (1.24)

Ja(β∗) =
∑

n

Φ (n)
a

[∫

Σ
JiΦi

(n) dμg

]

β=0

, (1.25)

Kab(β∗) =
∑

n

Φ̄ (n)
ab

[∫

Σ
Kij Φij

(n) dμg

]

β=0

, (1.26)

where the integrals appearing on the right-hand side are all evaluated at
β = 0. Moreover, under the same hypotheses and notation, we have the
mode distribution

∫

Σ
|�(β∗)|2 dμg =

∑

n

∣
∣
∣
∣

∫

Σ
�Φ(n) dμg

∣
∣
∣
∣

2

β=0

, (1.27)

∫

Σ
|J(β∗)|2 dμg =

∑

n

∣
∣
∣
∣

∫

Σ
JaΦa

(n) dμg

∣
∣
∣
∣

2

β=0

, (1.28)

∫

Σ
|K(β∗)|2 dμg =

∑

n

∣
∣
∣
∣

∫

Σ
KijΦ

ij
(n) dμg

∣
∣
∣
∣

2

β=0

. (1.29)
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Such a mode expansion can be applied to the fluctuations of the physical
fields β 
→ (g(β), C(β)) with respect to the reference flows η 
→ (g(η), C�(η))
so as to get

Theorem 1.9 (Fluctuations mode expansion). Let

� =
∑

n

cn(�)Φ (n)
, (1.30)

Ja =
∑

n

cn(J)Φ (n)
a ,

Kab =
∑

n

cn(K)Φ (n)
ab ,

the mode expansion on (Σ, g) of the reference data ∈ Cg(Σ). Then, if we
define

δ�(n) :=
[∫

Σ
�Φ(n) dμg

]

β=0

− cn(�), (1.31)

δJ(n) :=
[∫

Σ
JiΦi

(n) dμg

]

β=0

− cn(J), (1.32)

δK(n) :=
[∫

Σ
KijΦ

ij
(n) dμg

]

β=0

− cn(K), (1.33)

we can write the β-evolved data (�(β∗), Ji(β∗),Kab(β∗)) as

�(β∗) = �+
∑

n

Φ (n)
δ�(n), (1.34)

Ja(β∗) = Ja +
∑

n

Φ (n)
a δJ(n), (1.35)

Kab(β∗) = Kab +
∑

n

Φ (n)
ab δK(n). (1.36)

Both Theorems 1.8 and 1.9 follow from the results of Section 3. They
can be quite effective when the reference data Cg(Σ) are supported on a
manifold of large symmetry, e.g., a round 3-sphere for which one can have a
rather explicit control on the spectral resolution of −Δd +R(ḡ) in terms of
scalar, vector, and tensor harmonics. In general, this mode expansion and
the properties of the associated Ricci-flow conjugation suggest that there is
an underlying heat-kernel representation governing Ricci-flow conjugation.
This also implies that, at least for small η, Ricci-flow conjugation is indeed
a form of parabolic averaging of the physical data Cg(Σ) with respect to the
reference Cg(Σ). Indeed we have the
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Theorem 1.10 (Heat kernel representation of the fluctuations). The
β-evolved data (�(β∗), Ji(β∗),Kab(β∗)) admit a heat kernel6 representation
in terms of the heat kernel H(y, x; η) of the backward conjugated opera-
tor ©∗

d := ∂
∂η −Δd +R(g(η)). In particular, the fluctuations of the data

(�(β∗), Ji(β∗),Kab(β∗)) with respect to the reference data ∈ Cg(Σ), admit a
computable asymptotic expansion for small η. For instance, in the case of
the matter density, we can write (see section 4, for notation)

�(β∗, y) = �(y) +
∑

n

Φ (n)
δ �(n)

= �(y) +
1

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
[�(x, η)− �(y)] dμg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫

Σ
e

(
− d2

0(y,x)

4η

)

Υ[h](y, x; η) [�(x, η)− �(y)] dμg(x,η)

+O
(
ηN− 1

2

)
, (1.37)

where Υ[h](y, x; η) are smooth coefficients, depending on the geometry of
(Σ, g(η)), characterizing the asymptotics of the heat kernel of ©∗

d.

This asymptotics takes a more explicit form when applied to the eval-
uation of integral quantities such as

∫
Σ �(β∗) d �(η). Note that whereas∫

Σ �(β∗ − η) d �(η) is a conserved quantity along the interpolating Ricci-
flow, the above integral is not. It provides, as η varies, the matter content
of the Ricci evolved �(β∗) with respect to the given reference flow �(η) and∫
Σ [�(β∗)− �(β∗ − η)] d �(η) is a relevant physical quantity, which can be

used to describe the (small η) fluctuations of �(β) associated with Ricci-
flow conjugation. Making a parallel with heat propagation,

∫
Σ �(β∗) d �(η)

plays the role of the heat content of a system characterized by a distribution
given by �(β∗ − η) and by an η-dependent specific heat proportional to �(η).
We show that as η ↘ 0+ we have the asymptotic expansion

∫

Σ
�(β∗) �(η) dμg(η) =

∫

Σ
�(β∗) � dμg

− η

∫

Σ
�Δ �(β∗) dμg + η4

∫

Σ
R ab∇a∇b �(β∗) � dμg + . . . . (1.38)

Similar expansions can be written down for the current content and the
extrinsic curvature content, (see Theorem 4.5). The proofs of these results

6See Theorem 4.1 for the definition of the tensorial heat kernel H(y, x; η) and the
associated notation.
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are discussed in detail in Section 4, and they provide detailed evidence of
the non-trivial interaction between Ricci-flow and Einstein initial data sets.

The paper is organized as follows. Section 2 introduces Ricci-flow conjuga-
tion starting with a brief (mainly notational) summary on the Berger–Ebin
decomposition of the tangent space to the space of Riemannian metrics and
the associated notion of affine slice. The core of this section is a technical
lemma providing the various commutation rules between the HDRL heat
operator and its Ricci-flow conjugate. Some of these commutation rules
are well-known whereas other are new and interesting in their own right.
Section 3 describes a natural decomposition in modes associated with the
interaction between Ricci-flow conjugation and the spectral resolution of the
elliptic operator −Δd +R(g). This mode decomposition is then applied to
the Ricci-conjugated flows allowing for a comparison between the physical
data set Cg(Σ) and the reference data Cg(Σ) along the lines described in
the introduction. In Section 4, we discuss the heat kernels for the Ricci-
conjugated flows and their small η asymptotics. Section 5 deals with the
Ricci-flow conjugation between matter fields. Here, we introduce the rel-
evant entropic quantities, discuss the convergence to equilibrium and the
associated localization with respect to the reference data set Cg(Σ), and
prove the preservation of the dominant energy condition. In Section 6,
we discuss Ricci-flow conjugation for the extrinsic curvature flow. Finally
in Section 7, we analyze the role of Perelman F-energy in characterizing
entropically the Ricci-flow perturbations associated with the conjugate flow
η 
→ K

ab(η). A few concluding remarks are presented in Section 8.

2 Ricci-flow conjugation

To set notation, let Σ be a C∞ compact7 n-dimensional manifold, (n ≥
3), without boundary, and let Diff(Σ) and Met(Σ) respectively be the
group of smooth diffeomorphisms and the open convex cone of all smooth
Riemannian metrics over Σ. For any g ∈Met(Σ), we denote by ∇ the
Levi–Civita connection of g, and let Rm(g) = Ri

klm ∂i ⊗ dxk ⊗ dxl ⊗ dxm,
Ric(g) = Rab dx

a ⊗ dxb and R(g) be the corresponding Riemann, Ricci and
scalar curvature operators, respectively. The space of smooth (p, q)-tensor
fields on Σ, C∞(Σ,⊗p T ∗Σ⊗q TΣ) is endowed with the pre-Hilbertian L2

inner product (U, V )L2(Σ,dμg)
.=
∫
Σ 〈U, V 〉gdμg, where 〈U, V 〉g is the point-

wise g-metric in ⊗p T ∗Σ⊗q TΣ. We let ||U ||2L2 and ||U ||2Hs
.= ||U ||2L2 +

7In the non-compact case our understanding of Ricci-flow conjugation is much more
limited due to the subtle issue of the appropriate boundary conditions to adopt in dealing
with the interpolating flows.
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∑s
i=1 ||∇(i)U ||2L2 , s ≥ 0, be the corresponding L2 and Sobolev norms. The

completions of C∞(Σ,⊗p T ∗Σ⊗q TΣ) in these norms, define the correspond-
ing space of square summable and Sobolev sections L2(Σ,⊗p T ∗Σ⊗q TΣ)
and Hs(Σ,⊗p T ∗Σ⊗q TΣ), respectively. In such a setting, the tangent space
to Met(Σ) at (Σ, g), T(Σ,g)Met(Σ), is identified with the space of smooth
symmetric bilinear forms C∞(Σ,⊗2

S T
∗Σ) over Σ, and we shall consider the

Riemannian metrics Mets(Σ) of Sobolev class s > n
2 as an open subset of

Hs(Σ,⊗2 T ∗Σ). The averaging properties of Ricci-flow conjugation between
distinct initial data sets depend on the interaction between the linearized and
conjugate-linearized Ricci-flow and the Berger–Ebin splitting of the space
of symmetric bilinear forms. Thus, to place the arguments to follow in a
natural context, we start recalling a few basic properties of such a decom-
position.

2.1 Remarks on the affine Berger–Ebin slice theorem

The (non-linear) space Mets(Σ) is acted upon by the (topological) group,
Diffs′(Σ), defined by the set of diffeomorphisms which, as maps Σ → Σ are
an open subset of the Sobolev space of maps H s′(Σ,Σ), with s′ ≥ s+ 1.
In particular, there is a natural projection map π : Diffs′(Σ) → O s

g , π(φ) .=
φ∗ g, whereO s

g is theDiffs′(Σ)–orbit of a given metric g ∈Mets(Σ), and φ∗ g
is the pull–back under φ ∈ Diffs′(Σ). If T(Σ,g)O s

g denotes the tangent space
to any such an orbit, then T(Σ,g)O s

g is the image of the injective operator
with closed range

δ∗g : Hs+1(Σ, TΣ) → H s(Σ,⊗2T ∗Σ)

w 
→ δ∗g (w) .=
1
2
Lw g, (2.1)

where Lw denotes the Lie derivative along the vector field w. Standard ellip-
tic theory implies that the L2-orthogonal subspace to Imδ∗g in T(Σ,g)Mets(Σ)
is spanned by the (∞-dim) kernel of the L2 adjoint δg of δ∗g ,

δg : H s(Σ,⊗2T ∗ Σ) → Hs−1(Σ, T ∗ Σ)

h 
→ δg h
.= − gij ∇ihjk dx

k. (2.2)

This entails the well-known Berger–Ebin L2(Σ, dμg)-orthogonal splitting [13,
24] of the tangent space T(Σ,g)Met s(Σ),

T(Σ,g)Met s(Σ) ∼=
[
T(Σ,g)Met s(Σ) ∩Ker δg

]
⊕ Im δ∗g

[
Hs+1(Σ, TΣ)

]
,

(2.3)
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Figure 9: The Berger–Ebin decomposition of T(Σ,g)Met s(Σ).

according to which, (Fig. 9), for any given tensor h ∈ T(Σ,g)Met s(Σ), we can
write hab = hT

ab + Lw gab where hT
ab denotes the div–free part of h, (∇a hT

ab =
0), and where the vector field w is characterized as the solution, (unique up
to the Killing vectors of (Σ, g)), of the elliptic PDE δg δ

∗
g w = δg h.

Let us consider the subset of metrics Met s+1(Σ) ⊂Met s(Σ), and let

Bs+1
ρ (g) .=

{
hT ∈ T(Σ,g)Met s+1(Σ) ∩Kerδg

∣
∣ ‖hT ‖L2 < ρ

}
, (2.4)

be the open ball of radius ρ, L2–orthogonal to Imδ∗g
(
Hs+2(TΣ)

)
. According

to the Ebin–Palais slice theorem [24] (for a fine survey on slice theorems see
[7, 42]), Bs+1

ρ (g) exponentiates, via the flow induced by Hs+1 vector fields
[25], into a submanifold Ss+1

g of Mets+1(Σ) providing a slice to the action of
Diffs+2(Σ). Since Met s+1(Σ) is an open set in H s+1(Σ,⊗2 T ∗Σ), instead
of a local slice obtained by exponentiation, here we shall use the affine
slice defined, for a small enough ρ, by the ball Bs+1

ρ (g) itself, (affine slice
construction is described in [8, 42]). Explicitly, if we identify

Ss+1
g �

{
g + Bs+1

ρ (g)
}
⊂ H s+1(Σ,⊗2 T ∗Σ) (2.5)

then, there is a neighborhood Us+1
g of g ∈ O s+1

g (Σ) and a section χ : Us+1
g →

Diffs+1(Σ), g′ 
→ χ(g′) ∈ Diffs+1(Σ), with π ◦ χ = id, such that the map

Υ : Us+1
g × Ss+1

g −→Mets+1(Σ),

(g′, g + hT ) 
−→ Υ(g′, g + hT ) .= χ(g′)∗ (g + hT ), (2.6)
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Figure 10: The affine Berger–Ebin slice theorem along the fiducial
Ricci-flow.

is a local homeomorphism onto a neighborhood of g in Met s+1(Σ). More-
over, if I(Σ, g) ⊂Mets+1(Σ) denotes the isometry group of (Σ, g) and η ∈
I(Σ, g), then η∗ Ss+1

g = Ss+1
g . Conversely, if η ∈ Diffs+1(Σ) and η∗ Ss+1

g ∩
Ss+1

g �= ∅, then η ∈ I(Σ, g). This affine version [8, 42] of Ebin–Palais slice
theorem allows to locally parametrize Met s+1(Σ), in a neighborhood of a
given (Σ, g), by means of the diffeomorphisms ϕ ∈ Diffs+1(Σ) defined by
the cross section χ(g′) = ϕ∗ g and of the divergence free tensor fields hT in
the slice Ss+1

g .

Remark 2.1. Regularity arguments show that the existence of the slice
map (2.6) can be extended to Met(Σ), (obtained as the (inverse) limit
space {Met s+1(Σ)}s→∞), and henceforth we shall confine our analysis to
the smooth case.

Let β → gab(β) be a fiducial Ricci-flow of bounded geometry on Σ× [0, β∗]
in the sense of Definition 1.2. The hypothesis of bounded geometry implies
that we can apply the Berger–Ebin splitting (2.3) along the fiducial Ricci-
flow. In particular, we have the following induced affine slice parametrization
in a neighborhood of the given Ricci-flow (Fig. 10)

Lemma 2.2. Let β 
→ g(β) be a fiducial Ricci-flow β 
→ g(β) of bounded
geometry on Σ× [0, β∗], then there exists an affine slice parametrization of
a tubular neighborhood, Ωρ(g(β)), of β → gab(β) such that

Ωρ(g(β)) .=
(
Ug(β) × Sg(β)

)
× [0, β∗], (2.7)
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where, for each given β ∈ [0, β∗], Ug(β) ⊂ Og(β) is an open neighborhood of
the Ricci-flow metric g(β) in the Diff(Σ)–orbit Og(β), and

Sg(β)
.=
{
g(β) + hT

∣
∣hT ∈ Kerδg(β), ‖hT ‖L2(Σ,dμg(β))

< ρ
}
, (2.8)

is, for ρ > 0 independent from β and small enough, the associated affine
slice through g(β).

Proof. Along β 
→ g(β), 0 ≤ β ≤ β∗, the Berger–Ebin decomposition

Tg(β)Met(Σ) ∼= Kerδg(β) ⊕ Imδ∗g(β) (2.9)

is well-defined since the fiducial Ricci-flow is of bounded geometry. At each
given β, the corresponding affine slice is provided by, (see (2.5)),

S̃g(β) �
{
g(β) + B̃ρ(β)(g(β))

}
, (2.10)

where the open ball B̃ρ(β)(g(β)) of divergence-free tensor in T(Σ,g(β))Met(Σ)
is defined according to

B̃ρ(β)(g(β)) .=
{
hT (β) ∈ Kerδg(β)

∣
∣ ‖hT (β)‖L2 < ρ(β)

}
. (2.11)

The hypothesis of bounded geometry implies that, for 0 ≤ β ≤ β∗, the set
of {ρ(β)} is uniformly bounded away from zero by some positive constant
ρ := inf0≤β≤β∗ {ρ(β)} > 0. We correspondingly define

Bρ(g(β)) .=
{
hT (β) ∈ Kerδg(β)

∣
∣ ‖hT (β)‖L2 < ρ

}
(2.12)

and set

Sg(β) � {g(β) + Bρ(g(β))} . (2.13)

Since Sg(β) ⊆ S̃g(β), the slice map (2.6)) associated to S̃g(β) restricts natu-
rally to Sg(β), to the effect that for each β ∈ [0, β∗] there is a neighborhood
Ug(β) of g(β) ∈ Og(β)(Σ) and a section χβ : Ug(β) → Diff(Σ), g′ 
→ χβ(g′) ∈
Diff(Σ), such that the map Υβ : Ug(β) × Sg(β) −→Met(Σ)

Υβ(g′, g(β) + hT (β)) .= χβ(g′)∗ (g(β) + hT (β)), (2.14)

is a local homeomorphism onto a neighborhood of g(β) in Met(Σ). �



RICCI-FLOW-CONJUGATED INITIAL DATA SETS 1431

Figure 11: The geometry of the linearized Ricci-flow is related to the
observation that if K(β) is a solution of the Lichnerowicz heat equation,
then K̃(β) := K(β) + Lw(β)g(β) is a solution of the linearized Ricci-flow
(with the same initial datum K) as long as the covector field is such that
∂
∂β w(β) = δg(β)(K(β)− 1

2trK(β)K(β)), with w(β = 0) = 0.

2.2 The HDRL heat operator

The Ricci-flow interacts with the slice map Υβ in a rather sophisticated
way: a perturbation of the Ricci-flow, which propagates an h ∈ T(Σ,g(β=0))

Met(Σ) ∩ Ug(β=0) will give rise to a perturbed Ricci-flow evolution in Ug(β),
whereas a perturbation propagating an h ∈ T(Σ,g(β=0))Met(Σ) ∩ Sg(β) in
general fails to evolve in Sg(β). Naively, this can be attributed to the dis-
sipative (weakly-parabolic) nature of the Ricci-flow, however the underly-
ing rationale is quite subtler and holds a few surprises. To discuss this
point, let ε 
→ g

(ε)
ab (β), 0 ≤ ε ≤ 1, be a smooth one-parameter family of Ricci-

flows in the tubular neighborhood Ωρ(g(β)) defined above. For ε↘ 0,
this set {g(ε)

ab (β)} is locally characterized by the tangent vector hab(β) in
Tg(β)Met(Σ), covering the fiducial curve β → gab(β), 0 ≤ β ≤ β∗, and

defined by the first jet hab(β) .= d
dεg

(ε)
ab (β)|ε=0 of g(ε)

ab (β). Any such hab(β)
satisfies the linearized Ricci-flow equation (Fig. 11)

∂

∂β
hab(β) = −2

d

dε
R(ε)

ab (β)|ε=0
.= −2DRic(g(β)) ◦ hab(β)

hab(β = 0) = hab, 0 ≤ β ≤ β∗.
(2.15)

As is well-known, this linearization is not parabolic due to the equivariance
of the Ricci-flow under diffeomorphisms. However, there is a natural choice
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Figure 12: The HDRL representation of the linearized Ricci-flow is a geo-
metrical heat equation, which unifies the scalar, vector, and tensor heat
equations, which we often use to analyze specific properties of the Ricci-flow.

[1], (see also Chap. 2 of [18]), for fixing the action of the diffeomorphism
group Diff(Σ), and (2.15) takes the form of the dynamical system β 
→
hab(β) ∈ Tg(β)Met(Σ) defined, along the fiducial Ricci-flow β 
→ g(β), by
the Lichnerowicz heat equation

©L hab(β) .=
(
∂

∂β
−ΔL

)
hab(β) = 0,

hab(β = 0) = hab, 0 ≤ β ≤ β∗,
(2.16)

where ΔL : C∞(Σ,⊗2T ∗ Σ) → C∞(Σ,⊗2T ∗ Σ) is the Lichnerowicz–
DeRham Laplacian [44] on symmetric bilinear forms defined, (with respect
to gab(β)), by

ΔLhab
.= �hab −Rash

s
b −Rbsh

s
a + 2Rasbth

st, (2.17)

� .= g ab(β)∇a∇b denoting the rough Laplacian. Henceforth, when dis-
cussing the linearized Ricci-flow (2.15) we will explicitly refer to the gauge
reduced version (2.16).

Remark 2.3 (The HDRL heat operator). It is worthwhile recalling
that the elliptic operators defined, along the fiducial Ricci-flow β → gab(β),
by: (i) The standard Laplacian acting on scalar functions �; (ii) The vec-
tor Laplacian acting on (co)vector fields, Δvec

.= Δ−Ric; and (iii) The
Lichnerowicz–DeRham laplacian acting on symmetric bilinear forms �L,
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can all be formally identified8 with the g(β)-Hodge-DeRham Laplacian act-
ing on p-differential forms

�d
.= −(d δg(β) + δg(β) d). (2.18)

Thus, along a Ricci-flow of bounded geometry β 
→ gab(β), 0 ≤ β ≤ β∗, the
scalar heat flow ( ∂

∂β −Δ)ω(β) = 0, the covector heat flow ( ∂
∂β −Δvec)

va(β) = 0, and the linearized Ricci-flow ( ∂
∂β −ΔL)hab(β) = 0, can be com-

pactly represented by the kernel of the HDRL heat operator

©d
.=
∂

∂β
−Δd, (2.19)

thought of as acting on the appropriate parabolic space of β–dependent sec-
tions: C∞(Σ× R,R) for the scalar heat operator, C∞(Σ× R, T ∗Σ) for the
covector heat operator, and finally C∞(Σ× R,⊗2

ST
∗Σ) for the Lichnerowicz

heat equation. Alternatively, we may consider ©d as acting on the carte-
sian product ×2

p=0C
∞(Σ× R,⊗p

ST
∗Σ), (p = 0, 1, 2), and use the compact

notation (Fig. 12)

©d

⎛

⎝
ω(β)
vi(β)
hab(β)

⎞

⎠ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
∂

∂β
−Δ

)
ω(β)

(
∂

∂β
−Δvec

)
vi(β)

(
∂

∂β
−ΔL

)
hab(β)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.20)

If we consider the L2(Σ× R, dβ dμg(β)) parabolic pairing between the
spaces C∞(Σ× R,⊗p

ST
∗Σ) and C∞(Σ× R,⊗p

STΣ), (p = 0, 1, 2), we can also
introduce [15] the backward L2–conjugated flow associated with (2.16), gen-
erated by the operator

©∗
d
.= − ∂

∂β
−�d +R, (2.21)

8The fact that formally the Hodge Laplacian �d acts on 2-forms in the same way
that the Lichnerowicz–DeRham Laplacian acts on symmetric 2-tensors is a well-known
property of ΔL-see, e.g., [18].
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Figure 13: The conjugate HDRL heat equation has a number of unexpected
properties allowing a better control of the linearized Ricci-flow. These prop-
erties are related to the fact that the Ricci curvature evolves according to
the forward Lichnerowicz heat equation.

acting on the appropriate space of β-dependent sections C∞(Σ× R,⊗p
STΣ),

(p = 0, 1, 2), or in a more compact form

©∗
d

⎛

⎝
�(β)
W i(β)
H ab(β)

⎞

⎠ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
− ∂

∂β
−Δ +R

)
�(β)

(
− ∂

∂β
−Δvec +R

)
W i(β)

(
− ∂

∂β
−ΔL +R

)
H ab(β)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.22)

for (�,W,H) ∈ ×2
p=0C

∞(Σ× R,⊗p
ST

Σ).

The role of ©d and ©∗
d in Ricci-flow conjugation is connected with their

interaction with the Berger–Ebin splitting of T(Σ,g(β))Met(Σ). To make this
interaction explicit, we organize in a unique pattern a number of commu-
tation rules among ©d, ©∗

d, and the action of δg(β), and δ∗g(β). Some of
these relations are rather familiar, a few others extend, in a non trivial way,
known properties of the conjugate scalar heat flow (Fig. 13).

Lemma 2.4 (Commutation rules). If ©d and ©∗
d respectively denote the

HDRL heat operator and its conjugate along a fiducial Ricci-flow
β → gab(β) on Σ× [0, β∗], then for any v(β) ∈ C∞(Σ× R, T ∗Σ),
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h(β) ∈ C∞(Σ× R,⊗2
ST

∗Σ), and H(β) ∈ C∞(Σ× R,⊗2
STΣ) we have

d

dβ
(h(β), H(β))L2(Σ,dμg(β))

:=
d

dβ

∫

Σ
hab(β)H ab(β) dμg(β)

=
∫

Σ

[
H ab(β)©d hab(β) − hab(β)©∗

d H
ab(β)

]
dμg(β), (2.23)

moreover the following set of commutation rules hold:

trg(β) (©d h(β)) = ©d

(
trg(β) h(β)

)
− 2Rik(β)hik(β), (2.24)

trg(β) (©∗
dH(β)) = ©∗

d

(
trg(β)H(β)

)
− 2Rik(β)H ik(β), (2.25)

©d

(
δ∗g(β) v

�(β)
)

= δ∗g(β) (©dv(β))� , (2.26)

©∗
d

(
δg(β)H(β)

)
= δg(β) (©∗

dH(β)) , (2.27)

©d

(
δg(β) h(β)

)
= δg(β) (©d h(β))− 2Rik(β)∇i hkl(β) dxl

− 2hik(β)
(
∇lRik(β)− ∇k Ri

l(β)
)
dxl, (2.28)

©∗
d

(
δ∗g(β) v(β)

)
= δ∗g(β) (©∗

d v(β))−
[
va∇kRkb(β) + vb∇kRka(β)

+ 2 vk(β) (∇aRbk(β) +∇bRak(β)− ∇k Rab(β))
]

× dxa ⊗ dxb, (2.29)

where trg(β) and � respectively denote the g(β)-dependent trace and the g(β)-
rising operator along the fiducial flow.

Proof. The relation (2.23), describing the evolution of the L2 pairing between
T(Σ,g(β))Met(Σ) and C∞(Σ× R,⊗2

STΣ), immediately follows from adding
and subtracting H abΔL hab to

d

dβ
(h(β), H(β))L2(Σ,dμg(β))

=
∫

Σ

[
hab

∂

∂β
H ab +H ab ∂

∂β
hab −RhabH

ab

]
dμg(β), (2.30)

and exploiting the fact that ΔL is a self–adjoint operator with respect to
dμg(β). The commutation relations (2.24) and (2.25) between the g(β)-
dependent trace and the operators ©d and ©∗

d are elementary consequences
of the Ricci-flow evolution. Similarly well-known, (see, e.g., [18]), is the
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commutation rule (2.26). A direct computation shows that (2.28) is a con-
sequence of the Weitzenböck formula (see, e.g., [15]),

∇k �L Skl = �∇k Skl + Ska∇lR
ka −Ra

l ∇k Ska − 2Ska∇k Ra
l , (2.31)

and of the Ricci-flow rule

∂

∂β
∇k Skl = gik ∇i

(
∂

∂β
Skl

)
+ 2Rik∇i Skl + Smi∇lR

mi, (2.32)

both valid for any symmetric bilinear form S ∈ C∞(Σ× R,⊗2
ST

∗Σ). Explic-
itly we compute

(
∂

∂β
−Δd

)
∇k hkl = ∇k

(
∂

∂β
hkl

)
+ 2Rik∇i hkl

+ hmi∇lRmi −Δ(∇k hkl) +Rj
l ∇

k hkl

= ∇k

(
∂

∂β
hkl

)
+ 2Rik∇i hkl + hmi∇lRmi

−∇k (ΔL hkl) + hka∇lRka −Ra
l∇k hka

− 2hka∇kRa
l +Rj

l∇
k hkj

= ∇k

(
∂

∂β
hkl −ΔL hkl

)
+ 2Rik∇i hkl

+ 2hik(∇lRik −∇kRi
l), (2.33)

where in the first and in the forth line we exploited (2.32) and (2.31), respec-
tively. This provides (2.26). The basic relation (2.27) follows from a rather
lengthy but otherwise straightforward computation. According to the defi-
nition of ©∗

d we have

©∗
d

(
∇aH

ab
)

= − ∂

∂β

(
gbl∇aH

a
l

)
− (Δd −R) ∇aH

ab

= −2Rbl∇aHal − gbl ∂

∂β
∇aHal −Δ∇aH

ab

+Rb
l∇aH

al +R∇aH
ab. (2.34)
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By exploiting again (2.32) and (2.31), this latter expression reduces to

= −2Rbl∇aHal − gbl∇a

(
∂

∂β
Hal

)
− 2gblRia∇iHal

− gblHai∇lRai −Δ∇aH
ab +Rb

l∇aH
al +R∇aH

ab

= −Rbl∇aHal − gbl∇a

(
∂

∂β

(
gac gldH

cd
))

− 2gblRia∇iHal

− gblHai∇lRai −Δ∇aH
ab +R∇aH

ab

= −Rbl∇aHal − gbl∇a

[
gac gld

∂

∂β
Hcd − 2Rac gldH

cd

− 2Rld gacH
cd
]
− 2gblRia∇iHal

− gblHai∇lRai −Δ∇aH
ab +R∇aH

ab

= −Rbl∇aHal + 2Hcb∇aRac + 2Rac∇aHcb + 2Hd
a ∇aRb

d

+ 2Rb
d∇aHd

a −∇c

(
∂

∂β
Hcb

)
− 2Ria∇iH

b
a −Hmi∇bRmi

−∇a ΔLH
ab +Hka∇bRka −Ra

b∇kHka − 2Hka∇kR ab +R∇aH
ab

= ∇c

[
− ∂

∂β
−ΔL +R

]
Hcb, (2.35)

where the last line follows from canceling terms and by using the contracted
Bianchi identity. This proves (2.27). Finally, (2.29) is a consequence of the
known Ricci-flow identities (see, e.g., [18]),

∇i

(
Δvj −Rk

j vk

)
= ΔL∇ivj − vk (∇iRjk +∇jRik −∇kRij) , (2.36)

∂

∂β
∇ivj = ∇i

(
∂

∂β
vj

)
+ vk (∇iRjk +∇jRik −∇kRij) , (2.37)

which hold for any smooth β-dependent covector field v(β). According to
these we compute

(
∂

∂β
+ Δd −R

)
(∇avb +∇bva)

= ∇a

(
∂

∂β
+ Δd −R

)
vb +∇b

(
∂

∂β
+ Δd −R

)
va

+ 4vk (∇aRbk +∇bRak −∇kRab) + va∇kRkb + vb∇kRka, (2.38)

from which (2.29) follows. �
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Figure 14: The forward evolution along the linearized Ricci-flow (in the
HDRL representation) naturally preserves Im δ∗g(β).

From the commutation rule (2.26), we get a familiar property of the lin-
earized Ricci-flow that we express as the

Lemma 2.5. If β 
→ v(β), 0 ≤ β ≤ β∗, is a solution of ©dv(β) = 0, then
the induced flow

β 
→ δ∗g(β) v
�(β) ∈ Ug(β) ∩ T(Σ,g(β))Met(Σ)× [0, β∗], (2.39)

is a solution of the linearized Ricci-flow ©dδ
∗
g(β) v

�(β) = 0.

This implies (Fig. 14) that the forward evolution along the linearized
Ricci-flow naturally preserves Im δ∗g(β), and that data h(β = 0) = δ∗g v�

∣
∣
β=0

evolve in Ug(β) × [0, β∗]. Conversely, if h(β) ∈ Ker ©d ∩T(Σ,g(β))Met(Σ),
0 ≤ β ≤ β∗, is a solution of the linearized Ricci-flow with h(β = 0) ∈ Ker δg(β=0),
then in general h(β) �∈ Ker δg(β) for β > 0, and β 
→ h(β) does not evolve in
the affine slices Sg(β) × [0, β∗].

Remark 2.6. If we decompose h(β) ∈ Ker©d according to the g(β)-
dependent Berger–Ebin splitting

hab(β) = hT
ab(β) + Lw�(β) gab(β),∇a hT

ab(β) = 0, (2.40)

we immediately get from ©d hab(β) = 0, and the commutation rule (2.26),
the relation

©d h
T
ab(β) = −2 δ∗g(β) (©dw(β))� . (2.41)
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This directly shows that the non-trivial part hT
ab(β) of a solution of the

linearized Ricci-flow h(β) dynamically generates Diff(Σ) reparametriza-
tions, δ∗g(β) (©dw(β)), of the given fiducial flow. Thus, whereas elements in
Ker ©d ∩C∞(Σ× R, T ∗Σ) generate a natural evolution in Ug(β) × [0, β∗],
there is no natural way of preserving the subspace ker δg(β) along the for-
ward flow (2.16) if we do not impose strong restrictions on the underlying
fiducial Ricci-flow β 
→ gab(β) [4, 12, 34, 36, 56].

The situation is fully reversed if we consider the conjugated flow generated
on C∞(Σ× R,⊗2T Σ) by ©∗

d, since in such a case the commutation relation
(2.27) immediately implies [15] the (Fig. 15)

Lemma 2.7. Let β 
→ gab(β) be a Ricci-flow with bounded geometry on Σβ ×
[0, β∗], β∗ < T0, and let η 
→ gab(η), η

.= β∗ − β, denote the corresponding
backward Ricci-flow on Ση × [0, β∗]obtained by the time reversal β 
→ η

.=
β∗ − β. Then Ker δg(η) is an invariant subspace for ©∗

d, i.e.,

©∗
d

(
Ker δg(η)

)
⊂ Ker δg(η), (2.42)

along η 
→ gab(η). In particular, if η 
→ H(η) with H(η = 0) ∈ Ker δg(η=0)

is a flow solution of the parabolic initial value problem ©∗
dH(η) = 0 on

Σ× [0, β∗], i.e.

∂

∂η
H ab = ΔdH

ab − RH ab,

H ab(η = 0) = H ab ∈ C∞(Σ,⊗2T Σ) ∩Ker δg,
(2.43)

then η 
→ H(η) ∈ Sg(η) ∩ T(Σ,g(η))Met(Σ)× [0, β∗].

Note that, according to (2.23), the conjugate linearized Ricci-flow η 
→
H ab(η) is characterized by

d

dη

∫

Σ
hab(η)H ab(η)dμg(η) = 0, (2.44)

along any solution β 
→ hab(β) of the linearized Ricci-flow ©d h(β) = 0 on
(Σ, g(β))× [0, β∗], (with β = β∗ − η). In particular, from the commutation
relation (2.26), it follows that

d

dη

∫

Σ

(
δ∗g(β) v

�(η)
)

ab
H ab(η)dμg(η) = 0, (2.45)

∀β 
→ v(β), ©d v(β) = 0. Surprisingly, these elementary properties directly
imply the following strong geometrical characterization of η 
→ H ab(η):



1440 MAURO CARFORA

Figure 15: The backward evolution along the conjugate linearized Ricci
flow (in the HDRL representation) naturally preserves metric perturbations,
which are in Ker δg.

Theorem 2.8 (see [15]). Let η 
→ Hab(η) be a solution of the conjugate
linearized Ricci-flow (2.43) on Σ× [0, β∗], then

∫
ΣRab(η)Hab(η)dμg(η) and∫

Σ(gab(η)− 2η Rab(η))Hab(η)dμg(η) are conserved along η 
→ (g(η), H(η)),

d

dη

∫

Σ
Rab(η)Hab(η)dμg(η) = 0, (2.46)

d

dη

∫

Σ
(gab(η)− 2η Rab(η))Hab(η)dμg(η) = 0. (2.47)

This result characterizes the solutions η 
→ H(η), of the conjugate lin-
earized Ricci-flow ©∗

dH(η) = 0, as providing the localizing directions (in L2

sense) for the (non-linear) evolution of Ric(g(β))

∂

∂β
Rij = ΔLRij = ΔRij + 2RkijlRkl − 2RRikRk

j . (2.48)

3 Conjugated mode expansion

Let us consider the pair of conjugated heat flows (1.8), C(β) ∈ ×2
p=0C

∞(Σ×
R,⊗p

ST
∗Σ) and C̄ �(η) ∈ ×2

p=0C
∞(Σ× R,⊗p

STΣ), solutions of (1.9) and
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(1.10). Note that

⎛

⎝
ω(β)
vi(β)
hab(β)

⎞

⎠ 
→

⎛

⎝
�(β)
Ji(β)
Kab(β)

⎞

⎠ ,

⎛

⎝
�(η)
W i(η)
Hab(η)

⎞

⎠ 
→

⎛

⎜
⎝

�(η)
J

i(η)
K

ab(η)

⎞

⎟
⎠ (3.1)

provides the obvious dictionary among the fields discussed in the previous
sections and their physical counterparts defining the data sets Cg(Σ) and
C̄g(Σ). Theorem 2.8, Lemma 2.4 and Lemma 2.7 allow a rather complete
analysis of the conjugation between two given n-dimensional Einstein initial
data sets Cg(Σ) and C̄g(Σ) as characterized by Definition 1.3. We start by
exploiting the conjugacy relation between ©d, ©∗

d, and the L2(Σ, dμg(η))
spectral resolution of C∞(Σ,⊗2

STΣ) generated by the operator Δd −R(η)
at a given fixed η ∈ [0, β∗].

Since we are considering Cḡ(Σ) as the reference data, let us set η = 0 so
that g(η = 0) = ḡ ∈ Cḡ(Σ). From the spectral theory of Laplace-type oper-
ators on closed Riemannian manifolds (see [29, 30] (Th. 2.3.1)), it follows
that, on (Σ, ḡ), the elliptic operator Pd

.= −Δd +R(ḡ) has a discrete spectral
resolution

{
Φ �

(n), λ
(d)
(n)

}
,

Φ �
(n) :=

⎛

⎜
⎜
⎝

Φ(n)

Φ i
(n)

Φ ab
(n)

⎞

⎟
⎟
⎠ , (3.2)

where Φ(n), Φ i
(n), and Φ ab

(n) respectively are the eigenfunction of the conjugate
scalar Laplacian −Δd +R(ḡ), of the conjugate vector Laplacian −Δvec +
R(ḡ), and of the conjugate Lichnerowicz–DeRham Laplacian −ΔL +R(ḡ).
The eigenvalues λ(d)

(1) ≤ λ
(d)
(2) ≤ · · ·∞ have finite multiplicities, and are con-

tained in [−C̄(d), ∞) for some constant C̄(d) depending from the (bounded)
geometry of (Σ, ḡ). Moreover, for any ε > 0, there exists an integer n(d)(ε)

so that n
2
3
−ε ≤ λ

(d)
(n) ≤ n

2
3
+ε, for n ≥ n(d)(ε). The set of eigentensor {Φ �

(n)},
Φ �

(n) ∈ C∞(Σ,⊗pT Σ), p = 0, 1, 2, with

Pd Φ �
(n) = (−Δd +R(g)) Φ �

(n) = λ
(d)
(n) Φ �

(n) (3.3)

provide a complete orthonormal basis for L2(Σ,⊗pT Σ; dμḡ), p = 0, 1, 2. If
for a tensor field H ∈ L2(Σ,⊗pT Σ), p = 0, 1, 2, we denote by cn

.= (H,
Φ �

(n))L2(Σ) the corresponding Fourier coefficients, then we have that
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Figure 16: The backward evolution, along the conjugate linearized Ricci
flow, of the eigenmodes

{
Φ �

(n)

}
of the the elliptic operator Pd

.= −Δd +
R(ḡ) does not preserve the eigenfunction property. However, the associated
Fourier coefficients are preserved.

H ∈ C∞(Σ,⊗pT Σ), p = 0, 1, 2, iff limn→∞ nk cn = 0, ∀k ∈ N, (i.e, the {cn}
are rapidly decreasing). Also, if |H|k denotes the sup–norm of kth covari-
ant derivative of H, then there exists j(k) so that |H|k ≤ nj(k) if n is large
enough. This result implies in particular that the series H =

∑
n cn Φ �

(n)

converges absolutely to H, and that the linear span of the
{

Φ �
(n)

}
is dense

in the C∞ topology. With these preliminary remarks along the way, we
have: (Fig. 16)

Theorem 3.1 (Conjugate mode expansion). Along the fiducial back-
ward Ricci flow η 
−→ g(η) on Σ× [0, β∗], let

{
Φ�

(n)(η)
}
∈ C∞(Σ× [0, β∗],

⊗pT Σ), p = 0, 1, 2, denote the flows defined by

©∗
d Φ�

(n)(η) = 0, Φ�
(n)(η = 0) := Φ �

(n), n ∈ N. (3.4)

If C(β) ∈ C∞(Σ× [0, β∗],⊗pT ∗Σ), ©d C(β) = 0, C(β = 0) = C, is the for-
ward evolution of (�, Ji, Kab) ∈ Cg(Σ) then, in terms of the initial data
C(β = 0) := (�, Ji, Kab) ∈ Cg(Σ), we can write

�(β∗) =
∑

n

Φ (n)
∫

Σ
� Φ(n) dμg, (3.5)
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Ja(β∗) =
∑

n

Φ (n)
a

∫

Σ
Ji Φi

(n) dμg, (3.6)

Kab(β∗) =
∑

n

Φ̄(n)
ab

∫

Σ
Kij Φij

(n) dμg, (3.7)

where the integrals appearing on the right-hand side are all evaluated at β =
0, e.g.

∫
Σ Kij Φij

(n) dμg :=
∫
Σ Kij(β = 0) Φij

(n)(η = β∗) dμg(β=0). Moreover,
under the same hypotheses and notation, we have

∫

Σ
|�(β∗)|2 dμg =

∑

n

∣
∣
∣
∣

∫

Σ
�Φ(n) dμg

∣
∣
∣
∣

2

, (3.8)

∫

Σ
|J(β∗)|2 dμg =

∑

n

∣
∣
∣
∣

∫

Σ
Ja Φa

(n) dμg

∣
∣
∣
∣

2

, (3.9)

∫

Σ
|K(β∗)|2 dμg =

∑

n

∣
∣
∣
∣

∫

Σ
Kij Φij

(n) dμg

∣
∣
∣
∣

2

. (3.10)

Remark 3.2. Note that the integral norms on the right-hand side of the
above relations, e.g.,

∣
∣∫

Σ �Φ(n) dμg

∣
∣2 only depend on the given initial, (for

β = 0), fields (�, Ja, Kab), and on the geometry of the underlying Ricci flow
β 
→ g(β), (via the backward flow η 
→ Φ �

(n)).

Proof. We prove Theorem 3.1 explicitly for the β-evolution of the second
fundamental form β 
→ Kab(β) ∈ C∞(Σ,⊗2T ∗ Σ), the remaining cases for
β 
→ �(β) and β 
→ Ja(β) being similar.

From the evolution ©∗
d Φab

(n)(η) = 0, we compute

∂

∂η
|Φ(n)(η)|2 = Δ |Φ(n)(η)|2 − 2 |∇Φ(n)(η)|2 −R(η) |Φ(n)(η)|2

+ 4 Φ(n)(η) · Riem(β) · Φ(n)(η), (3.11)

where |∇Φ(n)(η)|2 := ∇a Φij
(n)∇Φ(n)

ij (η), and Φ(n)(η) · Riem(β) · Φ(n)(η) :=

Φij
(n)Rikjl Φkl

(n). This implies that

d

dη

∫

Σ
|Φ(n)(η)|2 dμg(η) = −2

∫

Σ
|∇Φ(n)(η)|2 dμg(η)

+ 4
∫

Σ
Φ(n)(η) · Riem(η) · Φ(n)(η) dμg(η). (3.12)
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This explicitly shows that, for η > 0, the flows
{

Φ�
(n)(η)

}
∈ C∞(Σ× [0, β∗],

⊗pT Σ) do not preserve, in general, the orthonormality condition of the orig-
inal

{
Φ �

(n)

}
. To partial compensation of the lack of normalization, we can

easily bound the L2 norm of
{

Φ�
(n)(η)

}
. Since the Ricci flow β 
→ gab(β)

on Σ× [0, β∗] is of bounded geometry, a direct application of the maxi-
mum principle to the reaction-diffusion equation governing the evolution of
|Riem(g(β))|2 along β 
→ gab(β), implies the doubling time estimate, (see,
e.g., [18], lemma 6.1), according to which if |Riem(g(β = 0))| ≤ C0 then
|Riem(g(β))| ≤ 2C0, for all 0 ≤ β ≤ 1/16C0. Introducing this in (3.12) we
get

∫

Σ
|Φ(n)(η)|2 dμg(η) ≤ e8 C0 η

∫

Σ
|Φ(n)(η)|2 dμg

∣
∣
∣
∣
η=0

≤ e8 C0 η, (3.13)

where we have exploited the orthonormality condition
∫
Σ |Φ(n)(η)|2 dμg|η=0 =∫

Σ |Φ(n)(η)|2 dμg = 1. Note that even without the doubling-time estimate,
(e.g. if we run the interpolating length-scale β over an interval [0, β∗]
such that β∗ > 1/16C0), the hypothesis of bounded geometry implies that
|Riem(g(β))| ≤ C(β) on Σ× [0, β∗], for some β-depending constant C(β) <
∞. In such a case, we get the weaker estimates

∫

Σ
|Φ(n)(η)|2 dμg(η) ≤ e4

∫ β
0 C(s) ds, (3.14)

which suffices to control, in terms of the geometry of the underlying back-
ward Ricci flow η 
→ g(η), the L2-norm of the flows {Φab

(n)}. It is also not

difficult to check that {Φ�
(n)(η)} are not, for η > 0, the eigentensors of the

family of η-dependent elliptic operators Pd(η)
.= −Δd +R(g(η)). However,

as we shall prove momentarily, the conjugacy between ©d C(β) = 0 and
©∗

d

{
Φ�

(n)(η)
}

= 0 preserves the Fourier coefficients ∀β ∈ [0, β∗], e.g.,

∫

Σ
Kij(β) Φij

(n)(β) dμg(β) =
∫

Σ
Kij Φij

(n)(β
∗) dμg. (3.15)

With these preliminary remarks along the way, let Kab(β∗) ∈ C∞
(Σ,⊗2T ∗ Σ) be the evaluation, for β = β∗, of the flow Kab(β) ∈ C∞(Σ×
[0, β∗],⊗2

ST
∗Σ), ©dK(β) = 0, K(β = 0) = K. Since the set of eigentensors{

Φ̄(n)
ik

}
provide a complete orthonormal basis for L2(Σ,⊗2T ∗ Σ; dμḡ) and

their linear span is dense in C∞(Σ,⊗2
ST

∗Σ), the smoothness of Kab(β∗)
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implies that we can write

Kab(β∗) =
∑

n

Φ̄(n)
ab

∫

Σ
Kij(β∗) Φ̄ij

(n) dμḡ, (3.16)

where the series converges absolutely in the C∞ topology. Along the con-
jugate heat evolutions

{
Φ(n)

ik (η)
}
∈ C∞(Σ× [0, β∗],⊗2T ∗ Σ), ©∗

d Φ(n)
ik (η) =

0, Φ(n)
ik (η = 0) := Φ̄(n)

ik , n ∈ N, and Kab(β) ∈ C∞(Σ× [0, β∗],⊗2
ST

∗Σ), ©d

K(β) = 0, K(β = 0) = K, we have (see (2.23))

d

dβ

∫

Σ
Kij(β) Φij

(n)(β) dμg(β) = 0, (3.17)

where Φij
(n)(β) := Φij

(n)(η = β∗ − β). This implies (3.15), and in particular
(by evaluating the left member for β = β∗ and the right member for β = 0),

∫

Σ
Kij(β∗) Φ̄ij

(n) dμḡ =
∫

Σ
Kij Φij

(n)(β
∗) dμg , (3.18)

which yields (3.7). Under the stated smoothness hypotheses, (3.10) imme-
diately follows from Parseval identity. �

The above theorem can be applied to the Ricci tensor Ric(β) and the
Ricci flow metric g(β) itself. Indeed, by exploiting Theorem 2.8, we directly
get

Lemma 3.3. Let β 
→ g(β), 0 ≤ β ≤ β∗, be a Ricci-flow of bounded geom-
etry interpolating between g ∈ Cg(Σ) and ḡ ∈ C ḡ(Σ). If Ric(ḡ) and Ric(g)
respectively denote the Ricci tensor of the metric ḡ ∈ C ḡ(Σ) and g ∈ Cg(Σ),
then

Rab(ḡ) =
∑

n

Φ̄(n)
ab

∫

Σ
Rij(g) Φij

(n)(β
∗) dμg, (3.19)

and

gab =
∑

n

Φ̄(n)
ab

∫

Σ
(gij − 2β∗Rij) Φij

(n)(β
∗) dμg. (3.20)

Proof. The proof follows simply by noticing that the (non-linear) evolu-
tion of Rab(β) and gab(β)− 2(β∗ − β)Rab(β), along the underlying Ricci
flow, is governed by ©dRab(β) = 0 and ©d (gab(β)− 2(β∗ − β)Rab(β∗)) =
0, respectively. Thus Rab(β) and gab(β)− 2(β∗ − β)Rab(β) are smooth and
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Figure 17: The forward evolved fields (�(β∗), J(β∗), K(β∗)) can be
expanded in terms of the initial data (�, J, K) ∈ Cg(Σ) with respect to
the conjugated modes {Φ�

(n)} at β = 0. Note that these backward prop-
agated modes only depend on the geometry of the fiducial Ricci flow.
Thus the {Φ�

(n)(η)} provide the geometrical directions along which the fields
(�, J, K) ∈ Cg(Σ) do not dissipate in the L2-sense.

conjugated to the flows
{

Φ(n)
ik (η)

}
, n ∈ N, and in analogy with (3.7), we get

the stated result. �

There is a useful (somewhat tautological) rewriting of Theorem 3.1 which
better emphasizes the relation among the Ricci flow conjugated (Fig. 17)
data Cg(Σ) and Cg(Σ). This relation will be further stressed later on when
we will introduce the heat kernel associated with the conjugate operator ©∗

d.

Lemma 3.4. Let

� =
∑

n

cn(�) Φ(n)
, (3.21)

Ja =
∑

n

cn(J) Φ(n)
a ,

Kab =
∑

n

cn(K) Φ(n)
ab ,

the mode expansion on (Σ, g) of the data ∈ Cg (Σ), where

cn(�) : =
∫

Σ
�Φ(n) dμg, (3.22)
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cn(J) : =
∫

Σ
J i Φ i

(n) dμg, (3.23)

cn(K) : =
∫

Σ
Kij Φ ij

(n) dμg. (3.24)

Then, if we define

δ�(n) :=
[∫

Σ
� Φ(n) dμg − cn(�)

]
, (3.25)

δJ(n) :=
[∫

Σ
JiΦi

(n) dμg − cn(J)
]
, (3.26)

δK(n) :=
[∫

Σ
KijΦ

ij
(n) dμg − cn(K)

]
, (3.27)

we can write

�(β∗) = �+
∑

n

Φ(n)
δ�(n), (3.28)

Ja(β∗) = Ja +
∑

n

Φ(n)
a δJ(n), (3.29)

Kab(β∗) = Kab +
∑

n

Φ(n)
ab δK(n). (3.30)

Proof. The lemma trivially follows by first adding and subtracting to the
expressions for (�(β∗), Ja(β∗), Kab(β∗)) the terms

(
�, J

a
, K

ab
)

and then
expanding according to theorem 3.1 and (3.21). �

Roughly speaking, this lemma implies that the physical Einstein data
∈ Cg(Σ) evolved, along the fiducial Ricci flow, according to ©d C(β) = 0,
generate fields (�(β∗), Ja(β∗), Kab(β∗)), which are expressible in terms of
reference Einstein data Cg(Σ) plus fluctuation terms. These latter can be
parametrized in terms of the eigen-modes Φ�

(n) on the reference (Σ, g) and of
their conjugate evolution along the given backward Ricci flow. This shows
that Ricci flow conjugation is a rather natural procedure for comparing the
initial data sets Cg(Σ) and C̄ḡ(Σ).

Explicitly, we can rewrite the Hamiltonian and the divergence constraints

R(g)− (2Λ + |K |2g − (trg K)2) = 16π�, (3.31)

2∇a(Kab − gab (trg K)) = 16πJb, (3.32)
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Figure 18: By exploiting the mode expansion of the fluctuating fields (see
(3.28), (3.29), and (3.30)) we can compare the initial data sets Cg(Σ) and
C̄ḡ(Σ).

which are assumed to hold for the reference data set Cg(Σ), in terms of the
Ricci-evolved physical data (�(β∗), Ji(β∗),Kab(β∗)) and their fluctuations
according to (Fig. 18)

Lemma 3.5. On the reference manifold (Σ, g), the Hamiltonian and diver-
gence constraints (3.31) and (3.32) take the following form when expressed
in terms of the Ricci-evolved physical data β 
→ (�(β∗), Ji(β∗),Kab(β∗)) and
of their fluctuations (δ�(n), δJ(n), δK(n)),

R(g)−

⎡

⎣2Λ +

∣
∣
∣
∣
∣
Kab(β∗)−

∑

n

Φ(n)
ab δK(n)

∣
∣
∣
∣
∣

2

g

−
(

g abKab(β∗)−
∑

n

g ab Φ(n)
ab δK(n)

)2
⎤

⎦

= 16π �(β∗)− 16π
∑

n

Φ(n)
δ�(n), (3.33)

and

2∇a

[

Kab(β∗)−
∑

n

Φ (n)
ab δK(n)

]

(3.34)
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− 2∇b

[

gcdKcd(β∗)−
∑

n

gcd Φ(n)
cd δK(n)

]

= 16π Jb(β∗)− 16π
∑

n

Φ(n)
b δJ(n).

Proof. An obvious rewriting of (3.31) and (3.32) in terms of (3.28), (3.29),
and (3.30). �

This lemma becomes a geometrically and physically significant statement
if one can prove that the Ricci evolution β 
→ (�(β∗), Ji(β∗),Kab(β∗)) of
the physical data Cg(Σ) entails a form of geometrical averaging control-
ling the fluctuations (δ�(n), δJ(n), δK(n)), and complying with the domi-
nant energy condition characterizing the given matter field (�, J) ∈ Cg(Σ).
In the next section, we do actually prove that the Ricci evolution β 
→
(�(β∗), Ji(β∗),Kab(β∗)) is in a technical sense a geometrical averaging as
seen from the reference data Cg(Σ), at least for sufficiently small η. This is
directly suggested by Theorem 3.1, which indicates that the mode expansion
formally behaves as a heat kernel for the operator of ©∗

d. This is indeed the
case, and the averaging properties of Ricci-flow conjugation become quite
manifest when we consider the the heat kernel of ©∗

d := ∂
∂η −ΔL +R, along

the backward Ricci flow η 
→ gab(η).

4 Asymptotics for Ricci-flow-conjugated data

Let β 
→ (Σ, gab(β)), β ∈ [0, β∗] be the fiducial Ricci-flow of bounded geom-
etry interpolating between the two data sets Cg(Σ) and Cg(Σ), and let
Uβ ⊂ (Σ, g(β)) be a geodesically convex neighborhood containing the generic
point x ∈ Σ. For a chosen base point y ∈ Uβ, denote by lβ(y, x) the unique
g(β)-geodesic segment x = expy u, with u ∈ TyΣ, connecting y to x. Par-
allel transport along lβ(y, x) allows us to define a canonical isomorphism
between the tangent space TyΣ and TxΣ which maps any given vector
�v(y) ∈ TyΣ into a corresponding vector �vPlβ(y,x)

∈ TxΣ. If {e(h)(x)}h=1,2,3

and {e(k′)(y)}k′=1,2,3 respectively denote basis vectors in TxΣ and TyΣ,
(henceforth, primed indexes will always refer to components of elements
of the tensorial algebra over TyΣβ), then the components of �vPlβ(y,x)

can be
expressed as

(
vPlβ(y,x)

)k
(x) = τk

h′(y, x;β) vh′
(y), (4.1)
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where τk
h′ ∈ TΣ � T ∗Σ denotes the bitensor associated with the parallel

transport along lβ(y, x). The Dirac p-tensorial measure in Uβ ⊂ (Σ, g(β)) is
defined according to

δ
k1...kp

h′
1...h′

p
(y, x;β) := ⊗p

(α=1) τ
kα
h′

α
(y, x;β) δβ(y, x), (4.2)

where δβ(y, x) is the standard Dirac measure over the Riemannian manifold
(Σβ , g(β)) (see [44]). With these notational remarks along the way we have

Theorem 4.1. The flow β 
→ C(β) admits, along the backward Ricci-flow
η 
→ (Σ, gab(η)), η ∈ [0, β∗], the L2(Σ× [0, β∗], dμg(η))-averaging kernel

η 
−→ H(x, y; η) .=

⎛

⎜
⎝

H(y, x; η)

Ha
i′(y, x; η)

Hab
i′k′(y, x; η)

⎞

⎟
⎠ , (4.3)

defined by the fundamental solution to the HDRL conjugate heat equation
(
∂

∂η
− Δ(x)

d +R
)

H(y, x; η) = 0,

lim
η↘0+

H(y, x; η) = δ(y, x),
(4.4)

where

δ(y, x) .=

⎛

⎜
⎝

δ(y, x)

δa
i′(y, x)

δab
i′k′(y, x)

⎞

⎟
⎠ , (4.5)

is the corresponding p-tensorial Dirac measure.

Proof. If (Σ, gab(η)) is a smooth solution to the backward Ricci flow on Ση ×
[0, β∗] with bounded curvature, then we can consider the g(η)-dependent
fundamental solution Hab

i′k′(y, x; η) to the conjugate heat equation (2.43),
i.e.,

(
∂

∂η
− Δ(x)

L +R
)
Hab

i′k′(y, x; η) = 0,

lim
η↘0+

Hab
i′k′(y, x; η) = δab

i′k′(y, x; ),
(4.6)

where (y, x; η) ∈ (Σ× Σ\Diag(Σ× Σ))× [0, β∗], η .= β∗ − β, Δ(x)
L denotes

the Lichnerowicz–DeRham Laplacian with respect to the variable x, and



RICCI-FLOW-CONJUGATED INITIAL DATA SETS 1451

Figure 19: The heat kernel H(y, x; η) of the conjugate linearized Ricci flow
(in the HDRL representation) in the η-dependent geometry associated with
the fiducial Ricci flow.

Hab
i′k′(y, x; η) is a smooth section of (⊗2TΣ) � (⊗2T ∗Σ). The Dirac initial

condition is understood in the distributional sense, i.e., for any smooth sym-
metric bilinear form with compact support wi′k′ ∈ C∞

0 (Σ,⊗2TΣ),

∫

Ση

Hab
i′k′(y, x; η) wi′k′

(y) dμ(y)
g(η) → wab(x) as η ↘ 0+, (4.7)

where the limit is meant in the uniform norm on C∞
0 (Σ,⊗2TΣ). Since

along a backward Ricci flow on Ση × [0, β∗] with bounded geometry, the
metrics gab(η) are uniformly bounded above and below for 0 ≤ η ≤ β∗, it
does not really matter, which metric we use in topologizing the spaces
C∞(Ση,⊗2T ∗ Ση), and we can readily adapt to our setting the parametrix–
deformation methods used in [35] and in [18] to prove [15] that along a
backward Ricci-flow on Ση × [0, β∗], with bounded geometry, there exists
a unique (Fig. 19) fundamental solution η 
−→ Hab

i′k′(y, x; η) of the conju-

gate (Lichnerowicz) heat operator
(

∂
∂η − Δ(x)

L + R
)
. For the explicit (and

rather lengthy) proof of this latter result and for the general properties
of the integral kernel Hab

i′k′(y, x; η) we refer the reader to [15]. Here, we
just need to recall its η ↘ 0+ asymptotics, since this latter will be related
to the explicit structure of the averaging we are considering. The kernel
Hab

i′k′(y, x; η) is singular as η ↘ 0+, the general strategy for discussing its
asymptotics is to model the corresponding parametrix around the Euclidean
heat kernel (4πη)−

3
2 exp

(
−d2

0(y,x)
4η

)
defined in TyΣ by means of the expo-

nential mapping associated with the initial manifold (Σ, gab(η = 0) = gab).
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To this end, denote by dη(y, x) the (locally Lipschitz) distance function
on (Σ, gab(η)) and by inj (Σ, g(η)) the associated injectivity radius. Adopt,
with respect to the metric gab(η), geodesic polar coordinates about y ∈ Σ,
i.e., xj′ = dη(y, x)uj′ , with uj′ coordinates on the unit sphere S

2 ⊂ TyΣ.
By adapting the analysis in [18], [28], and [31], [33] to (4.6) we have that,
as η ↘ 0+, and for all (y, x) ∈ Σ such that d0(y, x) < inj (Σ, g(0)), there
exists a sequence of smooth sections Υ[h]ab

i′k′ (y, x; η) ∈ C∞(Σ× Σ′,⊗2TΣ �
⊗2T ∗Σ), with Υ[0] ab

i′k′ (y, x; η) = τab
i′k′ (y, x; η), such that

exp
(
−d2

0(y,x)
4η

)

(4π η)
3
2

N∑

h=0

ηhΥ[h] ab
i′k′ (y, x; η), (4.8)

is uniformly asymptotic to Hab
i′k′(y, x; η), i.e.,

∣
∣
∣
∣
∣
∣
Hab

i′k′(y, x; η)−
exp

(
−d2

0(y,x)
4η

)

(4π η)
3
2

N∑

h=0

ηhΥ[h] ab
i′k′ (y, x; η)

∣
∣
∣
∣
∣
∣
η↘0+

= O
(
ηN− 1

2

)
, (4.9)

in the uniform norm on C∞(Σ× Σ′,⊗2TΣ×⊗2T ∗Σ). A detailed presenta-
tion of the η ↘ 0+ asymptotics of generalized Laplacians on vector bundles
with time-varying geometries is discussed in [31, 33].

In analogy to (4.6) let us introduce the fundamental solutions H(y, x; η)
and Ha

i′(y, x; η) of the scalar conjugate heat equation ( ∂
∂η −Δ +R) and of

the vector conjugate heat equation ( ∂
∂η −Δvec +R), (see (2.22)). Then by

defining

H(x, y; η) .=

⎛

⎜
⎝

H(y, x; η)

Ha
i′(y, x; η)

Hab
i′k′(y, x; η)

⎞

⎟
⎠ , (4.10)

we can write in compact form

(
∂

∂η
− Δ(x)

d + R
)

H(y, x; η) = 0,

lim
η↘0+

H(y, x; η) = δ(y, x),
(4.11)
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Figure 20: The asymptotics of the heat kernel H(y, x; η).

where

δ(y, x) .=

⎛

⎜
⎝

δ(y, x)

δa
i′(y, x)

δab
i′k′(y, x)

⎞

⎟
⎠ , (4.12)

is the corresponding array of p-tensorial Dirac measures. In particular, it
follows that the various asymptotic expansions of the fundamental solutions
H(y, x; η), Ha

i′(y, x; η), and Hab
i′k′(y, x; η), which can be obtain in full analogy

with (4.8), can be written in a compact notation according to
∣
∣
∣
∣
∣
∣
H(y, x; η)−

exp
(
−d2

0(y,x)
4η

)

(4π η)
3
2

N∑

h=0

ηhΥ[h] (y, x; η)

∣
∣
∣
∣
∣
∣
η↘0+

= O
(
ηN− 1

2

)
, (4.13)

where Υ[h] (y, x; η) is a collective notation for the appropriate set of sec-
tions characterizing the asymptotics (Fig. 20) of the various heat kernels
involved. �

Further details of heat kernels associated with a parameter-dependent
metric are discussed in [35, 18], (see Appendix A, Section 7 for a charac-
terization of the parametrix of the heat kernel in such a case), and in a
remarkable paper by Garofalo and Lanconelli [28]. Strictly speaking, in all
these works, the analysis is confined to the scalar Laplacian, possibly with
a potential term, but the theory readily extends to generalized Laplacians,
under the assumption that the metric gab(β) is smooth as ↗ β∗. In partic-
ular, the case of generalized Laplacian on vector bundles with time-varying
geometry has been studied in considerable detail by Gilkey et al. [31, 33].
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Remark 4.2. The structure of the asymptotics (4.13) of the heat kernel
H(y, x; η) directly shows that, at least for small η, the main contribution
to H(y, x; η) comes from a neighborhod of y ∈ Σ consisting of all points
x ∈ Σ which, as measured in the reference geometry (Σ, g), are at a dis-
tance d0(y, x) ≤ 2

√
η. This remark implies that the integral kernel H(y, x; η)

averages out over a length scale given by

τ(β) � 2
√
η = 2

√
β∗ − β. (4.14)

4.1 Asymptotics of the averaged data

The averaging properties of H(y, x; η) are readily stated by exploiting the
properties of the conjugated linearized Ricci flow. Explicitly, we get

Theorem 4.3. Let η 
→ gab(η) be a backward Ricci flow with bounded geom-
etry on Ση × [0, β∗] and let Hab

i′k′(y, x; η) be the (backward) heat kernel of the
corresponding conjugate linearized Ricci operator ©∗

LH
ab
i′k′(y, x; η) = 0, for

η ∈ (0, β∗], with Hab
i′k′(y, x; η ↘ 0+) = δab

i′k′(y, x). Then

Ri′k′(y, η = 0) =
∫

Σ
Hab

i′k′(y, x; η)Rab(x, η) dμg(x,η), (4.15)

for all 0 ≤ η ≤ β∗. Moreover, as η ↘ 0+, we have the uniform asymptotic
expansion

Ri′k′(y, η = 0)

=
1

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
τab
i′k′(y, x; η)Rab(x, η) dμg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
Υ[h]ab

i′k′(y, x; η)Rab(x, η) dμg(x,η)

+O
(
ηN− 1

2

)
, (4.16)

where τab
i′k′(y, x; η) ∈ TΣη � T ∗Ση is the parallel transport operator associ-

ated with (Σ, g(η)), d0(y, x) is the distance function in (Σ, g(η = 0)), and
Υ[h]ab

i′k′(y, x; η) are the smooth section ∈ C∞(Σ× Σ′,⊗2TΣ �⊗2T ∗Σ),
(depending on the geometry of (Σ, g(η))), characterizing the asymptotics of
the heat kernel Kab

i′k′(y, x; η).
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Proof. From Proposition 2.8, we get that along the backward Ricci-flow on
Σ× [0, β∗], we can write, for all 0 ≤ η ≤ β∗,

Ri′k′(y, η = 0) = lim
η↗0+

∫

Σ
Hab

i′k′(y, x; η)Rab(x, η) dμg(η)

=
∫

Σ
Hab

i′k′(y, x; η)Rab(x, η) dμg(η). (4.17)

Since the asymptotics (4.8) is uniform, we can integrate term by term, and
by isolating the lower order term, we immediately get (4.16). �

As an illustrative example, let us consider the case in which (Σ, gab) ∈
Cg(Σ) is a manifold of constant curvature C, i.e.,Ri′k′(y, η = 0) = 2C gi′k′ =
R
3 gi′k′ . By tracing (4.15) with respect to gi′k′

(y) we get

R(y) =
∫

Σ
gi′k′

(y)Hab
i′k′(y, x; η)Rab(x, η) dμg(x,η), (4.18)

which nicely shows that the scalar curvature R(y) of (Σ, gab) is obtained
upon averaging the Ricci curvature of the data Cg(Σ) along the interpolating
Ricci flow β 
−→ gab(β). This is even more explicitly seen from the asymp-
totics (4.16). Indeed, by tracing (4.16) with respect to gi′k′

(y), and taking
into account that, at orderO(η

1
2 ), we can write gi′k′

(y)τab
i′k′(y, x; η)Rab(x, η) �

gab(x, η)Rab(x, η) = R(x, η), we get

R(y) =
1

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
R(x, η) dμg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫

Σ
e

(
− d2

0(y,x)

4η

)

gi′k′
Υ[h]ab

i′k′(y, x; η)Rab(x, η) dμg(x,η)

+O
(
ηN− 1

2

)
. (4.19)

By the very definition of Ricci-flow conjugation, (see, e.g., (2.44)), it
follows that a representation structurally similar to (4.15) and (4.16) holds
also for the extrinsic curvature flow β 
→ Kab(β), solution of the linearized
Ricci flow ©LKab(β) = 0, i.e.,

Ki′k′(y, η = 0) =
∫

Σ
Hab

i′k′(y, x; η)Kab(x, η) dμg(x,η), (4.20)
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Figure 21: The asymptotics of the averaged data (the fields) is, for small η,
a form of Gaussian averaging dressed by geometrical fluctuations.

for all 0 ≤ η ≤ β∗, and

Ki′k′(y, η = 0)

=
1

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
τab
i′k′(y, x; η)Kab(x, η) dμg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
Υ[h]ab

i′k′(y, x; η)Kab(x, η) dμg(x,η)

+O
(
ηN− 1

2

)
. (4.21)

Again (Fig. 21) by tracing with respect to gi′k′
(y) we get

k(y, η = 0) =
∫

Σ
gi′h′

(y)Hab
i′h′(y, x; η)Kab(x, η) dμg(x,η), (4.22)

and

k(y, η = 0) (4.23)

=
1

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
k(x, η) dμg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫

Σ
e

(
− d2

0(y,x)

4η

)

gi′k′
Υ[h]ab

i′k′(y, x; η)Kab(x, η) dμg(x,η)

+O
(
ηN− 1

2

)
.
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Since lim η↘0+

∫
ΣH

ab
i′k′(y, x; η) gab(x, η) dμg(η) = gi′k′(y, η = 0), the conserva-

tion law (2.47), applied to Hab
i′k′(y, x; η)), directly provides the

Lemma 4.4. Let β 
→ gab(β) be a Ricci flow with bounded geometry on
Σβ × [0, β∗], and let Hab

i′k′(y, x; η) be the (backward) heat kernel of the cor-
responding conjugate linearized Ricci operator ©∗

L, for η = β∗ − β. Then,
along the backward flow η 
→ gab(η),

gi′k′ (y, η = 0) =
∫

Σ
Hab

i′k′(y, x; η)[gab(x, η)− 2η Rab(x, η)] dμg(x,η), (4.24)

for all 0 ≤ η ≤ β∗, and

gi′k′(y, η = 0)

=
1

(4π η)
3
2

∫

Σ
e
− d2

0(y,x)

4η τab
i′k′(y, x; η) [gab(x, η)− 2ηRab(x, η)] dμg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫

Σ
e−

d2
0(y,x)

4η Υ[h]ab
i′k′(y, x; η)[gab(x, η)

− 2ηRab(x, η)] dμg(x,η) +O
(
ηN− 1

2

)
. (4.25)

holds uniformly, as η ↘ 0+.

From the scalar part of the conjugate heat kernel H(y, x; η) solution of
(4.11) we get, for the matter density flow β 
−→ �(β),

�(y, η = 0) =
∫

Σ
H(y, x; η) �(x, η) dμg(x,η), (4.26)

where, as usual, η := β∗ − β, and

�(y, η = 0)

=
1

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
�(x, η) dμg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫

Σ
e

(
− d2

0(y,x)

4η

)

Υ[h](y, x; η) �(x, η) dμg(x,η)

+O
(
ηN− 1

2

)
. (4.27)

Since H(y, x; η) solves the conjugate heat equation (4.4), the relation (4.26)
is a statement of mass conservation in the averaging region supporting, as
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η varies, the probability measure H(y, x; η) dμg(x,η), (again by the defining
conjugacy relation, it is immediate to verify that

∫
Σ H(y, x; η) dμg(x,η) = 1,

∀η ∈ [0, β∗]).

Finally, for the matter current density Ji ∈ CP
g (Σ), (evolving according to

©d, Ji = 0 — see Def. 1.3), we get

Ji′(y, η = 0) =
∫

Σ
Ha

i′(y, x; η)Ja(x, η) dμg(x,η), (4.28)

for all 0 ≤ η ≤ β∗, and

Ji′(y, η = 0)

=
1

(4πη)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
τa
i′(y, x; η)Ja(x, η) dμg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
Υ[h]ai′(y, x; η)Ja(x, η) dμg(x,η)

+O
(
ηN− 1

2

)
. (4.29)

We can exploit the above asymptotics for giving a rather convenient repre-
sentation, as η ↘ 0+, of the fluctuations (δ�(n), δJ(n), δK(n)). For instance,
in the case of the matter density, by comparing (4.27) with the corresponding
expression (3.28) in Lemma 3.4, we can write

�(β∗, y) = �(y) +
∑

n

Φ (n)
δ�(n) (4.30)

= �(y) +
1

(4π η)
3
2

∫

Σ
exp

(
−d

2
0(y, x)
4η

)
[�(x, η)− �(y)] dμg(x,η)

+
N∑

h=1

ηh

(4π η)
3
2

∫

Σ
e

(
− d2

0(y,x)

4η

)

Υ[h](y, x; η) [�(x, η)− �(y)] dμg(x,η)

+O
(
ηN− 1

2

)
.

Similar expressions can be easily written down for
∑

n Φ(n)
a δJ(n), and

∑
n Φ(n)

ab δK(n), and clearly show that, at least for small η, Ricci-flow con-
jugation is an averaging procedure as suggested by the spectral resolution
described in Lemma 3.4.
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4.2 The Matter–Geometry content of C(β∗) and its asymptotics

The actual computation of the sections Υ[h] ab
i′k′(y, x; η) is, in general, quite

demanding and the above asymptotic expansions are mostly of theoretical
rather than practical value in most situations. A more useful result can be
obtained if, rather than looking at the pointwise expressions for the deformed
data C(β∗), we consider the following integral quantities:

(i) The matter content of C(β∗) with respect to C � (η)

M(η) :=
∫

Σ
�(y, β∗) �(y, η) dμg(y,η); (4.31)

(ii) The current content of C(β∗) with respect to C � (η)

J(η) :=
∫

Σ
Ji(y, β∗)J

i(y, η) dμg(y,η); (4.32)

(iii) The extrinsic curvature content of C(β∗) with respect to C � (η)

K(η) :=
∫

Σ
Kab(y, β∗)K

ab(y, η) dμg(y,η). (4.33)

By introducing the compact notation

MG(η) :=
∫

Σ
C(y, β∗)� C � (y, η) dμg(y,η) :=

⎛

⎝
M(η)
J(η)
K(η)

⎞

⎠ , (4.34)

we collectively refer to the above expressions as defining the Matter–
Geometry content of C(β∗) with respect to C � (η). Note that whereas
MG(η = 0) is a conserved quantity along the interpolating Ricci-flow, in
general MG(η) is not. Making a parallel with heat propagation, the integrals
defining MG(η) play the role of the heat content of a system characterized
by a distribution given by C(β∗ − η) and by an η-dependent specific heat
proportional to C(η). It provides, as η varies, a relevant physical quantity
which through MG(η)−MG(0) can be conveniently used to describe, at
least for small η, the fluctuations of the averaged physical data C(β∗ − η)
with respect to the reference data. To show that this is indeed the case, let
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us note that in terms of the heat kernel H(y, x; η) we can write

C(y, β∗) =
∫

Σ
H(y, x; η) C (x, η) dμg(x,η). (4.35)

Thus

MG(η) =
∫ ∫

Σ
H(y, x; η) C (x, η)� C �(y, η) dμg(x,η) dμg(y,η). (4.36)

This expression has the structure of the heat content (in the sense of Gilkey
[31, 32]) in a time (η) variable geometry with specific heat given9 by C �(y, η).
In particular, if we specialize the results of [31, 32] to the case of the
Lichnerowicz–Hodge–DeRham heat flow discussed here we get the

Theorem 4.5. Let Δ(β(η))
d := −(d δg(β∗−η) + δg(β∗−η) d) denote the Hodge

Laplacian, with respect to the backward Ricci evolving metric η 
−→ g(η),
thought of as acting on the generic section W ∈ C∞(Σ× [0, β∗], ⊗p

S T
∗Σ),

p = 0, 1, 2. For η ∈ [0, β∗] small, let

Δ(β(η))
d W ∼ ΔdW + η

{
A

ab∇a∇bW +B
b∇bW + EW

}
+ o(η2) (4.37)

be the first-order Taylor expansion of Δ(β(η))
d around gik(β∗) = gik ∈ Cg(Σ),

with Δd and ∇a respectively denoting the Hodge Laplacian and the Levi–
Civita connection on (Σ, g), and where the coefficients A ab, B b, E are geo-
metrical quantities constructed with the Riemann and the Ricci tensor of
(Σ, g). With these preliminary remarks along the way, the Matter–Geometry
content of C(β∗) with respect to C � (η) admits, for η ↘ 0+, the asymptotic
expansion

MG(η) ∼
∞∑

n=0

Bn(C, C) ηn/2, (4.38)

9Actually, in order to compare with the structure theorems in [31], the role of the

specific heat should be played by the expression C �
(η)

√
det g(η)/

√
det g. However, since

we are interested in the small η asymptotics, we can equivalently use C �
(η).
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where the coefficients Bn(C, C) are all 0 for n odd, and where the coefficients
for n = 0, 2, 4 are provided by

B0(C, C) =
∫

Σ
C(β∗)� C �

dμg, (4.39)

B2(C, C) = −
∫

Σ
Δd C(β∗)� C �

dμg, (4.40)

B4(C, C) =
1
2

∫

Σ
Δd C(β∗)� Δd C

�
dμg

− 1
2

∫

Σ

[
A

ab∇a∇b C(β∗) +B
b∇b C(β∗) + E C(β∗)

]
� C �

dμg.

(4.41)

Note that explicit formulae for Bn(C, C), with n ≥ 6, are in general, at
the time of writing, not known.

Proof. The theorem is a direct application of Gilkey’s analysis of the heat
content asymptotics for the heat propagation generated by Laplace-type
operators in time dependent geometries. In particular one can apply theorem
9.2 in [32], (this is stated for the more general case of the heat type operators
evolving in domains with Dirichlet boundary conditions, where both the
geometry as well as the boundaries are time dependent). �

As an illustrative example we start working out the asymptotics for the
matter content M(η). In such a case, Δ(β(η))

d reduces to the Laplace–
Beltrami operator Δ(β(η)) on (Σ, g(β∗ − η)), and one easily computes

Δ(β(η)) ∼ Δ− 2ηR ab∇a∇b + o(η2), (4.42)

where we have exploited the relation

∂

∂β
Δ(β) = 2Rab∇a∇b, (4.43)

which holds along the Ricci-flow (see, e.g., [18]). From the above theorem
we easily get

M(η) : =
∫

Σ
�(β∗) �(η) dμg(η) =

∫

Σ
�(β∗) � dμg

− η

∫

Σ
�Δ �(β∗) dμg + η4

∫

Σ
R ab∇a∇b �(β∗) � dμg + · · · .

(4.44)
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It is clear that the main computational burden in writing down similar
expressions for the full matter–geometry content lies in evaluating the
B4(C, C) coefficient which requires the Taylor expansion (4.37) of the vec-
tor and of the Lichnerowicz Laplacian Δ(β(η))

d . While this does not present
particular difficulties, the resulting expressions are long and not particularly
illuminating, thus we simply write down the expansions up to the obvious
B2(C, C) term providing the relevant order–η contribution to the matter–
geometry content. We get

J(η) :=
∫

Σ
Ji(β∗)J

i(η) dμg(η) =
∫

Σ
Ji(β∗)J

i
dμg

− η

∫

Σ
J

i Δ Ji(β∗) dμg + η

∫

Σ
Ja(β∗)R

ab
Jb dμg + · · · . (4.45)

K(η) :=
∫

Σ
Kab(β∗)K

ab(η) dμg(η) =
∫

Σ
Kab(β∗)K

ab
dμg

− η

∫

Σ
K

ab ΔKab(β∗) dμg

+ η

∫

Σ
K

ab [R asK
s
b (β∗) +R bsK

s
a(β∗)

− 2R asbtK
st(β∗)

]
dμg + · · · . (4.46)

where Δ denotes the rough Laplacian on (Σ, g).

It is clear from the above remarks that the spectrum of fluctuations, even
for small η, is quite rich and one wonders if and in which sense we are
able to control, not just asymptotically, the fluctuations of the Ricci evolved
fields (�(β∗), Ja(β∗), Kab(β∗)) around the reference data Cg(Σ). This will
be done by studying separately the behavior of the evolution of matter
fields (�(β), Ja(β)) and that of the second fundamental form Kab(β). For
the former we have quite a strong control in the entropy sense. For the
latter, the situation is quite more complex, with the existence of possible
non-dissipative directions for the fluctuations.

5 Matter fields conjugation

Let us start with an elementary but basic property of the scalar flow �̄(η) ∈
C∞(Σ× R,R), solution of the Ricci–conjugate heat equation ©∗

d �̄(η) =
( ∂

∂η −Δ +R) �̄(η) = 0. According to

d

dη

∫

Σ
�̄(η) dμg(η) = 0, (5.1)
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we can normalize η 
→ �(η) so as to have
∫
Σ �̄(η) dμg(η) = 1 on Σ× [0, β∗].

Since we want to interpret �̄(η) as a mass density, we can further restrict
our attention to positive solutions �̄(η) := e−f(η), for some f(η) ∈ C∞(Σ×
R,R+), and consider d�(η) := e−f(η) dμg(η) as a flow of probability measures
on Σ. It is easily checked that these probability measures evolve according
to the (backward) heat equation coupled with the fiducial Ricci flow

∂

∂β
gab(β) = −2Rab(β), gab(β = 0) = gab,

∂

∂η
d�(η) = Δg(η) d�(η), d�(η = 0) = �̄(η = 0) dμg(β∗).

(5.2)

Remark 5.1. When expressed in terms of f(η) = − ln �̄(η) this is simply
a (well–known) rewriting of Perelman’s Ricci flow coupling [48] with the
backward evolution η 
→ f(η)

∂

∂β
gab(β) = −2Rab(β), gab(β = 0) = gab,

∂f(η)
∂η

= �g(η)f − |∇f |2g(η) +R(η), f(η = 0) = f.

(5.3)

In what follows, we shall indifferently use both representations. We identify
�̄(η) with the (reference) matter density flow induced by �̄(η = 0) ∈ C ḡ(Σ).

With these preliminary remarks along the way, let us consider the flow
�(β) ∈ C∞(Σ× R,R), solution of the scalar heat equation ©d �(β) = 0. By
the parabolic maximum principle, if � ≥ 0 we have �(β) ≥ 0, for all β ∈
[0, β∗]. Moreover, since β 
→ �(β) and η 
→ �(η) are conjugated flows on
Σ× [0, β∗], we have

d

dβ

∫

Σ
�(β) d�(β) = 0 , (5.4)

where d�(β) := d�(η = β∗ − β). Thus, we can normalize the mass density
flow β 
→ �(β) associated with the data Cg(Σ) so as to have

∫
Σ �(β) d�(β) =

1, and assume that also dΠ(β) := �(β) d�(β) is a probability measure on
(Σ, g(β)). This corresponds to localize the matter content of Cg(Σ) with
respect to the matter content of the reference C̄ḡ(Σ).
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Figure 22: The relative entropy S[dΠ(β)|d�(β)], associated with the (nor-
malized) distribution �(β) with respect to the reference �(η), allows a rather
strong control on the averaging effect that Ricci flow conjugation has on the
matter fields.

In order to discuss the behavior of β → �(β) with respect to the reference
flow η → d�(η) let us introduce the relative entropy functional [23], (Fig. 22)

S[dΠ(β)|d�(β)] :=

⎧
⎨

⎩

∫
Σ

dΠ(β)
d�(β)

ln
dΠ(β)
d�(β)

d�(β) if dΠ(β) � d�(β),

∞ otherwise,
(5.5)

where dΠ(β) � d�(β) stands for absolute continuity. More explicitly, we
can write

S[dΠ(β)|d�(β)] :=
∫

Σ
�(β) ln �(β) d�(β), (5.6)

also note that S[dΠ(β)|d�(β)] is minus the physical relative entropy; the
positive sign is more convenient for the analysis to follow.

Jensen’s inequality implies that S[dΠ(β)|d�(β)] ∈ [0,+∞]. Moreover, as
a function of the probability measures d�(β) and dΠ(β), S[dΠ(β)|d�(β)]
is convex and lower semicontinuous in the weak topology on the space of
probability measures Prob(Σ, g(β)) over (Σ, g(β)), and S[dΠ(β)|d�(β)] = 0
iff d�(β) = dΠ(β). Along with S[dΠ(β)|d�(β)] we also define the correspond-
ing entropy production functional (the Fisher information) according to

I[dΠ(β)|d�(β)] :=
∫

Σ

dΠ(β)
d�(β)

∣
∣
∣
∣∇ ln

dΠ(β)
d�(β)

∣
∣
∣
∣

2

d�(β)

=
∫

Σ
�(β) |∇ ln �(β)|2 d�(β) ≥ 0. (5.7)

Remark 5.2 (Logarithmic Sobolev inequality). Since for each given
β ∈ [0, β∗], (Σ, g(β)) is a compact Riemannian manifold of bounded geome-
try and (Σ, d�(β)),β ∈ [0, β∗], is a probability measure absolutely continuous
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with respect the Riemannian measure, we can assume that a logarithmic
Sobolev inequality with β-dependent constant τ(β), LSI(τ(β)), holds on
each (Σ, g(β)). Explicitly, there exists a positive constant τ(β), uniformly
bounded away from 0 in β ∈ [0, β∗], and depending from the geometry of
(Σ, g(β), d�(β)), such that, for each given β ∈ [0, β∗], we have

S[dΞ(β)|d�(β)] ≤ 1
2 τ(β)

I[dΞ(β)|d�(β)], (5.8)

for all probability measures (Σ, dΞ(β)) absolutely continuous with respect to
(Σ, d�(β)), [47, 53]. For each fixed β ∈ [0, β∗], (5.8) is equivalent to the stan-
dard form of of the logarithmic Sobolev inequality, (see, e.g., [18]). Notice
that uniform logarithmic Sobolev estimates holding on the Ricci–flow space-
time (Σ× [0, β∗], g(β)) have been established by R. Ye, (see, e.g., [55] and
references therein)). For our purposes the simpler (5.8) suffices.

By exploiting (5.8) we can easily establish the following

Theorem 5.3 (Control in the entropy sense). The functional S[dΠ(β)|
d�(β)] is monotonically non-increasing along the flow β 
→ (g(β), d�(β))

d

dβ
S[dΠ(β)|d�(β)] = −I[dΠ(β)|d�(β)]. (5.9)

Moreover, as the length scale β increases, the matter distribution dΠ(β)
is localized, around the reference distribution d�(β), in the entropy sense
according to

1
2
‖dΠ(β)− d�(β)‖2

var ≤ S[dΠ(β)|d�(β)] ≤ e− 2
∫ β
0 τ (t) dtS0[dΠ|d�] , (5.10)

where S0[dΠ|d�] := S[dΠ(β = 0)|d�(β = 0)], and where ‖ ‖2
var denotes the

total variation norm on Prob(Σ, g(β)) defined by

‖dΠ(β)− d�(β)‖var
.= sup

‖φ‖b≤1

{∣∣
∣
∣

∫

Σ
φdΠ(β)−

∫

Σ
φd�(β)

∣
∣
∣
∣

}
, (5.11)

‖ φ ‖b being the uniform norm on the space of bounded measurable functions
on Σ.
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Proof. For any � ∈ C2(Σ× [0, β∗],R+), ∂�
∂β = ��, we compute

d

dβ

∫

Σ
� ln � d�(β)

=
∫

Σ
(1 + ln �)�� d�(β)−

∫

Σ
� ln ��(d�(β))

=
∫

Σ
(1 + ln �)�� d�(β)−

∫

Σ
�(� ln �) d�(β), (5.12)

where, in the last line, we have integrated by parts. From the identity,

�(� ln �) = (1 + ln �)��+ �−1|∇�|2, (5.13)

we get

d

dβ

∫

Σ
� ln � d�(β) = −

∫

Σ
�−1 |∇�|2 d�(β)

= −
∫

Σ
� |∇ ln �|2 d�(β), (5.14)

and (5.9) follows. For each fixed β ∈ [0, β∗], the logarithmic Sobolev inequal-
ity (5.8) and (5.9) imply

d

dβ
S[dΠ(β)|d�(β)] ≤ −2 τ(β)S[dΠ(β)|d�(β)], (5.15)

which yields

S[dΠ(β)|d�(β)] ≤ e− 2
∫ β
0 τ (t) dtS0[dΠ|d�]. (5.16)

Finally, from the Csiszár–Kullback–Pinsker inequality, (see e.g. [23]),

S[dΠ(β)|d�(β)] ≥ 1
2
‖dΠ(β)− d�(β)‖2

var , (5.17)

we get (5.10), as stated. �

Such a result implies that, along β 
→ (g(β), d�(β)), the distribution dΠ(β)
localizes around the reference matter distribution d�(β) in a rather strong
sense. Stated differently, �(β) is averaged with respect to d�(β). One can
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easily see this by observing that the variance of �(β), under the reference
probability measure d�(β), given by

V ar[dΠ(β)|d�(β)] :=
∫

Σ
(�(β)− 1)2 d�(β), (5.18)

is strictly decreasing along the reference flow β → (g(β), d�(β)). We have

Lemma 5.4 (Evolution of variance). The variance V ar[dΠ(β)|d�(β)] is
monotonically decreasing along β 
→ (g(β), d�(β))

d

dβ
V ar[dΠ(β)|d�(β)] = −2

∫

Σ
|∇�(β)|2 d�(β), (5.19)

and

V ar[dΠ(β)|d�(β)] ≤ e− 2
∫ β
0 τ (t) dt V ar0[dΠ|d�], (5.20)

where V ar0[dΠ|d�] := V ar[dΠ(β = 0)|d�(β = 0)].

Proof. From

∂

∂β
[(�− 1)2 �̄ dμg] = [Δ(�− 1)2 − 2|∇�|2]�̄ dμg

+ (�− 1)2[−Δ�+R �̄] dμg − (�− 1)2�̄R dμg, (5.21)

which holds pointwise for � ∈ C2(Σ× [0, β∗],R+), we get (5.19) by integrat-
ing over Σ with respect to d�(β). For each given β ∈ [0, β∗], the logarithmic
Sobolev inequality LSI(τ(β)) implies, (see, e.g., [45]), the following Poincaré
inequality for the pair (dΠ(β), d�(β))

τ(β)V ar[dΠ(β)|d�(β)] ≤
∫

Σ
|∇�(β)|2 d�(β) , (5.22)

from which (5.20) immediately follows. �
Remark 5.5. From �(β) ∈ C∞(Σ× [0, β∗],R), ©d �(β) = 0 it follows that
∇i�(β) ∈ C∞(Σ× [0, β∗], T ∗Σ) is a solution of©d∇ �(β) = 0, (a trivial con-
sequence of the well-known commutation ∇iΔ = Δd∇i). A direct computa-
tion provides

∂

∂β
|∇�(β)|2 = Δ |∇�(β)|2 − 2|∇∇�(β)|2, (5.23)

which, by the maximum principle, implies that supx∈Σ |∇�(β)|2 is non–
increasing as 0 ≤ β ≤ β∗. Moreover, by integrating with respect to d�(β)
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we get

d

dβ

∫

Σ
|∇�(β)|2 d�(β)

=
∫

Σ

[(
Δ|∇�(β)|2 − 2|∇∇�(β)|2

)
�̄(β)

+ |∇�(β)|2 (−Δ�(β) +R(β)�̄(β))− |∇�(β)|2R(β)�̄(β)
]
dμg(β),

(5.24)

which easily yields

d

dβ

∫

Σ
|∇�(β)|2 d�(β) = −2

∫

Σ
|∇∇ �(β)|2 d�(β). (5.25)

The above remark suggests that the flow β → �(β) also dominates the
matter current flow β → J(β) ∈ C∞(Σ, T ∗Σ) defined, along the Ricci flow
β → g(β) by ©d J(β) = 0, (see (2.20)). In particular, let us consider the
evolution of the β-dependent norm, |J(β)|2 := Ji(β)Jk(β)gik(β), of Ji(β).
As in (5.23) we get

∂

∂β
|J(β)|2 = Δ |J(β)|2 − 2|∇J(β)|2, (5.26)

where |∇J(β)|2 := ∇iJk(β)∇iJ
k(β). The maximum principle implies that

sup x∈Σ |J(β)|2 is non-increasing as 0 ≤ β ≤ β∗, and integration with
respect to the probability measure β → d�(β) provides

d

dβ

∫

Σ
|J(β)|2 d�(β) = −2

∫

Σ
|∇ J(β)|2 d�(β). (5.27)

Moreover, if we consider the evolution of |J(β)| := (Ji(β)Jk(β)gik(β))1/2,
then from (5.26) we compute

∂

∂β
|J(β)| = Δ|J(β)|+ |J(β)|−1

(
|∇|J(β)||2 − |∇J(β)|2

)
. (5.28)

By setting Jk(β) = nk(β) |J(β)|, where n(β) ∈ C∞(Σ, T ∗Σ), ni(β)nk(β)gik

(β) = 1, ∀β ∈ [0, β∗], we get |∇|J(β)||2 − |∇J(β)|2 = −|J(β)|2|∇n(β)|2.



RICCI-FLOW-CONJUGATED INITIAL DATA SETS 1469

Thus

∂

∂β
|J(β)| = Δ |J(β)| − |J(β)||∇n(β)|2, (5.29)

and by subtracting this latter expression to the evolution ©d �(β) = 0, we
eventually get

∂

∂β
(�(β)− |J(β)|) = Δ (�(β)− |J(β)|) + |J(β)||∇n(β)|2 . (5.30)

The maximum principle implies that (�(β)− |J(β)|) ≥ 0 on Σ× [0, β∗], as
soon as (�(β)− |J(β)|)β=0 ≥ 0. Thus, we have established the following:

Theorem 5.6. The dominant energy condition

�(β) ≥ |J(β)|, (5.31)

holds along the flows β → (�(β), J(β)), 0 ≤ β ≤ β∗.

A similar result holds also for the conjugate flows η → (�̄(η), J̄(η)), 0 ≤
η ≤ β∗ solutions of ©∗

d(�̄(η), J̄(η)) = 0. We have

Lemma 5.7. For any (�̄(η), J̄(η)) ∈ C∞(Σ× [0, β∗],⊗p TΣ), p = 0, 1, solu-
tion of the conjugate flow ©∗

d(�̄(η), J̄(η)) = 0, with �̄(η = 0) ≥ |J̄(η = 0)|,
we have

�(η) ≥ |J̄(η)| , (5.32)

for all 0 ≤ η ≤ β∗.

Proof. As in the derivation of (5.29) above, if we set J̄k(η) = m̄k(η) |J̄(η)|,
where m̄i(η)m̄k(η)gik(η) = 1, ∀η ∈ [0, β∗], we easily get from ©∗

dJ̄(η) = 0
that |J̄(η)| evolves according to

∂

∂η
|J̄(η)| = Δ |J̄(η)| − |J̄(η)||∇m(η)|2 −R(η)|J̄(η)|. (5.33)

Subtracting this expression to the evolution ©∗
d �̄(η) = ( ∂

∂η −Δ +R) �̄(η) =
0 of the matter density �̄(η), we get

∂

∂η
(�̄− |J̄ |) = Δ (�̄− |J̄ |) + |J̄ ||∇m|2 −R(�̄− |J̄ |), (5.34)

where we dropped the explicit η-dependence for notational ease. The pres-
ence of the scalar curvature term R(�̄− |J̄ |) is rather annoying, and to take
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care of it we exploit the fact that the Riemannian measure density
√

det g(β)
is covariantly constant with respect to the Levi–Civita connection ∇ associ-
ated with (Σ, g(β)), i.e., ∇k det g(β) = det g(β) gab(β)∇igab(β) ≡ 0, (this is
equivalent to the familiar formula, ∂i ln

√
det g(β) = δc

aΓ
a
ic(β), for the trace

of the Christoffel symbols Γa
ic(β) associated with gab(β)). In particular,

we have Δ
√

det g(β) ≡ 0. Thus, by computing the η-evolution of the ten-
sor density

√
det g(η)

(
�̄− |J̄ |

)
, from (5.34) and the Ricci-flow evolution

∂
∂η

√
det g(η) =

√
det g(η)R(η), we get

∂

∂η

√
det g (�̄− |J̄ |) = Δ

√
det g

(
�̄− |J̄ |

)
+
√

det g |J̄ ||∇m|2. (5.35)

Again, a direct application of the parabolic maximum principle implies that√
det g(η) (�̄(η)− |J̄(η)|) ≥ 0 on Σ× [0, β∗], as soon as this condition holds

for η = 0. Since the Riemannian density
√

det g(η) is uniformly bounded
away from zero on Σ× [0, β∗], we have (�̄(η)− |J̄(η)|) ≥ 0. �

The matter dominance also implies localization and averaging, in the
entropy sense, of |J(β)| with respect to the reference |J̄(β)|. If we define the
matter current relative entropy according to

S[d J(β) | d J̄(β)] :=
∫

Σ
|J(β)| ln |J(β)| |J̄(β)| dμg(β), (5.36)

then theorem 5.3 implies

Lemma 5.8 (Matter entropy dominance). Along the conjugated matter
flows (�(β), J(β)) ∈ C∞(Σ× [0, β∗],⊗p T ∗Σ), and (�̄(β), J̄(β)) ∈ C∞(Σ×
[0, β∗],⊗p TΣ), p = 0, 1, we have

S [d J(β) | d J̄(β)] ≤ e− 2
∫ β
0 τ (t) dt S0[dΠ|d�], (5.37)

where S0[dΠ|d�] := S[dΠ(β = 0)|d�(β = 0)], and where τ(β) > 0, β ∈
[0, β∗], is the β-dependent log-Sobolev constant characterized by (5.8).

Proof. The dominant energy conditions established above imply

�(β) ln �(β) �̄(β) ≥ |J(β)| ln |J(β)| |J̄(β)|, (5.38)

whenever both expression make sense. The entropy dominance (5.37)
directly follows from theorem 5.3. �
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Not surprisingly the conjugate evolution (5.3) of the matter density η 
→
�(η) is strictly related to the Perelman functional [48] F : Met(Σ)× C∞
(Σ, R) → R defined by

F [g; f ] .=
∫

Σ
(R+ |∇f |2)e−f dμg. (5.39)

In particular, if we introduce the relative entropy functional associated with
the distribution of �(β) with respect to the β-evolving Riemannian measure
dμg(β),

S[d�(β)|dμg(β)] :=
∫

Σ
�(β) ln �(β) dμg(β), (5.40)

then one easily checks [17, 46] that on Σβ × [0, β∗]

d

dβ
S[d�(β)|dμg(β)] =

∫

Σ
(R+ |∇ ln �|2)d�(β) = F [g; f ], (5.41)

for g evolving along the fiducial Ricci-flow β 
→ g(β), and η 
→ f = − ln �(η)
evolving backward according to (5.3). Since along this evolution F [g; f ] is
non-decreasing [48]

d

dβ
F [g(β); f(β)] = 2

∫

Σ
|Rik(β) +∇i∇k f(β)|2 e−f(β) dμg(β) ≥ 0, (5.42)

we immediately get d2

dβ2 S[d�(β)|dμg(β)] ≥ 0, i.e., S[d�(β)|dμg(β)] is convex
along β 
→ g(β) on Σβ × [0, β∗]. The functional F [g; f ] will play a slightly
more sophisticated role in the analysis of geometric fields conjugation.

6 Dissipative and non-dissipative directions for K(β)

According to Definition 1.3, the conjugation between the second fundamen-
tal formsKab ∈ Cg(Σ) and K̄ ab ∈ C ḡ(Σ) is defined by the heat flowsKab(β) ∈
C∞(Σ× [0, β∗],⊗2

ST
∗Σ) and K̄ ab(η) ∈ C∞(Σ× [0, β∗],⊗2

STΣ), solutions of
©dKab(β) = 0, Kab(β = 0) = Kab, and of ©∗

d K̄
ab(η) = 0, K̄ ab(η = 0) =

K̄ ab, respectively. We have a rather obvious control on the forward evolu-
tion Kab(β) ∈ C∞(Σ× [0, β∗],⊗2

ST
∗Σ) whenever the initial datum is a Lie

derivative K(β = 0) = 2 δ∗g v�, for some v ∈ C∞(Σ, T ∗Σ). In such a case,
according to Lemma 2.4, (see (2.26)), if v(β) ∈ C∞(Σ× [0, β∗], T ∗Σ) evolves
according to ©d va(β) = 0, with va(β = 0) = va, then Kab(β) = ∇a vb(β) +
∇b va(β) is the solution of ©dKab(β) = 0, Kab(β = 0) = ∇a vb +∇b va.
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Thus, in such a case the heat flow deformation of K ∈ Cg(Σ) simply gives
rise to a Diff(Σ)-reparametrization of the underlying Ricci-flow. Explicitly,

Lemma 6.1. If the second fundamental form K ∈ Cg(Σ) belongs to Im δ∗g ,
then its evolution according to ©dK(β) = 0 generates a flow

Im δ∗g � K 
→ δ∗g(β) v
�(β) ∈ Ug(β) ∩ T(Σ,g(β))Met(Σ)× [0, β∗], (6.1)

where Ug(β) ∩ T(Σ,g(β))Met(Σ) is an open neighborhood of g(β), in the
Diff(Σ) orbit Og(β). Moreover, supx∈Σ |v(β)| is non-increasing for 0 ≤ β ≤
β∗, and if a dominant energy condition � ≥ |v| holds at β = 0, we have that
�(β) ≥ |v(β)| along v(β) ∈ C∞(Σ× [0, β∗], T ∗Σ). Finally, the L2(Σ, d�(β))
norm of v(β) is monotonically decreasing according to

d

dβ

∫

Σ
|v(β)|2 d�(β) = −2

∫

Σ
|∇ v(β)|2 d�(β). (6.2)

Proof. The statement (6.1) is basically a rewriting of Lemma 2.5. We can
also apply to this situation the results we obtained for the matter current
flow J(β), and ultimately for the matter density flow �(β), (see Remark
5.5, also note that ©d �(β) = 0 implies ©dHess �(β) = 0, thus K(β) and
Hess �(β) satisfy the same heat evolution). It follows that supx∈Σ |v(β)|
is non-increasing for 0 ≤ β ≤ β∗. Moreover, since by a rescaling we can
always assume that a dominant energy condition � ≥ |v| holds at β = 0,
we have, according to Lemma 5.6, that �(β) ≥ |v(β)| along v(β) ∈ C∞(Σ×
[0, β∗], T ∗Σ). The L2(Σ, d�(β)) evolution (6.2) is a direct rewriting of (5.27).

�

For the reference conjugate evolution K̄ ab(η) ∈ C∞(Σ× [0, β∗],⊗2
STΣ)

we have a natural counterpart of these results

Lemma 6.2. Along the solution K̄ ab(η) ∈ C∞(Σ× [0, β∗],⊗2
STΣ) of the

conjugate heat flow ©∗
d K̄

ab(η) = 0, K̄ ab(η = 0) = K̄ ab, the scalar density
supx∈Σ

√
det g(η)

∣
∣δg(η) K̄(η)

∣
∣ is non-increasing. Moreover

d

dη

∫

Σ
|δg(η) K̄(η)| dμg(η) = −

∫

Σ
|δg(η) K̄(η)|

∣
∣∇Q(η)

∣
∣2 dμg(η), (6.3)

where
∣
∣δg(η) K̄(η)

∣
∣ :=

[
ghi(η)∇aK

ah∇bK
bi
]1/2, and where Q(η) ∈ C∞(Σ×

[0, β∗], TΣ) is defined by Qi(β) := |δg(η) K̄(η)|−1∇bK
bi.
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Proof. According to Lemma 2.4

©∗
d

(
δg(η) K̄(η)

)
= δg(η)

(
©∗

dK̄(η)
)
, (6.4)

(see (2.27)). This implies that, along ©∗
d K̄

ab(η) = 0, the divergence ∇b K̄
bi

(η) evolves according to

∂

∂η
∇b K̄

bi(η) = Δd∇b K̄
bi(η)− R(η)∇b K̄

bi(η), (6.5)

where, as usual, Δd = Δ−Ric(β) is the Hodge–DeRham Laplacian on vec-
tors. By proceeding as in Lemma 5.7 (see (5.33) and (5.35), and also (5.29)),
we compute

∂

∂η

√
det g |δg K̄| = Δ

√
det g |δg K̄| −

√
det g |δg K̄|

∣
∣∇Q

∣
∣2 , (6.6)

along the flow (6.5). The non-increasing character of the scalar density
supx∈Σ

√
det g(η)

∣
∣δg(η) K̄(η)

∣
∣ immediately follows from the maximum prin-

ciple, and a direct integration of (6.6) over (Σ, g(η)) provides (6.3). �

The above result shows that
∫
Σ |δg(η) K̄(η)| dμg(η) decreases exponentially

fast along the solution of the conjugate HDRL heat flow ©∗
d K̄

ab(η) = 0,
K̄ ab(η = 0) = K̄ ab. We also have some form of control on trg(η) K̄

ab(η).

Lemma 6.3. Along the solution K̄ ab(η) ∈ C∞(Σ× [0, β∗],⊗2
STΣ) of the

conjugate heat flow ©∗
d K̄

ab(η) = 0, K̄ ab(η = 0) = K̄ ab, the integral of tr g(η)

K̄ ab(η) evolves linearly with 0 ≤ η ≤ β∗ according to
∫

Σ
trg(η) K̄(η) dμg(η) =

∫

Σ
tr ḡ K̄ dμḡ + 2 η

∫

Σ
Rab(ḡ) K̄ ab dμḡ. (6.7)

Proof. The most direct way of proving this result is by exploiting Theo-
rem 2.8 according to which

∫

Σ
(gab(η)− 2ηRab(η)) K̄ ab(η) dμg(η), (6.8)

and
∫

Σ
Rab(η) K̄ ab(η) dμg(η), (6.9)

are constant along the solution K̄ ab(η) ∈ C∞(Σ× [0, β∗],⊗2
STΣ) of the con-

jugate heat flow ©∗
d K̄

ab(η) = 0, K̄ ab(η = 0) = K̄ ab. From (6.8) we get (by
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evaluation at η = 0)
∫

Σ
tr ḡ K̄ dμḡ =

∫

Σ
(gab(η)− 2ηRab(η)) K̄ ab(η) dμg(η). (6.10)

The constancy along the flow of (6.9) immediately yields the stated result.
�

As compared to a Kab(β), which is a pure Lie-derivative, the evolution
Kab(β) ∈ C∞(Σ× [0, β∗],⊗2

ST
∗Σ) of a second fundamental form possessing

a div-free component, K(β = 0) = 2 δ∗g w� +KT , withKT ∈ Kerδg, is rather
subtler. KT can generate elements ∈ Im δg(β), (recall that, according to
Lemma 2.4 the div–free character of KT is not preserved by the linearized
Ricci-flow — see (2.28)). In particular, a basic issue one faces when dealing
with the linearized Ricci-flow is to characterize those KT ∈ Kerδg which
under the evolution©dKab(β) = 0, Kab(β = 0) = KT

ab do not dissipate away
and give rise to a K(β) with a non trivial component in Kerδg(β), for all
β ∈ [0, β∗].

A rather complete answer to such a question is provided by the

Theorem 6.4 (Non dissipative directions for K(β)). Let H ab(η) ∈
C∞(Σ× [0, β∗],⊗2

STΣ) be a conjugate heat flow ©∗
dH

ab(η) = 0, with H
(η = 0) ∈ Ker δg(η=0). If Kab(β) ∈ C∞(Σ× [0, β∗],⊗2

ST
∗Σ) is a solution

of ©dKab(β) = 0, with a generic initial condition K(β = 0) := K ∈ Cg(Σ),
K = 2 δ∗g w� +KT , such that

∫

Σ
KabH

ab(β∗) dμg �= 0, (6.11)

where H ab(β∗) := H ab(η = β∗), then {K(β)} ∩ Ker δg(β) �= ∅, for all β ∈
[0, β∗], and

K 
→ K(β) ∈ Ug(β) ∪ Sg(β) × [0, β∗], (6.12)

provides a non-trivial deformation of the underlying Ricci-flow. In particu-
lar, for β = β∗ we can write

KT
ab(β

∗) =
∑

n

Φ̄(n,T )
ab

∫

Σ
Kij Φij

(n,T )(β
∗) dμg, (6.13)

where {Φ̄ ab
(n,T )} and Φ ab

(n,T )(η) respectively denote the div-free eigentensors of
the operator −ΔL +R(ḡ) on (Σ, g) and the associated backward flows on
Σ× [0, β∗] generated by ©∗

d Φ ab
(n,T )(η) = 0, Φ̄ ab

(n,T )(η = 0) = Φ̄ ab
(n,T ).
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Proof. We exploit the fact that according to (6.4) and (6.5) (written for
a generic H ab(η) ∈ C∞(Σ× [0, β∗],⊗2

STΣ)), the conjugate heat equation
©∗

dH
ab(η) = 0 preserves, along the interpolating Ricci-flow, the divergence-

free character of H ab(η), if this holds initially (for η = 0). Thus, if ∇bH
bi

(η = 0) = 0, then ∇bH
bi(η) = 0, for all η ∈ [0, β∗]. Let H(η) be any such

a solution of ©∗
dH

ab(η) = 0 with ∇bH
bi(η = 0) = 0. Let us consider the

heat flow K(β), ©dKab(β) = 0, with a generic initial condition K(β = 0) :=
K ∈ Cg(Σ), K = 2δ∗g v� +KT , for some v� ∈ C∞(Σ, T ∗Σ) andKT ∈ Ker δg.
Since H(η = β∗ − β) ∈ Ker δg(β), for all β ∈ [0, β∗], if (6.11) holds we nec-
essarily have

0 �=
∫

Σ
KabH

ab(β∗) dμg =
∫

Σ
KT

abH
ab(β∗) dμg

=
∫

Σ
KT

ab(β)H ab(β) dμg(β),∀β ∈ [0, β∗], (6.14)

where H ab(β) := H ab(η = β∗ − β), and where we have exploited the fact
that, by L2(Σ, dμg(β)) conjugacy, the inner product

∫
ΣKab(β)H ab(β) dμg(β)

is constant along the solutions K(β) and H(η) of ©dK(β) = 0 and ©∗
d

H(η) = 0, respectively. Thus {K(β)} ∩ Ker δg(β) �= ∅, for all β ∈ [0, β∗],
and the flow K 
→ K(β) necessarily has a non-vanishing Sg(β)-component
in the affine slice parametrization Ug(β) ∪ Sg(β) × [0, β∗] associated with the
underlying Ricci-flow. If {Φ̄ ab

n,T } denote the orthonormal set of div–free
eigentensor of −ΔL +R(ḡ) on (Σ, ḡ), and since KT

ab(β
∗) is C∞, we can

consider the L2(Σ, dμḡ) mode expansion

KT
ab(β

∗) =
∑

n

Φ̄(n,T )
ab

∫

Σ
KT

ij(β
∗) Φ̄ij

(n,T ) dμḡ. (6.15)

For 0 ≤ η ≤ β∗, let us denote by {Φ ab
(n,T )(η)}n∈N, 0 ≤ η ≤ β∗ the flows defined

by

©∗
d {Φ ab

(n,T )(η)} = 0, {Φ ab
n,T )(η = 0)} := {Φ̄ ab

(n,T )}. (6.16)

According to (6.5), these flows preserve the div-free character of the initial
{Φ̄(n,T )

ab }, and are conjugated to the forward evolution definingKT
ab(β). Thus,

as in the proof of Theorem 3.1, the relation (6.13) immediately follows from

d

dβ

∫

Σ
Kab(β) Φ ab

(n,T )(η) dμg(β) = 0, (6.17)

which holds for each conjugated pair
(
Φ ab

(n,T )(η),K
T
ab(β)

)
, n ∈ N. �
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7 F-energy stability of Ricci-flow conjugation

If in Theorem 6.4 we identify H ab with the second fundamental form K̄ ∈
C ḡ, it follows that the divergence-free part K̄T ∈ Ker δḡ of K̄ provides,
through its conjugate evolution ©∗

d K̄(η) = 0, K̄(η = 0) = K̄T , a reference
non-dissipative direction for the forward evolution K(β) of the second fun-
damental form K ∈ Cg. These reference directions are also related to the
behavior of the Perelman functional F on the pencil of conjugated trajecto-
ries around the underlying fiducial Ricci-flow β 
→ g(β). As a consequence,
they can be used to characterize a form of entropic stability of Ricci-flow
conjugation along a generic interpolating Ricci-flow. Roughly speaking, we
expect that Ricci-flow conjugation is a sensible mapping between Einstein
data sets if the fiducial Ricci-flow interpolating between (Σ, g) and (Σ, g)
is, in a suitable sense, stable. Generalized fixed point stability (see, e.g.,
[14, 34, 52]) is not particularly interesting in our setting since if the interpo-
lating flow is Ricci flat or, say, a shrinking Ricci soliton, then the associ-
ated Ricci-flow conjugation is basically a diffusive rescaling of data. On the
other hand, for the case of interest to us, i.e., around a Ricci-flow trajectory
which is not a (generalized) fixed point, the only sensible notion of stability
is entropic stability in moving from the fiducial flow to a nearby perturbed
Ricci-flow. Thus we introduce the

Definition 7.1. A Ricci-flow conjugation between the Einstein initial data
sets Cg(Σ) and Cg(Σ) is said to be F-stable if the F-energy of the interpo-
lating Ricci-flow is non-increasing under the perturbation induced by the
reference data Cg(Σ).

In order to discuss this characterization of F-stability we need a minor
technical result extending Ricci-flow conjugation to L2(Ση × [0, β∗], e−f(η)

dμg(η)).

Lemma 7.2. Along the fiducial Ricci–Perelman flow η 
→ (g(η), f(η)),
defined by (5.3), consider the backward evolution ©∗

L,f ψ
ab = 0 of a sym-

metric bilinear form ψ ab(η = 0) ∈ C∞(Σ,⊗2T Σ) defined by the parabolic
initial value problem

©∗
L,f ψ

ab .=
(
∂

∂η
−ΔL + 2∇if ∇i

)
ψ ab = 0,

ψ ab(η = 0) = ψ ab
∗ .

(7.1)

Then, the resulting flow η 
→ ψ ab(η) is L2(Ση × [0, β∗], e−f(η) dμg(η))-
conjugated to the solution β 
→ hab(β), β ∈ [0, β∗],hab(β = 0) = hab(β = 0)
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of the linearized Ricci-flow (2.16), i.e.,

d

dη

∫

Σ
ψ ab(η)hab(η) e−f(η) dμg(η) = 0, (7.2)

and we get the conservation laws

d

dη

∫

Σ
Rab(η)ψ ab(η) e−f(η) dμg(η) = 0, (7.3)

d

dη

∫

Σ
(gab(η)− 2η Rab(η))ψ ab(η) e−f(η) dμg(η) = 0. (7.4)

Moreover, if, for η = 0,
(
ψ ab e−f

)
∈ Kerδg, then

(
ψ ab(η) e−f(η)

)
∈ Kerδg(η),

∀η ∈ [0, β∗].

Proof. It is easily checked that under the evolutions (5.3) and (7.1) the flow
η 
→ ψ ab(η) e−f(η) solves (2.43). Thus, the above results immediately follows
from theorem 2.8. �

Let g(η) 
→ F [g(η), f(η)], η ∈ [0, β∗], the valuation of Perelman F-energy
on η 
→ (g(η), f(η)), considered as a fiducial flow on Σ× [0, β∗]. We are
interested in the behavior of F [g(η), f(η)] in a tubular neighborhood of η 
→
(g(η), f(η)). To this end we need the explicit formula for an η–dependent
linearizationDF [g(η); f(η)] ◦

(
ψ ab(η), φ(η)

)
of F in the direction of an arbi-

trary variation

gab
(ε)(η) := gab(η) + εψab(η), gab

(ε)(η) ∈Met(Σ), ∀ε ∈ [0, 1], (7.5)

and

f(ε)(η) := f(η) + ε φ(η), (7.6)

of the fiducial backward flow η 
→ (gab(η), f(η)). A standard computation,
(see, e.g., [17], Lemma 5.3), provides

DF [g(η); f(η)] ◦
(
ψ ab(η), φ(η)

)
:=

d

dε
F [g(ε)(η); f(ε)(η)]

∣
∣
∣
∣
ε=0

= −
∫

Σ
ψ ab(η) (Rab(η) +∇a∇b f(η)) e−f(η) dμg(η)

+
∫

Σ

(
Ψ(η)

2
− φ(η)

)
(
2�f(η)− |∇f(η)|2 +R(η)

)
e−f(η) dμg(η),

(7.7)
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where we have set Ψ(η) := ψ ab(η) gab(η). By considering variations φ(η)
preserving the volume form e−f(η) dμg(η), (i.e., by choosing φ(η) ≡ Ψ(η)

2 ), we
get

d

dε
F [g(ε)(η); f(ε)(η)]

∣
∣
∣
∣
ε=0

= −
∫

Σ
ψ ab(η) (Rab(η) +∇a∇b f(η)) e−f(η) dμg(η). (7.8)

Let us restrict the variation (7.8) to perturbations ψ ab(η) solution of the
L2(Ση × [0, β∗], e−f(η) dμg(η))-conjugated linearized Ricci-flow (7.1), (see case
(i) of Lemma 7.2),

(
∂

∂η
−ΔL + 2∇if(η)∇i

)
ψ ab(η) = 0,

ψ ab(η = 0) = ψ ab
∗ .

(7.9)

In this case, we have

Theorem 7.3. Let us consider the set of bilinear forms

Ψ⊥
.=
{
ψ ab
∗ ∈ C∞(Σ,⊗2TΣ) : ψ ab

∗ e−f ∈ Ker δg
}
, (7.10)

which are L2(Σ, e−f dμg)-orthogonal to Imδ∗g . Let {η 
→ ψ ab(η) : ψ ab(η =
0) ∈ Ψ⊥} be the pencil of parabolic flows solution of (7.9) with initial data
varying in Ψ⊥, i.e.,

∂

∂η
ψ ab(η) = ΔL ψ

ab(η)− 2∇if(η)∇iψ
ab(η),

ψ ab(η = 0) = ψ ab
∗ ∈ Ψ⊥.

(7.11)

Then, the corresponding variation g ab
(ε)(η) := gab(η) + εψab(η) of the fiducial

backward Ricci-flow η 
→ gab(η), generates a constant shift in the Perelman
functional, i.e.,

d

dε
F [g(ε)(η), f(η)]

∣
∣
∣
∣
ε=0

= −
∫

Σ
Rab(η)ψ ab(η) e−f(η) dμg(η)

= −
∫

Σ
Rab ψ

ab
∗ e−f dμg. (7.12)
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Proof. Along the flow (7.9) let us rewrite (7.8) as

d

dε
F [g(ε)(η), f(η)]

∣
∣
∣
∣
ε=0

= −
∫

Σ
Rab(η)ψ ab(η)e−f(η) dμg(η)

−
∫

Σ
[δ∗g(η)(w(η))]ab ψ

ab(η)e−f(η) dμg(η), (7.13)

where we have set wk(η)
.= ∇k f(1)(η). According to Proposition 7.2, since

ψ ab(η = 0) ∈ Ψ⊥, we have that ψ ab(η) e−f(η) ∈ Ker δg(η), ∀η ∈ [0, β∗] and
the last term in (7.13) vanishes by L2(Σ, e−f dμg)-orthogonality. Thus,
along (7.9) d

dε F [g(ε)(η), f(η)]
∣
∣
ε=0

reduces to −
∫
ΣRab(η)ψ ab(η)e−f(η) dμg(η),

which, again by Proposition 7.2, is a conserved quantity. �

As an immediate consequence of this result we have that the initial data set
Ψ⊥ can be used to parametrize the pencil of linear perturbations around
a generic (i.e., non Ricci-flat solitonic) backward Ricci-flow. In particular
we have the following characterization of perturbed backward Ricci-flow
trajectories.

Lemma 7.4. Let η 
→ g(η) denote a fiducial backward Ricci flow, and assume
that g(η) is not a Ricci-flat soliton. Let P[Ψ⊥; g(η)] .= {η 
→ (ψ ab(η),
f(η)) : ψ ab(η = 0) ∈ Ψ⊥} be the corresponding pencil of parabolic flows solu-
tion of (7.1) with initial data varying in Ψ⊥. A flow η 
→ (ψ(η), f(η)) with
ψ ab(η = 0) ∈ Ψ⊥ is F [g(η), f(η)]-energy increasing (decreasing)

d

dε
F [g(ε)(η), f(η)]

∣
∣
∣
∣
ε=0

> 0 (< 0), (7.14)

if, for η = 0,
∫
Σ Rab ψ

ab e−f dμg < 0 (> 0).

We can apply this result to the the backward evolution η 
→ (�(η),K(η))
of the (reference) matter density and second fundamental form (�,K) ∈
Cg(Σ) so as to obtain the following entropic characterization of the stability
of Ricci-flow conjugation around a generic interpolating Ricci flow.

Theorem 7.5. For ε > 0 small enough and 0 ≤ β ≤ β∗, let Ωε(g(β))

:=
{
g(β) + h(β) |h ∈ T(Σ,g(β))Met(Σ), ‖h(β)‖L2(Σ,dμg(β))

< ε
}
,

denote the (affine) ε-tubular neighborhood of the fiducial Ricci-flow β 
→ g(β)
in Met(Σ). We assume that β 
→ g(β) is not a Ricci-flat soliton over
Σ× [0, β∗]. If KTT is the trace-free and divergence-free part of K ∈ Cg(Σ),
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then the reference flow η 
→ (g(η), C�(η)) is F [g(η), �(η)]-energy decreasing
(increasing) in Ωε(g(β)), i.e.,

d

dε
F [g(ε)(η), �(η)]

∣
∣
∣
∣
ε=0

< 0 (> 0), (7.15)

and the Ricci-flow conjugation between the two data sets Cg(Σ) and Cg(Σ)
is F-stable (unstable) in the K–direction if for η = 0 we have

F(g,K) :=
∫

Σ

(
RabK

ab
TT +

1
n
R trg K

)
dμg > 0 (< 0). (7.16)

Proof. Along the flow η 
−→ (K(η), �(η)) solution of the conjugate heat flow
©∗

d (K(η), �(η)) = 0,with (K(η = 0) = KT , �(η = 0) > 0), both the
divergence-free condition and the positivity condition are preserved. It
immediately follows that ψ(η) := �−1(η)K(η) is a solution of ©∗

L,f ψ
ab(η) =

0, with f(η) := − ln �(η), such that ψ ab(η = 0) ∈ Ψ⊥. Then, the above
lemma provides the stated result if we factorize K(η = 0) = KT in its TT–
part KTT plus the trace trg K. �

Along the same lines, (by exploiting (7.4)), one could discuss entropic stabil-
ity of Ricci-flow conjugation with respect to Perelman’s shrinker functional
W(g, �, τ). The details of such an analysis will be discussed in a forthcoming
paper.

8 Conclusions

The works [9, 10, 11] describe a number of potential applications of Ricci-flow
conjugation, such as producing averaged data for cosmological spacetimes,
computing backreaction terms to the constraint equations, and in general
giving (or rather trying to give) a sound mathematical basis to the chal-
lenging mathematical and physical problem of averaging in cosmology. The
properties of Ricci-flow conjugation discussed here indicates clearly that an
averaging procedure based on Ricci-flow is mathematically feasible and when
the averaging scale is not too large (i.e., when η |Rm(η)| << 1), such a pro-
cedure corresponds, according to Theorem 1.10, to a form of local Gaussian
averaging dressed with a rich spectrum of corrections terms of geometrical
origin. Clearly, the nice geometrical properties of Ricci-flow must come to
terms with the intricacies of what should be considered as a physically sound
averaging technique in relativistic cosmology. Indeed, modern high precision
cosmology calls into play delicate averaging issues [26] ranging from frame
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effects, localized averaging over past light cone, multiscale averaging and
the geometrical characterization of a corresponding distance ladder, just to
mention a few [49, 54]. Thus, it is still an open problem to establish what
the most appropriate averaging technique may be. In any case a general pre-
scription for comparing (generalized) Einstein initial data sets seems, from
the point of view of mathematical cosmology, a necessary step in such an
averaging scenario and Ricci-flow conjugation suggests itself as a natural
technique unifying in a unique geometrical framework several nice features:
(i) It sets a coherent averaging scale between matter and geometry which
goes beyond a naive volume averaging. (ii) It relates matter and geometrical
averaging to energy conditions. (iii) It provides a precise control over the
entropic stability of the relative matter-geometry fluctuations between the
given data sets.
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