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Abstract

Using the categorical description of supergeometry we give an explicit
construction of the diffeomorphism supergroup of a compact finite-
dimensional supermanifold. The construction provides the diffeomor-
phism supergroup with the structure of a Fréchet supermanifold. In addi-
tion, we derive results about the structure of diffeomorphism supergroups.

1 Introduction

Groups of smooth diffecomorphisms are of great importance for numerous
applications in geometry, global analysis and mathematical physics. To
give these groups the structure of a Lie group is, however, often a quite
non-trivial task due to the fact that in general one can only endow spaces
of smooth maps with a Fréchet structure. In almost all cases of interest,
Banach structures are unavailable (cf. [7, Cor. IX.1.7] and [8]). This makes
for an analytically much more challenging situation.
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While these difficulties have been overcome for ordinary smooth manifolds
decades ago (cf. [7] and references therein), no similar results are available
yet for supermanifolds because a theory of infinite-dimensional supermani-
folds has never been systematically developed. The foundation for such a
theory has been laid by Molotkov already in 1984 [4] but was not really
appreciated at that time. We will follow this line of thought, building on
the results of [9], which works out a categorical description of supergeome-
try in detail. This description makes Banach- and Fréchet supermanifolds
available, among other things.

In this article, we show that the supergroup of diffeomorphisms of a com-
pact finite-dimensional supermanifold can be given the structure of a Fréchet
supermanifold, using the formalism of [9]. To arrive at this assertion, we
establish a structure theorem for diffeomorphism supergroups which shows
that superdiffeomorphisms can be factorized in a particular way which allows
to decompose the supergroup into a sequence of semidirect products. This
enables us to treat the underlying group separately. Here is where the main
analytic difficulties have to be overcome. The remaining part of the super-
group (the “higher points”) is then easier to deal with.

2 Categorical description of supermanifolds

We will only give a very condensed review of the categorical description of
supermanifolds. For more details see [9, 4].

The main idea of this approach is to first set up a proper notion of a
superset (as a functor) and then to develop all more advanced concepts
from this basic notion. Recall that an ordinary set X can be described as
Homsets({*}, X) where {x} is a one-point set. Even more trivially, X can
be viewed as a functor Pt — Sets (where Pt is a category with one element
and its identity morphism) and a map is a natural transformation between
two such functors.

From this point of view, a superset will be a functor from a category SPt of
“superpoints” to Sets. Consequently, a supermanifold will be defined to be
a superset, which is locally isomorphic to certain subfunctors of SPt — Vect.
The great advantage of this rather abstract formalism is that it can treat
infinite-dimensional supermanifolds on the same footing as finite-
dimensional ones, in contrast with the usual ringed-space approach.

2.1 The category of supermanifolds

Throughout this article, the terms “super vector space” and Zs graded
vector space are used synonymously. On the level of vector spaces (or,



DIFFEOMORPHISM SUPERGROUP 287

more generally, modules over superrings) these two notions are identical.
The difference lies in the braiding of these categories, i.e., in the notion of
supercommutativity.

Definition 2.1. The category Gr of finite-dimensional Grassmann algebras
has for each n € Ny an object A,,, which is the (isomorphism class of any)
free supercommutative algebra on n odd generators.

More precisely, A,, = A*(R™) = A" (R") @ A°44(R"), which is Zo-graded
and satisfies v A w = (—1)UI1@ly A v,

Morphisms in Gr are morphisms of Zs-graded algebras.

The category SPt of finite-dimensional super points has objects P(A,,) :=
({*},Ay), i.e. the one-point space {*} endowed with the structure sheaf A,
and morphisms (id, ¢*) : ({*},Ap) — ({*x},An) for @: A, — A, a

morphism in Gr.

Obviously, SPt is dual to Gr and thus Sets°”t" 2 Sets®". Here and in
the following we use the notation D¢ for the category of covariant functors
C — D. With this said, the basic idea of “superification” is quite clear,
one has to rephrase each classical concept in terms of the functor category
Sets®". The way how to achieve this can be subtle, though, because we
have to make sure the resulting functors really describe the known super
objects like, e.g., super vector spaces. Just like not all functors C° — Sets
describe objects of C, i.e., are representable, not all functors in Sets®" of
some given type will represent a super object. For example, not all functors
Gr — Vect actually describe super vector spaces. Below we will briefly state
which such functors are superrepresentable. For more details, the reader is
referred to [9,4].

As a starting point one rephrases superalgebra as algebra in the functor
category Sets®". To each super vector space V one associates a functor
V € Sets®" as follows:

Example 2.1. For each Zy-graded (= super) vector space V we obtain a
functor V' : Gr — Sets, defined by
ViA,— (Ay@ V),
0N, — Ay — gp@idv‘V(An).
This is a module over the superring R, obtained from plugging R into the

above definition. Moreover, if f: V] x--- x V; — V is a multilinear par-
ity preserving map between super vector spaces, then we define a natural
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transformation

Vix .- XVHHV,?A(Al®Ul,...,/\n®?}n)'—>)\n"-)\1®f(vl,...,vn).
(2.1)

~

This results in a functor - : SVect — Modg C Sets®".

The functor - can be shown to be fully faithful [9, Cor. 3.2]. An object
V € Sets®" in the essential image of  is called a superrepresentable R-module.
These superrepresentable R-modules play the role in super-differential
geometry that vector spaces play in ordinary differential geometry.

(Smooth) supermanifolds are now defined as functors Gr — Sets which are
locally modeled on superrepresentable R-modules. Note that if we restrict ~
to the category of locally convex vector spaces and continuous linear maps,
then we can endow each of the vector spaces V(A,,) in the image of a functor
V with a topology, because its definition only involves tensor products with
the finite-dimensional vector spaces A,. Moreover all induced maps V (¢)
(for ¢ : Ay, — Ay, a morphism in Gr) become continuous, and V is actually an
object of TopGr. The category TopGr can be given a Grothendieck topology
by pulling back the global classical topology on Top [9]. In the following
we will assume TopGr and all its relevant subcategories to be endowed with
this topology. The topology on TopGr in particular provides the notion of an
open subfunctor of a superrepresentable R-module. Note that the treatment
of infinite-dimensional super manifolds is tacitly covered by this approach.

We will be particularly interested in the case where V' has been endowed
with the structure of a Fréchet space. Functors which are isomorphic to open
subfunctors of such superrepresentable Fréchet R-modules will be called
Fréchet superdomains. There is a natural notion of supersmooth morphisms
between such superdomains [9, Sect. 4.2], allowing for the following defini-
tion (cf. [9, Sect. 4.4]).

Definition 2.2. Denoting by Man the category of smooth Fréchet manifolds,
a supermanifold M is a functor Gr — Man endowed with a maximal atlas.
An atlas consists of

e an open cover {U, — M},ca by Fréchet superdomains such that
e cach pullback U,g = Uy X pm Ug is a superdomain and
e the canonical projections Il g : Ung — Ua,Ug are supersmooth.
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A morphism ¢ : M — M’ of supermanifolds is a natural transformation in
Man®" such that for every chart u: U — M and v’ : U’ — M’ the diagram

UXM/U/ U’
U—"" o 2

commutes. As usual, two atlases are equivalent if their union is again an
atlas. This entails the notion of a maximal atlas.

Together with the corresponding supersmooth morphisms, we will denote
by SMan the category of Fréchet supermanifolds.

2.2 Inner Hom objects in SMan

The subcategory SPoint C SMan of super points plays a special role for the
category of supermanifolds, analogous to that played by the one-point man-
ifold for the category of ordinary manifolds. This is best seen from the fact
[9] that
Hom(P(A), M) = M(A)

for all A € Gr and any supermanifold M. Moreover, this isomorphism is
functorial in A as well as in M. So the A-points (i.e., the sets M(A)) of M
are indeed given by all the possible maps of P(A) into M.

An important consequence for our purpose is that this gives a hint on how
to describe inner Hom objects in SMan. An inner Hom object Hom(B, C)
in any category C is required to satisfy the adjunction formula [3]

Hom(A,Hom(B,(C)) 2 Hom(A x B,C) VA,B,C € C.

Therefore, given two supermanifolds M, N the A-points of Hom(M, N) are
given by

HO7H1(MaN)(A) = Homsman(P(A) x MaN)

This is as stated only a relation between sets. The hard part is, of course,
to give these sets manifold structures such that Hom(M,N) becomes a
supermanifold. If M, N are not discrete then this will, at best, be possible
within the category of Fréchet supermanifolds.
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In general, the study of such inner Hom objects is an analytically very
challenging problem already for ordinary manifolds. We will only attempt
to make this notion precise in two cases in this paper: we will define and
study the space of sections of a super vector bundle over a supermanifold.
As one may expect, it will turn out to be a superrepresentable R-module.
Although this is of course expected it is not obvious, in contrast to ordi-
nary geometry, because even the notion of a section over a space which is
not described by its underlying topological points is a bit involved. The
second example and overall goal will be the explicit construction of the
diffeomorphism supergroup SDiff(M) of a compact supermanifold studied
below. This supergroup will turn out to be a subobject of Hom(M, M) in
a way that we will make precise.

3 Supergroups
The most well-known example of a supergroup is the following;:

Definition 3.1. A Lie supergroup is a group object in the category of
supermanifolds.

More explicitly, a supermanifold G is turned into a supergroup by speci-
fying morphisms

m:GxG—g,
1:G—G,
e:RO:{*}—>g,

which satisfy a number of diagrams encoding the axioms of a group [3]. For
example, associativity amounts in this language to the condition

mo (m x idg) = mo (idg x m).

Instead of requiring the commutativity of certain diagrams one can equiv-
alently require that the set of T-points G(7T') = Hom(7,G) is a group for
every supermanifold 7' and that this family of groups is natural in T,
i.e., that multiplication, inversion and unit are given by the induced maps
mp : G(T) x G(T) — G(T) and i, e, respectively.

That Definition 3.1 only deals with Lie supergroups reflects the fact that
at first it seems unclear how to generalize the concept of a group as a set
with a certain structure to something “super”. Omne way to escape this
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limitation is to give up thinking of structured sets, as indeed suggested by
Definition 3.1. In view of the categorical formulation sketched in the previ-
ous section, we should rather think of a family of sets related by functoriality
in Gr:

Definition 3.2. A supergroup is a group object in Sets®".

This obviously includes Lie supergroups as defined above, but also more
general objects. As a subcategory we obtain, for example, “topological
supergroups”, which we define as groups in TopGr. The study of these more
general supergroups should be interesting in its own right. In addition, the
orbits and orbit spaces of supergroup actions on supermanifolds often turn
out not to be supermanifolds. However, they are always objects in SetsC"
which suggests this topos as the natural “habitat” to study supergroups. In
this work, however, we will restrict ourselves to supergroups which can be
endowed with the structure of a supermanifold.

Let G be a group object in Sets®". Then every G(A) is a group, i.e., G is
actually a functor Gr — Grp. The initial and terminal morphisms cy : R — A
and €5 : A — R induce homomorphisms

Glea) : G(R) — G(A),  Glen) : G(A) — G(R).

Since €p o cp = idg, G(cp) is a monomorphism and G(ey ) is an epimorphism.
This means that for every A € Gr we can write

G(A) = N(A) x G (3.1)
where G := G(R) = im(G(cp)) and N (A) := ker(G(ep)).
We can even say more. For every morphism ¢ : A — A’ in Gr we have
that e o ¢ = 4. Thus
a(n) 2% g
Q(GA)l \Lg(eA’)
G G

idg

commutes. Therefore (3.1) can be read as a component equation for the
splitting
G=NxG (3.2)

where G is interpreted as the constant functor Gr — Grp with value G which
sends each morphism to idg and N is the supergroup A — N (A) and ¢ —
Q(d))‘N(A) for all morphisms ¢ in Gr.
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Let us now assume G is a Lie supergroup. This implies that all G(A) are
Lie groups which moreover have a rather special structure. We again have
the maps G(ep), G(cp) with their respective properties. The Lie supergroup
G is locally modeled on a linear superspace which we may identify with its
Lie superalgebra g = g5 @ g7. In particular, there has to exist a superchart
¢ : U — G around the identity. The underlying chart ¢g is a chart around 1
for G which we may identify with a map ¢r : g5 D U — G. This map might
not be the exponential map if we are in the infinite-dimensional context.

The existence of a superchart means that we can extend ¢g for each A to
a chart ¢ : U(A) — G(A) where U is an open superdomain in g. The fibers
of the map

G(en) : 6(A) — G(R)
are therefore linear spaces isomorphic to
(90 @ A§™") @ (g1 © Ag),

where Agil denotes the nilpotent ideal in Ag.

These linear spaces do not form a superrepresentable R-module [9], which
means that one cannot model a supermanifold on them. Similarly, a constant
functor Gr — Man cannot be a supermanifold. Consequently the direct sum
splitting (3.2) cannot exist in the category of Lie supergroups. Nonetheless
it turns out to be very useful in the construction of supercharts. In our
discussion of the supergroup of diffeomorphisms of a supermanifold below
we will exhibit the splitting (3.1) explicitly.

4 Super vector bundles
4.1 Definition

In this section we will present a brief but hopefully self-contained treatment
of super vector bundles in the categorical approach.

The construction of super vector bundles is formally completely analo-
gous to that of ordinary vector bundles. The definition we will present was
first given in [4]. A trivial smooth super vector bundle is given by maq :
M xV — M, where M is a smooth supermanifold, mx is the canonical
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projection and V is a linear supermanifold, i.e., a topological superrepre-
sentable R-module. Morphisms are pairs (f : M — M’ g: M xV — M’ x
V') such that

a0 g = fomm

and such that my o g: M xV — V' is a M-family [2,4] of isomorphisms of
R-modules. The latter condition is the categorified version of being a fiber-
wise isomorphism. The term “fiber” must be used with caution when speak-
ing about super vector bundles because the base manifold is not described
as a collection of ordinary topological points. Thus trivial super vector bun-
dles are certain functors Gr — VBun, where VBun are smooth super vector
bundles over a smooth base.

Note that every functor £ € VBun®" gives rise to a functor M € Man®"
by assigning to every component bundle its base manifold.

Definition 4.1. Let £, &’ be functors in VBun®", and let M, M’ be their
associated base functors in Man®". Then € is said to be an open subfunctor
of &, denoted £ C &', if

1) M is an open subfunctor of M’ and
2) for each A € Gr we have 7, '(M(A)) = 7 HM(A)),

where mp : E(A) — M(A) is the projection to the base.

A morphism &£” — & of functors in VBun® is called open if it can be
factorized as a composition

g gce
where f is an isomorphism of functors and £’ is an open subfunctor of £. An
open covering {&, }aeca of € € VBun®" is then a collection of open morphisms
{ba : Eo — E}aca, such that the associated maps {m o ¢ }aca are an open
covering of the functor M : Gr — Man associated with £. In analogy with
supermanifolds, a supervector bundle is a functor in VBun®" endowed with
an atlas of trivial open subbundles.

Definition 4.2. Let £ be a functor in VBun®", and let M € Man®" be its
associated functor of base manifolds. Let A = {¢q : Eo — E}aca be an open
covering of £. Then this covering is an atlas of a super vector bundle £ over
the supermanifold M if the following conditions hold:

1) each of the &, is a trivial super vector bundle U, x V,, and V, = Vs
for all o, 8 € A, and
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2) for each «, 8 € A, the overlaps

Ea Xg 5ﬁi>8a

N
¢p

554>8

can be given the structure of a trivial super vector bundle in such
a way that the projections m,, 73 become morphisms of trivial super
vector bundles.

Two atlases A and A’ are equivalent, if their union AU A’ is again an atlas.
A super vector bundle € is a functor in VBun®" together with an equivalence
class of atlases.

The second condition is necessary because the fiber product in the dia-
gram is constructed as the fiber product in VBun®". We thus have to
make sure that it actually exists in the subcategory of trivial super vec-
tor bundles. Note also that the requirement that the transition functions
be morphisms of trivial super vector bundles automatically turns M into a
supermanifold.

Definition 4.3. Let &, &’ be super vector bundles with open coverings {¢,, :
Ea = E}aca and {py : €., — E'}orear. A functor morphism @ : € — &' in
VBun®" is a morphism of super vector bundles if for all @ € A and all o € A’,
the pullbacks

T

Sa Xgr EO/ il Z/{a/
To \L \Lqﬁo/
Uy —2 g g

can be chosen such that £, xg €y is a trivial super vector bundle and the
projections m,, T, are morphisms of trivial super vector bundles.

Definitions 4.2 and 4.3 yield a category SVBun which is obviously a sub-
category of VBun® but not a full one (for basically the same reason for
which Man® is not a full subcategory of SMan, cf. [9]). One can define
super vector bundles in terms of cocycles with values in a Lie supergroup
as well [4] but we will not attempt to do this here.
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Proposition 4.1. A super vector bundle m : £ — M is trivial if and only if
all of its A-points wp : E(A) — M(A) are trivial bundles.

Proof. The bundle 7 : £ — M is trivial if and only if there exists an isomor-
phism f:& — M x V for some superrepresentable R-module V such that
7 = 7mam o f. This means that for every A € Gr, the components of f must
make the diagram

fa €A M(A) x V(A)

x ™M, A

M(A)

commutative. That is precisely the condition for the triviality of the ordi-
nary vector bundle mp : E(A) — M(A). O

4.2 The tangent bundle 7 M

The tangent bundle 7 M of a supermanifold M is defined in the categorical
framework as a functor 7 M : Gr — VBun in the following way: for every
A € Gr and every ¢ : A — A’| set

TM(A) == T(M(A)), (4.1)

To every morphism f: M — M’ of supermanifolds, we assign a functor
morphism

Df:TM —TM (4.2)

(Df)a :=Dfn : T(M(A)) — T(M'(A)).
The assignments (4.1) and (4.2) define the tangent functor 7 : SMan —
VBun®". For our definition of a super vector bundle to make sense, we would

certainly expect the tangent bundle to be in SVBun, not just in VBun®". This
is indeed the case:

Proposition 4.2. The tangent functor is a functor T : SMan — SVBun.

Proof. Choose a supersmooth atlas {uy : Uy — M}GGA of M. Then all
U, are open domains in some superrepresentable R-module V [9], so their
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tangent bundles are trivial:
TUL, Z U, X V.

It is clear that the tangent bundles {7Uy}aca of the coordinate domains
form an open cover of the functor 7 € VBun®". It has to be shown that they
form an atlas satisfying the conditions of Definition 4.2.

By the definition of a supermanifold [9] each intersection Uy X o Us has
the structure of a superdomain itself, and the projections 7,7 : Uap —
Uq,Ug are supersmooth. The tangent bundles are related by the differentials,
e.g., Dny : TUyg — TU,. These are by definition U,g-families of R-linear
morphisms compatible with the base maps. So they are morphisms of trivial
super vector bundles. O

4.3 Spaces of sections of super vector bundles

In this section, we present a first application of the categorical approach to
supergeometry. We show that smooth sections of finite-dimensional super
vector bundles form superrepresentable R-modules and therefore linear
Fréchet supermanifolds. This might seem intuitively clear from ordinary
geometry but this intuition is treacherous in supergeometry. For example,
there is no naive notion of fibers for a super vector bundle and a super vec-
tor space is not the same as a linear supermanifold from the ringed space
point of view. Most of the proofs in this section rely heavily on results of
Molotkov [5].

Let p: & — M be a smooth super vector bundle over a compact super-
manifold M. We would like to enrich the set of sections

F(M,g) = {O’ € HomSMan(M,5)|po o= idM}

to a supermanifold. We thus have to extend I'(M,€&) to a functor I:
Gr — Sets such that its value on R is T'(M,E&). As usual, this can be
accomplished by studying sections of families of super vector bundles over
superpoints.

We define the functor f(M, &) : Gr — Sets on the objects of Gr by setting

D(M,E)(A) :=T(P(A) x M, m3E).
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Here, 7}, denotes the pullback of £ along the projection maq : P(A) x
M — M. For a morphism ¢ : A — A’, we define

DM, E)(g) : (M, E)(A) — D(M, E)(A), (4.3)
oo (P(p) xidam).

Note the similarity of this definition to that of inner Hom objects (Sec-
tion 2.2). We do not want to work out this similarity systematically but only
remark that one may use it to introduce the notion of an inner Hom object
in the category of families over a supermanifold M. In general, inner Hom
objects and even more so functors of the type I for general fiber bundles are
notoriously difficult to endow with additional structure, e.g., supersmooth
or superrepresentable R-module structures. We will see, however, that this
task is feasible here because all fibers are linear supermanifolds.

Let us first note that the set SC°(M, V) of supersmooth morphisms from
a supermanifold M into a superrepresentable R-module carries a natural
vector space structure: if f,g: M — V are morphisms then we define

(f +9)a(w) := fa(u) + ga(u)

and
(r- fla(u) :=rfa(u)

for r € R and u € M(A). If we look at a set of the form SC®(M,V & W)
where W is another superrepresentable R-module we can even conclude that
this set is a Zo-graded, i.e., super vector space. The even elements are simply
defined to be maps into V, the odd ones maps into W.

The following Lemma shows that f(u ,U x V) is superrepresentable.

Lemma 4.1. Let U be a superdomain andU xV — U a trivial super vector
bundle over U. Then

D(U,U X V)= SCoU,V & TIV)
as R-modules.
Proof. We have
DU, U x V)(A) = SC®(P(A) x U, V)

and V = V for some super vector space V. On the other hand U = V/}U for
some super vector space V' because U was assumed to be a superdomain.
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This means U C Vj open and U(A) :V/(exl)(U) for all A in Gr, cf. [9].

Since
P(An)(A) = Hom(Ap, A) 22 A; @ R™ =2 RO™,
we have

P(An) x U =P(Ay) x V|, ZRIn g V7| .

As shown in [9] the set SC*®(P(A) x U,V) can be identified with the
set of “skeletons” of such supersmooth maps. A skeleton of a morphism
f:P(A) xU — V consists of a smooth map fy: U — V5 and a collection
of smooth maps {f, : U — Sym"(R%" @ V], V) |n >1}. Symmetric here of
course means a symmetric parity-preserving map of super vector spaces, so

Sym (R @ V)1, V) = A(R™ @ V/, V5)

where the right hand side denotes alternating maps between ordinary vector
spaces. Setting Sym®(RO" ¢ VI, V) := V5 we can identify

SC®(P(An) x U, V) = C®(U, Sym*(R"" & V{,V))
= C(U, ®i—oSym' (R & V/, V).
It is

Sym* (R" & V4, V) = (D AR & V{. V)

=D D VR e (A1)

i j+k=i

- @ ey

J even i=j

o P éNRn &N (V)

j odd i=j

= P é NR™ & N™(V], V)

j even m=0

o0
o P PR e AV, Vi) |,
j odd m=0
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where on the right hand side, all operations are to be understood as those
of ordinary vector spaces. Now we can rewrite that last line as

Sym. (Rn S VVI,? V) = An,() ® Sym.(‘/é V) D An,i & Sym'(Vf, HV)
and therefore

C=(U, Sym* (R" @ V{,V)) = A, 5 ® C(U, Sym®*(V{,V))
® A, 1 ®C®(U,Sym*(V{,1IV))
> A5 ® SC®U,V)
®A,1®SC™®U,TIV)
>~ (A, @ SC®U,V & 1IV))5
=~ SCoU,V & TIV)(A,). O

This result stays true if we study a general super vector bundle & — M
over an arbitrary supermanifold M. Note first that the open coverings by
trivial bundles as defined above endow the category SVBun with a
Grothendieck topology. This topology turns out to be subcanonical (for
a proof in the very similar case of the category SMan see [9]). This means
that every representable functor SVBun® — Sets is a sheaf.

As a consequence, if {¢, : £, — E}aca is an open covering of the super
vector bundle £ then £ is a colimit with the ¢, as the canonical maps. More
precisely, £ is the limit of the diagram

{€a—E&p=Caxcép—E|a, e A} ==F: A —SVBun (4.4)

where A is an abstract diagram category and F' a functor into SVBun whose
image is the open covering by trivial subbundles and their fibered products.

This in turn entails the following

Lemma 4.2. Taking sections and pull-back maps
¢ T(M,E) — T(Ua, U x Va)
we produce a diagram f(F) : A° — Modg of the sets of sections. It is
(M, ) = lim(T'(F))

as R-modules.
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Proof. In detail, each chart ¢, : £, — £ consists of a pair (fa,ga) which
makes the diagram

E=Uy, X Vy 22 £
Uy 7 M

commute. Here, g, is a U,-family of isomorphisms, so we also have an
inverse g .

So given a section o : P(A) x M — & we define the pulled-back section as
plo=glooo (idpa) X fa) + P(A) x Uy — Eq-

Pick some A € Gr and assume we are given local sections o : U, X
P(A) — &, which coincide on the overlaps, i.e.,

* _ *
ToOa = TROg

where 7, g are the canonical maps of £, x¢ £3. These local sections define
a unique global section o : M x P(A) — £ as one immediately checks point-
wise, i.e., by looking at the

oot P(A)(A) X Up(A) — Eq(N).

All of these are ordinary (smooth) maps between ordinary spaces which
coincide on overlaps.

So for each A, the A-points of local sections of a super vector bundle
& form a sheaf on the supermanifold M. The resulting uniqueness of the
patched together global section makes the global sections a limit of the local
sections. 0

One can even go one step further and conclude that the functors f‘(L{a, Ea)
form a sheaf with values in R-modules on M.

Since we assume that the &, =U, XV, are trivial we know from
Lemma 4.1 that

[T (Ua, Ea) = SC® Uy, Vo & TIV,).

Therefore, f‘(F ): A° = Mody is a diagram of superrepresentable
R-modules. If we abbreviate this diagram by an abuse of notation as just
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A

I'(&,) for a moment then we note that

Hm(T(E)) = Hm(SC® (U, Va & 11V,)) 2 lim(SC™(Uy, Vo & IV,

where the last = follows from the fact that the functor - consists in tensoring
with the finite-dimensional Grassmann algebras and taking the even parts
which commutes with limits and colimits. Thus we have shown

Theorem 4.1. Let £ — M be a real super vector bundle. Then the functor
I'(M, E) of global (smooth) sections is a superrepresentable R-module.

From this theorem we can conclude in particular [5]

Hm(SC® Uy, Vo & TVa) 2 T Uy, Vo & 11V,) 2 T(M, € & TIE).

Here, the unhatted I' just means ordinary sections, i.e., maps o : M — &
such that p oo = id .

It might seem strange at first that the functor of global sections is repre-
sented by the super vector space of sections of £ @ II€. But the set of maps
M — & only carries the structure of a vector space, not that of a super
vector space. As is basically always the case, the set of maps between two
super objects is itself not super but can be enriched to become so. That
is essentially due to the fact that the maps between super objects preserve
parity.

As an example, the set of sections of the tangent bundle only consists of
the even vector fields. To see the odd ones as well we have to add a parity
changed copy of the tangent bundle. This is a large-scale version of the
simple fact that, for super vector spaces V, W, the inner Hom-object

Hom(V, W) = Hom(V, W) & Hom(V, IW) = Hom(V, W ® IIW).

This inner Hom object is the object which is usually of interest; the actual
morphisms V' — W only consitute its even part.

5 Supersmooth morphisms and their composition

Following the general principles presented in Section 2 the diffeomorphism
supergroup SDiff(M) has to be a subfunctor of the inner Hom-object
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Hom (M, M). The latter is defined as a functor Gr — Sets by setting
Hom(M, M’)(A) := Hom(P(A) x M, M').
and by the assignment of

Hom (M, M')(p) : Hom(M, M')(A) — Hom(M, M)(A)  (5.1)
o 00 (P(p) x idp)

to each ¢ : A — A’. We shall call the elements of Hom(M, M')(A) super-
smooth morphisms. Note the similarity of this definition with that of the
functor f‘(./\/l, &) of sections of a super vector bundle given in the last sec-
tion: the higher points of the inner Hom object are morphisms of families
over superpoints. For more motivation, see [9, 10].

5.1 Composition of morphisms and the unit element

Let M, M’ M" be supermanifolds and fix A € Gr for the moment. For two
supersmooth maps f € Hom(P(A) x M, M') and g€ Hom(P(A) x
M, M"), the composition g o (idp, x f) is in Hom(P(A) x M, M"). This
defines a map

o, : Hom(M, M')(A) x Hom(M’', M")(A) — Hom(M, M")(A),
(f,9) = go(idp, x f).
If A varies over all objects of Gr, then this in fact defines a natural transfor-

mation o : Hom(M, M’) x Hom(M’, M") = Hom(M, M").

Lemma 5.1. The functor
epm s Gr— Sets;, A {Ilp: P(A) x M — M}

is a subfunctor of Hom(M, M), which defines the unit in Sets®" for the
composition o. Moreover, o is associative, giving Hom(M, M) the structure
of a semi-group in Sets®".

Proof. This is clear from the definition. O

From the above it is obvious what the diffeomorphism supergroup of a
supermanifold should be. It should be comprised by subfunctors of
Hom (M, M) which are invertible with respect to o. Like the composition
and all other operations invertibility has to be a “point-wise” notion.
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Definition 5.1. For f € Hom(P(A) x M, M), an inverse is defined to be
a morphism f~! € Hom(P(A) x M, M) such that

(idpeay X ) o f~h = (idpay x 1) o f =TIu.

An inverse need not exist, but if it exists it is unique. If it exists, we call
f invertible.

5.2 Explicit description of Hom(M, M)

Before turning to the diffeomorphism supergroupup we derive some explicit
parametrization results on the spaces Hom(M, M)(A). We have

Homsman(P(A) x M, M) = Homspig(C*(M),C*(M) @ A).

Therefore, any morphism ¢ : P(A) x M — M is given by an algebra homo-
morphism (which we also denote ¢) of the form

O(f) = co(f) + 3 meilf) + D mimjen () +..,

1<j

where the sums run over the odd generators 7q,...,7, of A and each «aj is
a linear map C*°(M) — C°°(M) of parity the length |I] of its index.

The image of ¢ under Hom(M, M)(ep) is the morphism C*°(M) —
C>°(M) given by «ap because €j is the map which mods out all nilpotent
elements from A.

Before we prove the general statement, let us investigate the case A =
A1 = RJ[r| in detail to gain some intuition. That ¢ is a homomorphism
means that

8(£9) = 9(N(9) = (ao(f) + Ta1(F))(a0(g) + s (9))
= ao(f)aolg) + 7 [ar(faol) + (~1)"PDao(Fau(g)] -

This means that aq is itself a homomorphism of superalgebras. We also
see that «y is a derivation over ag. That means the following. We can
view the homomorphism «ag as endowing C*° (M) with an additional module
structure over itself. Let us for clarity denote this module structure as
C>*®(M)*. Then ay is a derivation from C*°(M) to C*°(M)*0.
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It follows from the existence of universal derivations [6] that one may then
write ¢ as

¢»=(147X)oap,

where X is an odd vector field on M. The precise statement about universal
derivations is that

derr(A, M) = Homx (2, M),

where R is a commutative ring, A is a commutative R-algebra and M, 2 are
A-modules. One checks that this continues to hold for supercommutative
rings and their modules. 2 is universal in the sense that every derivation
D : A— M factors uniquely as D = f od where d: A — Q is a derivation
depending only on A and f:Q — M is A-linear. In our case d is the de
Rham differential, Q are the 1-forms, A is C°(M) and M is C*°(M)°0.
Now since (2 is in our case the dual space to the vector fields X'(M) we find
that

HOIHA(Q, M) = X(M) ®COO(M) COO<M)QO.
So derivations D : C®°(M) — C>®(M)* are still vector fields but with a
different module structure over the functions.

One checks that in the case A = Ao, ¢ takes on the form
¢ = exp(m1 X1 + 12X + 1 712X72) 0

1
= <1 + X1+ X + 27’17’2X12> o .

The general picture will be very similar, with each a; contributing an addi-
tional vector field of parity |/|.

So apart from «q, which describes a morphism of M into itself, the higher
terms depending on nilpotent parameters of the base P(A) act “infinites-
imally”, that is, by derivations. This is a ramification of the fact that
odd dimensions behave infinitesimally, familiar for example from the Tay-
lor expansion of superfunctions into powers of their nilpotent part which
is formally equivalent to extending a function onto an (odd) infintesimal
neighbourhood.

Note that if aq is invertible, as will be the case for diffeomorphisms, the
induced map dag on vector fields is an isomorphism and

X oap = ag o dap(X) (5.1)

for every vector field X. So in this case we may choose whether we pre- or
postcompose with ag.



DIFFEOMORPHISM SUPERGROUP 305

For the proof of the general case, let us introduce the following notation.
By &(aq - - - ay,) we denote the symmetrization of the product aj - - - a,, i.e.,

1
6((11 T an) = ﬁ Z As(1) """ Ao (n)>
" oeP(n)

where P(n) is the group of permutations of n elements. The expression
I =1 + -+ I; will denote the decomposition of the ordered set I into an
ordered j-tuple of subsets I3, ..., I;, each carrying the ordering induced from
I. For example, {1,2} = I} + I, consists of the four partitions

b2k, {2 {2h {1 HL2h {0

The notation I = I; U ... U I}, on the other hand, denotes the decomposition
of the ordered set I into an unordered j-tuple of disjoint ordered subsets.
So, {1,2} = I U I, consists of two partitions:

{h L2 {1 {23

The following lemma will be useful.

Lemma 5.2. Let A be an algebra, f,g € A, and let aq, ..., a, be derivations
of A. Then

S(aro...0a)(fo)= Y, S(ax)(f)S(ar)(9),

{1,.n}=K+L
where for K ={k1,...,k;}, ax denotes the composition

aK:aklo...oakj.

Proof. By the Leibniz rule, it is clear that &(ajo...0ay)(fg) will take
the form

S(ajo...0a,)(fg) = Z N(f!’L)aK(f)aL(g),
{1,...n}=K+L

with some integer N (K, L) denoting the multiplicity the K, L-summand.
Since the symmetrized product on the left hand side contains all possible
orderings of the operators a;, all possible partitions of {1,...,n} into two
ordered subsets will really appear on the right hand side. The summand
with given K and L occurs exactly (|K|+ |L|)!/(|K|!|L|!) times, as one
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checks as follows: starting from an ordered sequence K of indices, there are
(|K| +|L)!/|K|! ways to insert |L| elements at arbitrary positions into it.
But since the ordering of L is also fixed, one has to divide by the number of
permutations of L. So we have

Sao..om)(fe)= 3 UELEIEDL (parg)

K |I[L|n!
K,LC{1,...n}

= > (k) ()S(aL)(g).
(1,.n}=K+L O

Theorem 5.1. Let ¢ : P(Ay) X M — M be a Ay-point of Hom(M, M).
Then ¢ is uniquely determined by its underlying morphism ¢g : M — M,
as well as 21 odd and 21 — 1 even vector fields X1 on M such that

p=exp| Y 7Xr| o, (5.2)

Ig{L?n}

where the sum runs over all increasingly ordered nonempty subsets and 71
is the product of the corresponding 7;’s.

Proof. Write
¢= > mom (5.3)

Ig{lzvn}

where we now sum over all (including the empty) increasingly ordered
subsets and each ay is a linear map C*°(M) — C*°(M) of parity |I|. The
homomorphism property of ¢ implies that

Yo omwak(fo) | = D mar(H ]| D maslg)

KC{1,..,n} IC{1,...n} JCA1,..n} 5.4
5.4

Identifying (5.2) with the sum (5.3) rephrases the claim of the theorem as

|1

T[Q[ZZ Z S ((rn,Xn)o...o(11,X1,)) © aq. (5.5)

7j=1 I:Ilu...ulj

The summation runs over all partitions of I into unordered tuples of subsets,
each subset carrying the ordering induced from I (cf. the definition of the
notation I = I; U...U I; above). This will be proved by induction on |I|.
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For indices I of length |I| = 0, 1, the assertion holds as we have seen above.
Assume the statement has been proven for indices up to length k. Then let
I ={iy,...,ix+1} be an index of length k + 1. We must assure that (5.4)
holds, which means we must find the general solution a; for

rrar(fg) = ao(f)mror(g) + (~1)PDrrar(fao(g)
X 2 Trag(f)roan(g). (5.6)

I=K+L
K,L#0

Since | K|, |L| < k, it follows that Txax and 77 must have the form (5.5).
Therefore the sum in (5.6) can be written as

|K|

S Y st Xk) oo (i, Xk) (f)

I=K+L \ j=1 K:Klu...UKj
K,L#0

|L|
OZ Z S ((rp, Xr,)o...0(1,X1,)) (9) | o ap.

I=1 L=I,U...UL,

By Lemma 5.2, this equals

1]

S Y & ((mXn)o...o(m,X1)) (f9) o ao.

j=2 I=1U..Ul;
The general solution to equation (5.6) therefore reads

]

TICXIZTIXIOOZU—FZ Z 6((7’11X11)o...o(7'1jX1j))oao
7j=2 I:Ilu...UIj

]

:Z Z 6((T[1X[1)O...O(T[jX[j))OOéo,

j=1I=1,U...UI;

where X7 is a vector field of parity || on M. O

As we have expected all topological features of Hom(M, M) are com-
pletely determined by its underlying space Hom(M, M) while all higher
points are vector bundles over the latter space.
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6 Basic properties of the diffeomorphism supergroup

We now turn to the diffeomorphism supergroup SDiff and it’s structural
analysis. We will see that, exactly as in the previous subsection, all analyt-
ical difficulties pertain to the group underlying SDiff.

6.1 Group structure of SDiff (M) in Sets®

Define for each A € Gr a set SDiff(M)(A) by setting
SDiff(M)(A) = {f € Hom(M, M)(A) | f invertible}.

Clearly, each of these sets is a group. Therefore if we can show that they
form a functor in Sets®, this functor will be a group object in Sets®". In
fact we will show that SDiff(M) is a subfunctor of Hom(M, M).

Proposition 6.1. For each A € Gr and each morphism ¢ : A — A, the
restriction of Hom(M, M)(yp) to SDiff(M)(A) induces a group homomor-
phism

SDiff (M) (i) : SDiff(M)(A) — SDiff(M)(A).

Proof. Applying the definition (5.1) to the neutral element ITnq : P(A) x
M — M, we see immediately that

a0 (Ply) x idag) = M,

i.e., Hom(M, M)(¢) maps the unit element to the unit element. Now let
f,g € SDiff(M)(A) be given. We have to show that

Hom(M, M)(¢)(g o f) = (Hom(M, M)(p)(g)) o (Hom(M, M)(#)(f))-

It is most insightful to compare the definition of the two functors. The left
hand side corresponds to the composition

i id of
PIA) x M pny o g BPOD pay e mMEe M, (61)

while the right hand side corresponds to
(idppry,P(p),ida) (idpprysf)
PA) x M—TEVTE DAy < P(A) x Mot

(P(#),idr)

— > P(N) x M PA)x ML pm.  (62)
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Let now m € M(A") be some A”-point of M, p € P(A')(A”) be a A”-point
of P(A') and let ¢ € P(A)(A”) be its image under P(yp), i.e., ¢ = P(p)(p).
Then (6.1) will map the pair (p, m) to

(p, m)——(q, m)——=(q, far(q,m))——g(q, far(q,m)).

On the other hand, (6.2) will map (p, m) as

(p7 m) = (p7 q, m) = (p7 fA”(q7 m)) = (q7 f/\”(Q7 m)) = g(q7 fA”(Q7 m)) .

This shows that all components of the two functor morphisms (6.1) and
(6.2) are indeed identical. O

Corollary 6.1. SDiff(M) is a subfunctor of Hom(M, M) and a group
object in Sets®.

Proof. By Proposition 6.1, for ¢ : A — A’, Hom(M, M)(¢) maps invertible
morphisms to invertible morphisms, so the restriction of Hom(M, M)(p)
to SDiff (M)(A) is well-defined. This means that the inclusion SDiff(M) C
Hom(M, M)(p) is a functor morphism, and thus SDiff(M) is a subfunc-
tor. Since each SDiff(M)(A) is a group and each SDiff(M)(p) is a group
homomorphism, the second assertion is clear. ]

6.2 Factoring out the underlying group Aut(M)

Associated with the null object Ag = R of Gr are the underlying points (or
R-points) of a supergroup. In our case, the group SDiff(M)(R) obviously
consists of the invertible elements of End(M), i.e., of the automorphisms of
M. We shall denote this group by Aut(M). As mentioned above, the initial
and final morphisms cp : R — A and €5 : A — R of Gr furnish canonical
inclusions, resp. projections

SDiff(ca) : Aut(M) — SDiff(M)(A),
SDiff(ep ) : SDiff(M)(A) — Aut(M).

This turns Aut(M) into a subgroup of SDiff (M)(A) and each N'(M)(A) :=
ker(SDiff (M)(ep)) is a complementary normal subgroup. Since this con-
struction is functorial, the next lemma is immediate (compare also the dis-
cussion in Section 3).
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Lemma 6.1. The assignment A — N (M)(A) defines a normal super sub-
group N'(M) of SDiff (M) and we have

SDiff (M) = N (M) x Aut(M)

(where we regard Aut(M) as the constant supergroup A — Aut(M)).

As pointed out in Section 3, SDiff (M) even splits as a direct sum in Sets®'.
The splitting as a semidirect will, however, even hold as Lie supergroups.
For each f:P(A) x M — M in SDiff(A), the automorphism SDiff (ex)(f)
of M is given by

M2 PR) x M NN pony o Lo

We call this the automorphism underlying f. That it is actually invertible
is due to the fact that SDiff defines a functor. From this it follows that
N(M)(A) consists of maps depending non-trivially on the odd coordinates
of Pp and whose underlying automorphism is the identity of Aut(M).

In Section 7.4, we shall put a supersmooth structure on SDiff (M) with the
aid of the decomposition from Lemma 6.1. This becomes feasible because
we shall derive charts for SDiff (M) respecting this decomposition.

6.3 Invertibility of morphisms

In this section we shall obtain an explicit inversion formula for supersmooth
diffeomorphisms.

Theorem 6.1. A supersmooth morphism ¢ : P(A) x M — M is invertible
if and only if its underlying morphism or : M — M is invertible. In this
case, writing the algebra homomorphism ¢ as

p=exp| Y 7Xr]| oo
IC{1,...,n}
(in the notation of Theorem 5.1), its inverse is given by

p Tt =pytoexp [ - Z X1 |- (6.3)

IC{1,...n}
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Proof. We have to show that

exXp | — Z T]X[ o exp Z TJ.XJ = idC.‘,’\fl(M)' (64)
I1C{1,....,n} JCA{1,...,n}

We can write

exp | — Z 71 X1 | oexp Z 77X 7 :1+ZTK0zK (6.5)
IC{1,...,n} JE{1,...,n} K

by expanding both exponentials. Using (5.5), we rewrite the expression on
the left hand side as

1+ Z Z 6((—leXh)o...o(—T[jX[j))

7j=1 IZIlLJ...UIj
||

o Z Z 6((TJ1XJ1)O...O(TJkXJk))

k=1 J=J1U...UJ}

Now Trxax on the right hand side of (6.5) is a sum over all partitions of K
into ordered tuples of subsets. Pick one such tuple { K7, ..., K,}; the tuple,
and each of the K, is ordered, and their union is K. On the left hand side,
we have the corresponding sum

1 n
Wn—k)! kZ:O(_l)k(TKlXKl) o...o(Tk,XK,)

of all ways of realizing this sequence of indices by contributions from either
two of the exponentials (6.4). But

> M(‘l)k = A+ (=1)"=0.
£ k! ! !

Therefore, each ax on the right hand side of (6.5) receives only vanishing
contributions, and thus (6.4) holds. O

Corollary 6.2. SDiff (M) is the restriction of Hom(M, M) onto Aut(M) C
Hom(M, M)(R).
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7 The Lie supergroup SDiff (M)

The analytically involved part of the supersmooth structure on SDiff (M)
comes from the underlying group Aut(M). In this section we show how to
put a Lie group structure on it. Up to a nilpotent semidirect factor, Aut(M)
can be identified with the automorphism group of a finite-dimensional vector
bundle, so that we can borrow the smooth structure on it from [12]. In order
to do so, we have to assume that the underlying manifold M(R) is compact
throughout.

7.1 The structure sheaf of a supermanifold

The connection between finite-dimensional supermanifolds and vector bun-
dles is most easily described in the ringed-space picture (cf. [2]), which we
will switch to for this and the following subsection. How to get from a
super manifold in the categorical sense to the ringed space is described in
[9, Sect. 5.1].

When viewed as a ringed space, an m|n-dimensional supermanifold M
is an m-dimensional manifold M, together with a sheaf C'F; of Zy-graded
supercommutative R algebras (i.e., a-b= (—1)I"*p. ¢ for homogeneous
elements), which is locally isomorphic to Cg5. ® A, where Cg5, is the sheaf
of ordinary smooth functions on R”. A morphism between supermanifolds
in this picture is a smooth morphism of the underlying manifolds together
with a morphism of sheaves.

Recall that the structure sheaf C7 of a supermanifold M is filtered by
the powers of the nilpotent ideal sheaf J C C§y, i.e.,

CG2>2IDT*D ...

The sheaf is not Z-graded, however, because morphisms of superalgebras
only preserve the Z/2-degree. Dividing out J yields the underlying manifold
M, and the quotient morphism C§; — C§;/J endows us with a canonical
embedding cem : M — M as a closed subsupermanifold. This construction
is functorial, i.e., we obtain a functor red : SMan — Man.

The sheaf J/J? has a natural C%/J-module structure on it, given by
[f] - [e] = [f - ¢]. This turns J/J? into a locally free sheaf of modules over
C%»> which in turn gives rise to a smooth vector bundle £ — M with I'(E) =
J/J?. By Batchelor’s Theorem [1] there exists a (non-canonical) isomor-

phism &:T'(A°E) — C%5 covering idyy, ie., ¢ preserves the Zs-grading.
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However, each two choices &, £ give rise to an isomorphism {1 o ¢’ : A°E —
A*E covering idps, which gives in particular rise to a vertical bundle
automorphism E — E. We shall call such a pair (E,{) a vector bundle
associated with M.

7.2 The super Lie algebra X (M)

The ringed space picture also provides a very accessible way to deal with
the Lie superalgebra X(M) of vector fields. By Lemma 4.1, the func-
tor f(./\/l, 7T M) is superrepresentable and the ringed space picture provides
explicitly a Zs-graded vector space representing X (M) as in Example 2.1.

The structure sheaf C'F; is a sheaf of super commutative Zo-graded alge-
bras on M. Thus it has a Zg-graded sheaf of (even and odd) derivations,
which we denote by Der(C3;). In local coordinates x;, 6, an even derivation
has the general form

X = z_; 191 + Z Z nggJaczj (7.1)

IC{1,...;n} T I
|| even |J] odd

and an odd derivation has the general form

g]JQJ (7.2)

i=1 IC{1,...n} J=1JC{1,...,n}
1] odd |J| even

where the sums run over all increasingly ordered subsets and 6; denotes the
product of the corresponding 6;’s in that same order. The action of X on

=2 kcq,..ny KOk € C}y is then given by

o . dfk
oaf= D St (7.3)
Kc{1,...,n}
0 .
s f = 2 [fxOk-(ysen(i K) (7.4)
J JEKCIL,...n}

where sgn(j, K) is the sign arising from moving a%j past the elements left

of §; in Or. The super commutator [X,Y] = XY — (—=1)XIVlY X turns
Der(C%y) into a Lie superalgebra.
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From the above representation it also follows that Der(Cg;) can be
endowed with a Fréchet topology, which is induced by the embedding

Der(C3;) = [ [ Der(M]y,) = Der(C®(U;) @ Ay)
el

(for (Us)ier an open covering of M with M|, = C*(V;) ® A, and V; C R"
open) and endowing Der(C*°(U;) ® A,,) with the natural Fréchet topology.
Since the natural operations are continuous with respect to this topology,
this turns Der(M) into a Fréchet super Lie algebra.

From the local representation of a derivation in (7.1) and (7.2) and Lemma
4.1 it also follows that Der(C%;) = X(M) as R-modules, which enriches
X (M) to a Fréchet super Lie algebra.

7.3 The structure of X(M) and Aut(M)

An automorphism of M is a homomorphism of its structure sheaf, i.e., it
preserves the grading. The Lie algebra of Aut(M) is therefore the algebra
of grading-preserving, i.e., even, vector fields X' (M)jg.

In view of the action of vector fields on functions on M described in (7.3)
and (7.4) we readily identify the even vector fields whose action induces the
identity on the underlying manifold: these are the ones which do not contain
a summand fi(x)a%i. That is, in their local representation each coefficient
function is at least of degree one in the odd variables. Similarly, if an even
vector field X only has coefficient functions of degree > 2 in the odd variables
it will induce the identity on C%5/J 2 and thus on the underlying manifold

as well as on any vector bundle describing J/J 2 and so on.

We can define a filtration on X' (M) analogous to that on C§3 by giving
each odd coordinate (in some arbitrary local coordinate system) degree 1
and each derivative % degree —1. Then we define X (M)®*) as the ideal in

J

X (M) consisting of even vector fields whose local coordinate representations
are of degree at least k (in the odd variables). This defines a filtration which
is independent of the choice of local coordinates: the exact number of odd
variables in a superfunction is not preserved under coordinate changes, but
it never decreases, which is precisely the statement that coordinate changes
respect the filtration of C'{; by powers of the nilpotent ideal J.

In particular, X (M)g consists of all X (M)®*) with even k, the odd vector

fields have odd degrees. So, for example, X (./\/l)(%o) /X (M)(%Q) locally consists
of linear combinations of vector fields of the form f(z)0,, and g(x)0;0s, and
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therefore acts nontrivially on the underlying manifold M as well as on the
associated vector bundles of M.

The subgroup of Aut(M) which induces the identity on CS5/J* will be
denoted as Nilg\lil). If we write sloppily M /J* for the ringed space obtained

by dividing out the k-th power of 7 then we could also define Nils\lfl) as the
kernel of the natural map Aut(M) — Aut(M/JTF).

Proposition 7.1. If k > 2, then X(M)ék) consists of nilpotent derivations,
Nilgﬁt) of unipotent automorphisms (of CS respectively), and the exponential
map

exp : X(M)ék) — Nilgﬁt)
is bijective.

Proof. An element X of X (M)((—)k) is an even derivation of C%; such that
|I| and |J| in its coordinate representation (7.1) are bounded below by k
and k + 1, respectively. With the definition of the action of X'(M)g on C%
in (7.3) and (7.4) one sees that applying X to f raises the length of the
indices of the odd variables 0 by at least k. From this it follows that X

acts nilpotently if £ > 2.

Thus exp(X) actually is a finite sum and the exponential map is well-

defined. Moreover, exp(X) € Nil(k), since in any local coordinate system, J*
is generated by {0k : |K| < k} over C*°/J and thus exp(X) acts trivially on

M/TF. By the same argument as above, an element ¢ € Nﬂg\lz) is unipotent
if kK > 2. Moreover,

—id)!
log() = (-1 €1
I>1
defines an inverse map for exp (cf. [11]). O

The group Nily := Nil(M)® will be particularly important, for it can be
turned into a semidirect factor in Aut(M), albeit non-canonically. The cor-
responding quotient is G := Aut(M/J?), which we can embed into Aut(M)
by choosing a vector bundle E — M = M(R) associated with M. In fact,
J? =AZ2F in the case that = A&ﬁE and thus automorphisms of

M/J? = E become the same as vector bundle automorphisms of E. On
the other hand, each f € Aut(F) acts as an automorphism on the sheaf of
sections of F and this determines uniquely an automorphism of A*E.
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Corollary 7.1. The group Nilpq fits into an exact sequence
1 — Nilpyy — Aut( M) — G — 1. (7.5)

This sequence splits (non-naturally in M) by a morphism og:G —
Aut(M), which depends on a choice of a vector bundle E associated with
M and we have Aut(M) = Nily xpG.

7.4 Aut(M) as a Fréchet—Lie group

Just as the diffeomorphism group of a compact manifold is modeled on the
Lie algebra of smooth vector fields, we will model SDiff(M) on the super-
representable R-module X (M) of super vector fields on M. Consequently,
we are seeking for a Lie group structure on Aut(M) = SDiff (M) (Ag), which
is modeled on aut(M) := T(X(M))(Ag) = X(M)g (cf. Section 4). Pulling
back a chart for this Lie group structure along the terminal morphism
en 1 A — Ag then provides us with charts for a Lie group structure on each
SDiff(A). Since this construction is functorial we will end up with a super
Lie group structure on SDiff.

For the following construction we choose a vector bundle (E, £) associated
with M as in Section 7.1 and note that for a different choice (E, &) we have
& =y o¢ for an automorphism v : A°E — A®*E. We shall use v later on to
show that the smooth structure on Aut(M) does not depend on the choice
of £&. We use ¢ to identify Aut(M) with Aut(A®E), where the latter group
denotes fiberwise algebra automorphisms preserving the Zo-grading. Then
Corollary 7.1 yields the semidirect decomposition

Aut(A*E) = Aut(A=2E) x Aut(E)

with respect to the natural action of Aut(E) on AZ2E. Now Proposition 7.1
yields a bijective exponential function

exp : aut(A=2F) — Aut(AZ2E),

where aut(A=?E) denotes the even derivations of AZ2E. We have seen in
Section 7.2 how to put on aut(A=2E) the structure of a Fréchet algebra
and the induced smooth structure on Aut(AZ2FE) turns it into a Fréchet-Lie
group. It thus remains to put a smooth structure on Aut(E) and to show
that the induced action is smooth.

Theorem 7.1. If E— M is a finite-dimensional vector bundle over the
compact manifold M, then Aut(E) can be given the structure of a Fréchet—Lie
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group, modeled on the Fréchet space
gau(E) & V(M),

where gau(E) denotes the Lie algebra of sections in the endomorphism bun-
dle end(E) and V(M) the Lie algebra of vector fields on M, both endowed
with the natural C*°-topology.

Proof. Since FE is finite-dimensional its frame bundle Fg is so. The latter is
a principal GL(V)-bundle, where V' denotes the typical fiber of E and the
construction from [12] yields a smooth structure on Aut(Fg), modeled on
gau(E) & V(M). Using the canonical isomorphism Aut(Fg) = Aut(E) then
induces a smooth structure on Aut(FE). O

Note that the Lie algebra aut(E) of Aut(E) is only isomorphic to gau(E) @
V(M) as a vector space but not as a Lie algebra. In general, one only has
an extension

0— gau(E) - aut(E) - V(M) — 0

of Fréchet—Lie algebras, which does not split. Moreover, charts for the
smooth structure are not very handsome for in general they cannot come
from an exponential function. However, restricting to the normal subalge-
bra gau(E) < aut(E) of sections in the endomorphism bundle, we have an
exponential funtion

exp : gau(E) — Gau(FE),

where Gau(E) denotes the group of vertical bundle automorphisms of E.
This exponential function is given by taking the exponential function

End(V) — GL(V)

in each fiber and may be used to obtain a chart for the normal subgroup
Gau(FE) (cf. [12, Th. 1.11]). The inconvenience in the construction of a chart
on Aut(E) now comes from extending the chart on Gau(F) to Aut(E), which
mainly involves the construction of a chart of Diff(M) on V(M) (cf. [12,
Sect. 2]).

Corollary 7.2. If M is a finite-dimensional supermanifold such that the
underlying manifold M is compact, then Aut(M) carries the structure of
a Fréchet-Lie group. If (E,§) is a vector bundle associated with M, then
Aut(M) is modeled on

aut(AZ*E) @ gau(E) @ V(M).
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Proof. The preceding theorem yields a smooth structure on Aut(F) and
the bijective exponential function exp : aut(AZ?E) — Aut(A=2E) induces a
smooth structure on Aut(AZ2FE). The induced action of Aut(FE) on
Aut(A=2E) is smooth, because the actions of Gau(F) on gau(FE) and of
Diff (M) on C*°(M) are smooth, and on a unit neighborhood the Aut(E)-
action is given (in local coordinates) in terms of the Gau(£) and Diff (M )-
actions. From this it follows that

Aut(A*E) = Aut(A=?E) x Aut(E)

carries a Lie group structure, modeled on aut(AZ2E) @ gau(E) & V(M).
Now ¢:A*E — M induces an isomorphism Aut(M) — Aut(A°E) =
Aut(A*F). Since two different ¢ differ by an equivalence of A®E the smooth
structure does not depend on this choice if we use £ to transport this struc-
ture from Aut(A®FE) to Aut(M). O

7.5 Charts on SDiff (M)

Denote by X' (M) the superrepresentable R-module of sections of the tangent
bundle of M. As we have seen, X'(M) is nothing else than the R-module
associated with the super vector space of vector fields on M. To equip
SDiff (M) with a supersmooth Lie group structure, modeled on X' (M), we
start with an open zero neighborhood U C aut(M) and a chart & : V — U
for some open unit neighborhood V of Aut(M). This defines an open
subfunctor

A X (M)(ep) 1 (U) on objects

U : Gr — Top, .
{gp = X(M)(Q)]x(r)(ep)-1() o1 morphisms

of X(M) (note that each open subfunctor is of this kind, cf. [9, Prop. 4.8]).
Likewise, we obtain a subfunctor

A — SDiff(M)(ep)1(V) on objects
¢ — SDIff (M) (©)[spir (A1) (er)-1(v) ©R mOrphisms
(7.6)

V : Gr — Sets, {

of SDiff(M). We now wish to set up a Lie group structure on each
SDiff(M)(A) such that V becomes an open subfunctor and such that we
have a functorial isomorphism ®, : V(A) — U(A) such that each ®, is a
chart for the Lie group structure on SDiff (M)(A). This then yields a super
Lie group structure on SDiff.
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As in Lemma 6.1, the initial and final morphisms in Gr furnish X' (M)
with a functorial decomposition X (M)(A) = n(M)(A) x aut(M), where
n(M)(A) := ker(X(M)(epr)) and aut(M) = X(M)j is the Lie algebra of
Aut(M). Since n(M)(A) is the subspace of X'(M)(A) consisting of ele-
ments proportional to (products of) odd generators of A, Proposition 5.1
yields a bijective exponential function

expy : n(M)(A) = N(M)(A),

which we use to endow each N (M)(A) with a smooth structure. As in
Section 7.4 one observes that the Aut(M)-action on X (M) and X (M)7
is smooth and thus that the action of Aut(M) on n(A) is smooth. Thus
Aut(M) also acts smoothly on N(M)(A) and therefore each N'(M)(A) x
Aut(M) becomes an infinite-dimensional Lie group, modeled on X' (M)(A).
A chart for this Lie group structure is given by

logp X® : N(M)(A) x V = n(M)(A) x U,
where log, denotes the inverse map to exp,.

Proposition 7.2. Endowing each SDiff(M)(A) with the topology just
described turns SDiff (M) into a functor Gr — Mang,, where Mang, denotes
the category of Fréchet manifolds.

Proof. We only have to verify that SDiff(M)(¢) becomes a smooth mor-
phism for each ¢ : A — A’. From the construction of SDiff it follows that
its restriction to N (M)(A) x V is given by

NM)(g) x idy.

It thus suffices to verify that the restriction to N(M)(A) is smooth, whose
coordinate representation is n(M)(y). Since the latter map is linear and
continuous it is in particular smooth. ]

Proposition 7.3. For each chart ® : V — U of Aut(M) the functor V as
defined in (7.6) is an open subfunctor (with respect to the smooth struc-
ture just described). Moreover, the assignment A — logy x® constitutes a
natural isomorphism V. — U of functors Gr — Mang,.

Proof. Since U(A) = U x n(M)(A) for all A, U is an open subfunctor of
X (M). On the other hand we have given V the topology pulled back from
U via the bijection logy x® where ® : V — U is the underlying chart on
Aut(M) so V is open.
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The very same argument applies to the smooth structure: we have
endowed V with the smooth structure pulled back from U, turning log, x®
and exp, x®~! into mutually inverse diffeomorphisms. |

Proposition 7.4. SDiff(M) is a Fréchet supermanifold, modeled on the
superrepresentable R-module of (even and odd) vector fields X (M).

Proof. Proposition 7.2 turns SDiff(M) into a functor Gr — Manp, and
Proposition 7.3 extends the chart V around the identity on Aut(M) to
a superchart on SDiff(M). This superchart V can be translated to a super-
chart around any ¢ € Aut(M): since Aut(M) canonically embeds into each
of the groups SDiff(M)(A), ¢ acts on each of the points V(A) by left and
right translation.

It remains to be shown that the transition functions between the charts
obtained in this way are supersmooth. The components are clearly smooth,
so we just have to check the Ag-linearity of the differential.

It is sufficient to study the intersection of V' and a chart Ry, V obtained
from it by, say, right translation with an element 19 € Aut(M). Then we

see from (7.7) that every element in Ry, V (A,) is of the form

exp Y mX; | o¢oot.

I1C{1,...,n}

If such an element lies in V(A,) as well then the transition function will
only affect the underlying part by identifying ¢g o ¢p with some other ¢ in
V(R). On the nilpotent part N'(M)(A,,) in V(A,) 2V x N(M)(A,) (that
is an isomorphism in Man®") the transition function acts as the identity. Its
differential is thus the identity as well and therefore in particular Ag-linear.

Had we instead used left translation to produce a superchart L%V then
we would have found

dooexp | > mXp|ogo=exp| Y 7rdiy'(Xr) ] oo o

Ig{l,,?’b} Ig{Lvn}

So in this case the transition function acts as diyy* on n(A,) C X(M)(A,).
Since d¢g and its inverse are by definition extended to X'(M)(A) as Ap-linear
maps the differential of the transition map is again Ag-linear. O
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7.6 Supersmoothness of the group multiplication

Until now we have only turned SDiff(M) into a super manifold, but we
actually want to turn it into a Lie supergroup. For this we have to show
that the multiplication functor actually is supersmooth. Given a function
f € C*®°(M), an automorphism ¢y € Aut(M) = Aut(C>°(M)) and a vector
field X € X(M) = Der(C*°(M)) we have

X 0 ¢0(f) = (doo " 0 X 0do)(X) = oo (dey ' (X))(f),
(cf. (5.1)). For X an even derivation, (¢, X) — d¢o(X) is the adjoint action
of Aut(M) its Lie algebra X' (M)g and thus the action of Aut(M) on X' (M)

is smooth.

Now Theorem 5.1 permits us to derive an explicit formula for the group
multiplication in coordinates. Let

p=exp| > 7Xr| oo,

I<{1,...,n}

Y = exp > 7Yy | ot

Jg{lvvn}

be two A,-points of SDiff (M). Then we have

¢o¢:exp Z 71X7 O¢006Xp Z 7—JYvJ 0¢0

IC{1,...,n} JC{1,...n}

=exp| Y, mXr|oexp| Y. 7sdéy(Ys) | oot

IC{L,..n} JC{1,...n}
(7.7)
For v¢g = ¢, and X; = —Y7 one recovers the inversion formula (6.3) for
superdiffeomorphisms.

Taking into account the smooth structure on Aut(M) and its smooth
action on vector fields we can show

Proposition 7.5. The group multiplication in SDiff (M) is supersmooth.
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Proof. From the above formula it is evident that the multiplication mor-
phism is smooth in every A,-point, so it remains to check that it is also
supersmooth.

To see that the differential of the multiplication is Ag-linear it is sufficient
to check that the differentials of left and right translation are Ag-linear. To
check that it is in turn enough to see that the action of a superdiffeomor-
phism ¢ € SDiff (M)(A) on X(M)(A) is a Ag-linear map.

This is shown in [10]. More precisely it is shown that ¢ acts on a super
vector field Y by its differential

dop(Y)=exp | — Z T1Lx, | odgo(Y)
IC{1,..n}

where Lx denotes the Lie derivative, i.e., the commutator of vector fields
in this case. This action is extended to all of X'(M)(A) in the usual way
(i.e., by means of the functor -, cf. (2.1)). This means the action of ¢ on
X (M)(A) consists of a composition of d¢y and brackets and is therefore by
construction Ag-linear. O

Eventually, we may conclude the following theorem.

Theorem 7.2. SDiff(M) is a Fréchet super Lie group, modeled on the
superrepresentable R-module of (even and odd) vector fields X (M).

8 Acknowledgments

C.S. is grateful to Jiirgen Jost and Dimitry Leites for numerous discussions
and the Max Planck Institute for Mathematics in the Sciences, the Hausdorff
Research Institute for Mathematics and the University of Texas at Austin
for their very stimulating environments while this work was done. He also
thanks Vladimir Molotkov for generously sharing his insight in the cate-
gorical formulation of supergeometry. He was partly supported by a DFG
Forschungsstipendium and the Klaus—Tschira-Stiftung during this time.

References

[1] M. Batchelor, The structure of supermanifolds, Trans. Amer. Math.
Soc. 253 (1979), 329-338.



DIFFEOMORPHISM SUPERGROUP 323

2]

P. Deligne and J. W. Morgan, Notes on supersymmetry, in ‘Quantum
fields and strings: a course for mathematicians’, Vol. 1, Princeton, NJ,
1996,/1997, 41-97. Amer. Math. Soc., Providence, RI, 1999.

S. Mac Lane. Categories for the working mathematician, vol. 5 Graduate
Texts in Mathematics, Springer-Verlag, New York, second edition, 1998.

V. Molotkov, Infinite-dimensnional Zé’“ super manifolds, ICTP Preprint,
1994.  Available from  http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?
198506284.

V. Molotkov, private communication.

S. Lang, Algebra. Revised Third Edition, vol. 211 Graduate Texts in
Mathematics, Springer-Verlag, New York, 2002.

K.-H. Neeb, Towards a Lie theory of locally convex groups, Japan. J.
Math. 1(2) (2006), 291-468.

H. Omori, On Banach-Lie groups acting on finite dimensional mani-
folds, Tohoku Math. J. 30(2) (1978), 223-250.

C. Sachse, A categorical formulation of superalgebra and supergeome-
try, http://arxiv.org/abs/0802.4067.

C. Sachse, Global analytic approach to super Teichmdiiller spaces, PhD
thesis, Universitit Leipzig, 2007, http://arxiv.org/abs/0902.3289

A. van den Essen, Polynomial automorphisms and the Jacobian con-
jecture, Progress in Mathematics, vol. 190, Birkhaduser Verlag, Basel,
2000.

C. Wockel, Lie group structures on symmetry groups of principal bun-
dles, J. Funct. Anal. 251(1) (2007), 254-288.






