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Abstract

We study abelian and non-abelian orbifolds of the ABJM model. We
compute the precise moduli space of these models by analyzing the clas-
sical BPS equations for the theory on the cylinder, which include clas-
sical solutions of magnetic monopole operators. These determine the
chiral ring of the theory, and thus they provide the complete set of order
parameters determining the classical vacua of the theory. We show that
the proper quantization of these semiclassical solutions gives us the topol-
ogy of moduli space, including the additional quotient information due to
the Chern–Simons levels. In general, we find that in the dual M-theory
setup, the M-theory fiber is divided by the product of the Chern–Simons
level times the order of the orbifold group, even in the non-abelian case.
This depends non-trivially on how the different Chern–Simons terms have
different levels in these constructions. We also see a direct relation in this
setup between the Chern–Simons levels of the different groups and fluxes
for fractional brane cycles. We also show that the problem of the moduli
space can be much more easily analyzed by using the method of images
and representation theory of crossed product algebras rather than dealing
only with the quiver theory data.
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1 Introduction

In the past year, the AdS/CFT correspondence has found a new set of
examples in three-dimensional superconformal field theories that share many
characteristics with the original N = 4 SYM and its AdS5 × S5 dual [1] and
their orbifolds [2].

These theories, whose first example was constructed in [3] and which we
will call the ABJM model, have the following properties that make them
similar to their four dimensional cousins:

1. The theories posses an N = 2 supersymmetry in three dimensions:
these have a simple superspace description similar to the N = 1 super-
space in four dimensions.
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2. The degrees of freedom are vector (super)fields and chiral superfields.
The gauge groups can be arbitrarily large (they have a rank N that
can be taken to be large).

3. The theories have simple Lagrangians that are classically conformally
invariant with canonical kinetic terms for matter. The vector field
Lagrangian is of Chern–Simons type. This was originally suggested by
Schwarz [4] as a source of interesting dualities, but the examples with
duals were found later in [3]. The level k plays a similar role to the
Yang–Mills coupling constant g−2

Y M .
4. The theories admit a large N t’ Hooft limit by taking N → ∞ and

keeping λ = N/k fixed.
5. For small λ the theories can be analyzed using standard perturbation

theory.
6. For large and finite λ the theory can be better thought of as a type-IIA

string theory in an AdS4 ×X6 geometry.
7. If k is kept fixed and N made very large, the theory can be best

described by an M-theory setup on AdS4 ×X7. The seven-dimensional
space is a circle bundle over X6 that is determined by the level k.

Because of these similarities to four-dimensional examples, a lot of work
has been done at the level of comparisons between both sides of the corre-
spondence following the familiar ideas used in four dimensions. These com-
parisons usually deal primarily with the AdS4 ×X6 string limit where one
usually can calculate the dimensions of operators using perturbation theory.

Unlike their four-dimensional cousins, the perturbative gauge invariant
elements of the chiral ring are not sufficient to describe the moduli space
of vacua. These moduli spaces are essentially N particles on a real cone
over X7 as expected by the M-theory setup. In contrast, perturbative gauge
invariant words would give holomorphic spaces of lower dimension than the
cone over X7 would demand. In essence, the naive chiral ring made up of
gauge invariant polynomials in the holomorphic fields is identical to that of
a four-dimensional theory. These usually can only describe multiple branes
on a Calabi–Yau threefold.1

The solution to this puzzle lies in the fact that in three-dimensional theo-
ries there are additional non-perturbative elements of the chiral ring. These

1This can be understood in terms of a simple condition: that the F -terms equations
are naturally dual to the superfields of the theory. When translated into a mathematical
framework, one builds an associated algebra of a quiver theory: a quiver path algebra
with relations. This condition on the F -terms becomes a homological algebra relation
that identifies the Ext2(A, B) functor (relations obtained from F -terms) as a natural dual
to Ext1(B, A) (chiral fields) on modules [5]. This is identical to what one would obtain
from Serre duality for threefolds with a trivial canonical bundle.
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chiral ring operators create magnetic fluxes and have a similar profile to the
spatial components of magnetic monopoles in four dimensions. These opera-
tors are called magnetic monopole operators. Their presence is necessary to
match the spectrum of protected operators of 11-dimensional supergravity
on X7 [3]. These carry the quantum numbers of angular momentum on the
circle fiber of X7 over X6. From the point of view of IIA string theory seen
as a compactification of M-theory on a circle, the dual particles to these
operators describe D0-branes in the bulk and not strings, as the simplest
gauge invariant observables do.

From the point of view of calculating the moduli space of vacua from the
field theory, the vacuum expectation values of these non-perturbative oper-
ators are some of the order parameters distinguishing the different points in
the moduli space. This means that non-perturbative effects are crucial to
the understanding of the model, even at the level of describing the precise
shape of the moduli space of vacua. This is very unlike the examples in
four dimensions, where knowledge of the perturbative spectrum is enough
to describe the moduli space. Very importantly, the topology of the moduli
space of vacua depends on k. This is another way to understand why the
level of Chern–Simons terms in the Lagrangian should be quantized.

The difference in the dimension of the moduli space from what one can
guess perturbatively can be qualitatively explained by stating that the
electric–magnetic dual of a vector super-particle in three dimensions is a
complex scalar. It is the vacuum expectation values of these dual scalars
that one needs to probe to completely characterize this moduli space. This is
why we require understanding magnetic monopole instanton effects or oper-
ators in three dimensions to fully address this issue: they have to be the
non-perturbative probes that can probe the field of a dual electromagnetic
field. Because the dual particle is a scalar, the charged defect needs to be
a type of instanton in three dimensions and the monopoles are the natural
objects to study. For the case of the ABJM theory, these have been studied
in various works [6–16].

The purpose of this paper is to characterize the spectrum of magnetic
monopole operators for various orbifolds of the ABJM model. Some of these
(in the abelian orbifold case) have already been studied in various works
for the special case of a single brane in toric setups [10, 14, 16–19]. This is
characterized by a U(1)2k gauge group. The ideas presented in this work can
also be applied to a large collection of possible duals to M2-branes in these
setups, that have been proposed [20–25]. A more complete analysis has been
recently completed in [26]. We want to do a general analysis that includes
the non-abelian orbifolds and arbitrary rank gauge groups as well. Such a
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program along with various techniques we are going to use was performed
for the ABJM model in [6, 15]. Most important for us was the observation
of [18, 27] that the moduli space for level k gives collections of branes on
the C

4/Zkn × Zn space rather than the naive C
4/Zk × Zn quotient. In our

generalization to non-abelian orbifold we will see that the pattern persists,
and we get a collection of branes on C

4/Zk|Γ| × Γ, where |Γ| is the order of
the group Γ.

The main issue is to just solve for the detailed structure of the mod-
uli space of vacua. The chiral ring will be a complete set of holomorphic
coordinates on this moduli space of vacua. This is the idea of holomorphy:
holomorphic operators are a complete set of order parameters to distinguish
all of the different vacua of a supersymmetric theory. We are not aware of
any example where this is not the case, nor of a proof of this statement in
general.

There are various parts to such an analysis. First, we will find the gen-
eral solutions of the scalar field vevs that describe such a moduli space. We
will show that this can be done very conveniently with the theory of repre-
sentations of certain C

∗ algebras associated to a quiver diagram. This is a
generalization of the techniques introduced in [28] to solve the moduli space
of vacua of four-dimensional theories. Such a connection with operator alge-
bras simplifies a lot of the analysis and describes very elegantly the method
of images for orbifolds of Douglas and Moore [29]. The main advantages is
that one does not have to write the Lagrangian of the orbifold with all of the
fields explicitly, but instead one writes the Lagrangian of the parent theory
and imposes extra algebraic relations that make the extraction of the field
content and gauge symmetries of the quotient theory manifest.

Once we have the moduli space of vacua, there are discrete gauge iden-
tifications between the solutions that need to be addressed. To do that we
need to understand how the chiral ring operators are related to the moduli
space of vacua. We do this by considering the operator state correspondence
and analyzing the complete set of classical BPS states of the field theory on
the cylinder. These can be seen to be related to the classical moduli space
of vacua in a very direct manner. The analysis of the Chern–Simons equa-
tions of motion and the quantization of gauge fluxes plays a crucial role at
this stage. These classical solutions can be seen to have a natural Poisson
structure on them: the complex structure of the moduli space. This lets
one quantize the classical problem by holomorphic quantization. Consis-
tency with the constraints of the Chern–Simons degrees of freedom selects
the polynomial wave functions that are allowed. This provides in the end
the complete set of chiral ring operator quantum numbers that are allowed.
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With this information we can then provide the exact topology of the moduli
space of vacua of the theory, thereby generalizing various results to non-
abelian orbifolds. It is clear that these techniques can be also applied in
other cases.

Furthermore we can provide interesting tests of the duality of the quiver
orbifold theories with the ABJM orbifold models. Particularly, we can
recover the description of how D0-brane fractionate when they arrive at
a singularity of the AdS4 ×X6 geometry. We see clearly how the familiar
patterns of tensions expected from the local nature of the orbifold singular-
ities of X6 happen for fractional D0-branes. This ends up being intimately
tied to the levels of the different Chern–Simons terms in the action. More-
over, these can be read from the quiver diagram at a glance. We will explain
how this works in detail.

The paper is organized as follows. In Section 2 we give an overview
of the problem of computing the moduli space of vacua in three dimen-
sions. We present a comparison with the four-dimensional case to remark
the importance of non-perturbative effects in three dimension. In Section 3
we review the orbifold construction for gauge theories and setup the prob-
lem of solving the superpotential vacuum equations as finding the irreducible
representations of some quiver path algebra. In Section 4 we characterize
the chiral ring of these theories in terms of classical solutions to the BPS
equations. In Section 5, a particular example of a Zn orbifold is solved in
full detail. We begin by explicitly showing the isomorphism between the
quiver algebra and the corresponding crossed algebra. We use this to build
explicitly the branes in the bulk by the method of images (this is the same
as studying the general irreducible modules of the algebra). Using this pre-
scription we describe the full moduli space including the singular points
where brane fractionation occurs. In Section 6 the previous results are gen-
eralized to non-abelian orbifolds and we show that in the non-singular locus
the topology of the moduli space have the general form C

4/Zk|Γ| × Γ. In
Section 7 we present a summary and a conclusion on the results obtained
along with possible further directions.

2 Moduli space problem in diverse dimensions

Let us consider a quiver gauge theory in four-dimensional field theory asso-
ciated to branes probing the tip of some Calabi–Yau geometry. This is a
special class of theories with gauge fields and a superpotential. The theories
we are analyzing in three dimensions have this similar structure, with the
extra twists of not having a Yang–Mills Lagrangian, and instead having a
Chern–Simons term in the action. Since the ABJM model has the same
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superpotential as a four-dimensional model of branes at the conifold, this
structure is expected to be common.

We can then compactify the four-dimensional system to three dimensions
and compare it to the three-dimensional model with Chern–Simons terms.

The four-dimensional theory reduced to three dimensions will have a
Yang–Mills Lagrangian for the gauge fields. In this theory the gauge cou-
pling constant becomes large in the infrared since it has dimension 1

2 . The
dimensional reduction of a vector multiplet from four to three dimensions
contains apart from the vector potential degrees of freedom, an additional
massless scalar field in the adjoint representation. This is the fourth com-
ponent of the gauge field in four dimensions. We can give a vev to this
component in three dimensions without breaking the supersymmetry. The
off-diagonal modes become massive via a supersymmetric Higgs mechanism.
Also, for the moduli space problem in four dimensions, the Kähler potential
usually does not matter, so we will take it to be canonical for simplicity. In
three dimensions the Kähler potential is important to determine if a the-
ory has conformal symmetry or not. All the theories we study in detail
in this paper have this property anyhow, so we will not comment on this
further.

These extra scalar fields coming from the vector multiplet, as long as
they are massless, can in general get vevs without breaking supersymmetry.
If we explore these vevs, we can be in a mixed Coulomb–Higgs branch,
depending on the vevs of the other matter fields. This extra adjoint field
that we will call σ increases the dimension of moduli space from six real
dimensions for a brane in the bulk to seven dimensions. This is natural
from the point of view of lower dimensional branes exploring some geometry.
There are extra directions from the position of the brane in the dimension
that is not wrapped any longer. For N branes at the same locus in the
four-dimensional theory, a vev of this scalar field, at a generic point of the
moduli space would break the gauge group to U(1)N (σ is hermitian and
can be diagonalized). The vector field superpartners of these scalar fields
will be massless. While the other off-diagonal degrees of freedom become
massive and can be integrated out. For the chiral multiplets, it is easy to
show that only diagonal components remain massless also. This is because
the kinetic term (for a canonical kinetic term in four dimensions) contains
terms that contribute to the potential which are of the form

|[σ, φ]|2. (2.1)

These are from the dimensional reduction of the terms with covariant deriva-
tives in the fourth direction. Then, in the infrared, the massless chiral
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fields will be decoupled from the diagonal vector fields, since they will sat-
isfy [Aμ, φ] = 0. Therefore, the low-energy effective theory has no massless
charged particles under the U(1)N gauge group.

In this setup, we are considering the moduli space at a generic point in
the Calabi–Yau geometry associated to the four-dimensional theory, where
the unbroken gauge group is U(N) and all moduli are in the adjoint: we
expect that this low-energy effective theory is like N = 4 SYM away from
the tip of the cone. In the full theory of N D3-branes on a Calabi–Yau
singularity, this U(N) is embedded diagonally in the quiver gauge theory,
whose gauge group is G =

∏
i U(Ni) with

∑
iNi = N , and all matter fields

transform in the adjoint of this diagonal U(N).

This shows that only the chiral fields φ that are mutually diagonal with
the U(N) are allowed. As we pointed out before, at a generic point of the
moduli space, in the infrared we have a free theory for U(1)N vector fields
and massless scalars. We want to analyze these U(1) degrees of fredom
carefully. For a U(1) vector field, Vμ, we can dualize the field strength
Fμν ∼ εμνγ∂

γθ to write it in terms of an electromganetic dual scalar field.
The equation of motion of the free F in the low-energy effective field theory
becomes a Bianchi identity for this expression, and the Bianchi identity
for F becomes a Laplacian acting on θ that gets set to zero. This is in
the procedure in the absence of sources. This dual scalars θ can also be
considered to be in the adjoint of U(1)N . Now, θ can also get a vev, but it is
not visible in perturbation theory of the original Lagrangian. A gradient of
θ is visible as an electro-magnetic field, and in the original Lagrangian this is
in the adjoint of U(N), so that one can assume that a putative non-abelian
completion of θ is also in the adjoint of U(N), but this is just so that we
can understand that when the θ get vevs, the gauge group should be broken
also.

The condition that a vev of θ is massless in the Coulomb branch can be
described as [σ, θ] = 0, so that the combined vacuum expectation values of
θ, σ on the moduli space of vacua break the theory to U(1)N and no further.
As long as we are doing the analysis in the low-energy effective field theory
with U(1)N symmetry, this dualization procedure can be done without much
trouble. For the full non-abelian symmetry we do not know of a way to do
this consistently for every case. These two extra dimensions get naturally
complexified, and suggest that the moduli space of vacua for a single brane
grows one extra complex direction, described by one perturbative vev 〈σ〉,
and one non-perturbative vev 〈θ〉 that we need to access somehow.2

2For theories with more supersymmetry, this gives interesting topological effects [31]
that let one solve for the moduli space metric exactly.
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This can only be done non-perturbatively. Naturally θ being a scalar
potential, couples to point-like defects in three dimensions. The electric
sources for θ are magnetic monopole instantons. The action for such an
instanton coupling is proportional to θ, but in quantum effects it must be
exponentiated: only the exponential of the action counts.

This implies that the monopole instanton can be described as a local
operator inserted at the center of the monopole and it should behave as

M(x) ∼ exp(iθ)(x). (2.2)

This suggests that the scalar θ is periodic. This property of monopole oper-
ators is described in detail in [30], where the dual scalar is introduced in a
path integral formalism carefully.

With this information, the full moduli space of the theory is characterized
by the original Calabi–Yau geometry and a (θ, σ) pair for each brane.

Now, let us add the Chern–Simons terms to the Lagrangian. These give
a topological mass to both the gauge field Vμ and σ. This means that θ also
becomes a massive degree of freedom, even if we can not write an obvious
Lagrangian for θ. This is because θ encodes the same degrees of freedom as
Vμ. In this situation, one expects that the vector field degrees of freedom
decouple in the infrared. The vevs of monopole operators 〈M(x)〉 will probe
the vevs of θ. Also, as shown in [31], the angle-variable θ can fiber non-
trivially on the moduli space.

From now on, we will begin in three dimensions with a Chern–Simons
Lagrangian, and treat the vector fields as of dimension one. The Chern–
Simons coupling is marginal. If we add a SYM term to the action, we find
that this is an irrelevant deformation that we can neglect in the infrared.
Therefore in our following analysis of the low-energy theory we can con-
sider only the CS term. The supersymmetric Chern–Simons term adds the
following coupling to the Lagrangian:

∫

d3xKDσ. (2.3)

The full superfield expressions can be read in [32].

So, the moduli equations describing the vacuum change. The D-term
constraints are relaxed so that σ becomes a (background) field-dependent
FI term relative to the matter. Moreover, the Chern–Simmons terms give
rise to a topologically massive vector field. this means that the theory does
not necessarily become strongly coupled in the infrared anymore. In the
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infrared, such fields can be integrated out, so they should drop out of the
action somehow.

In the equation above, since σ has no dynamical degrees of freedom left
over, it becomes a composite field. This means we do not necessarily reduce
the dimension of moduli space, unless the D-term constraints have no solu-
tion for a given set of values of σ. For the ABJM theory and related models,
there is a constraint between the levels of the various Chern–Simons theories
that is required for this to happen [19].

∑

i

αiKi = 0. (2.4)

For U(1)k theories, αi = 1. In general, a similar analysis shows that αi = N̂i

should be the rank of the gauge group products on a single brane moduli
space, by taking traces over the D-term constraints and summing. This
constraint has a nice interpretation in terms of the diagonally embedded
U(1) gauge degrees of freedom: the effective Chern–Simons coupling for
this diagonal field vanishes. This means that in the effective action the
topological mass vanishes, and the theory requires us to include higher
order terms. This is just an effective SYM action to leading order. This
is the essence of the emergent SYM action from spontaneously broken con-
formal symmetry [33]. A topological mass for a low-energy effective field
vanishes, and therefore in the low-energy effective action that field cannot
be integrated out. This keeps this direction of moduli space without it
being lifted.

It also happens that in these theories, because of the Chern–Simons
Lagrangian, the monopole operators carry electric quantum numbers that
depend on the level of the Chern–Simons pieces. This means that the non-
perturbative θ vacuum expectation value should mix with the other degrees
of freedom. Since vacuum expectation values of θ also break the gauge
symmetry, one can just assume that they are fixed to some value. Under
this assumption the corresponding gauge phases of the gauge group become
dynamical on the other fields and can distinguish vacua. This means that on
the moduli space we do not impose one D-term relation, and the correspond-
ing phase of the associated U(1) gauge group is declared to be non-gauge.
The moduli space is then for a single brane is not a standard symplec-
tic quotient by a product group

∏
j GL(N̂j ,C), tha\uld give a Calabi–Yau

geometry

CY = {F -terms = 0}//
∏

j

GL(N̂j ,C), (2.5)
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but instead it is a quotient by

M = {F -terms = 0}//
⎛

⎝
∏

j

GL(N̂j ,C)/GL(1,C)

⎞

⎠ . (2.6)

So we always find a natural fibration of the moduli space over a Calabi–Yau
complex manifold, and there is a natural symplectic quotient describing the
CY geometry.

CY = M//GL(1,C). (2.7)
A natural question is then what is the topology of this fibration. In par-
ticular, M has a circle action on it (the compact part of GL(1,C)), and
this is the gauge phase that we allowed to stay unfixed after using our
gauge freedom on the dual scalar. This circle is fibered over the base non-
trivially. The natural periodicity of the dual scalar suggests that there might
be some additional discrete freedom of these phases that is gauged. This is
related to the level of the Chern–Simons theory. Thus the topology of the
moduli space of vacua depends non-trivially on the Chern–Simons levels of
the quiver theory (the different topologies can be understood in the toric
case [19]). Determining this carefully is what we want to do in this paper
for a variety of theories with non-abelian gauge groups, where dualizing the
gauge fields is not really an option. Instead, we assume that the phases are
fixed as above, and that the allowed holomorphic coordinates of the mod-
uli space coincide with the chiral ring of the theory. We can compute the
chiral ring by using other semiclassical techniques, giving us the answers we
are looking for. Moreover, we see that this natural fibration makes it inter-
esting to study the relationship between the Calabi–Yau geometry and the
four-dimensional complex manifold describing the moduli space of vacua of
a single brane.

3 Constructing the orbifold theories

We want to build supersymmetric orbifold field theories of ABJM that pre-
serve N = 2 supersymmetries in three dimensions. To do so it is best to
use superspace methods to describe the Lagrangian. The superspace appro-
priate for this level of supersymmetry is the same superspace that appears
in the description of four-dimensional theories with N = 1 supersymmetry.
Therefore the usual notions of superpotential and Kähler potential apply for
the matter action. Because the Kähler potential of the ABJM model is that
of a free theory, the orbifolds will have the same property. However, the vec-
tor superfields will have a different type of action than in four dimensions: a
Chern–Simons action. The superspace actions of these vector theories have
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been conveniently described in [32]. We will use the notation of [32] fre-
quently in this paper. We will also consider in some sections the addition of
a standard Super Yang–Mills term to the action. This is an irrelevant defor-
mation of the infrared field theory, but it is convenient for other purposes:
one can guarantee that the gauge interactions become weak in the UV. This
will preserve the supersymmetry, but will break conformal invariance.

The ABJM field theory is described most easily in N = 2 superspace in
terms of a quiver diagram with some additional information that describes
the interactions of the theory. As a quiver diagram, the ABJM theory
consists of two nodes. To each node we associate a vector multiplet V 1,2

μ in
the adjoint of U(N1), U(N2). Each of these has a Chern–Simons Lagrangian
with levels k,−k respectively. There are four chiral matter fields A1, A2 and
B1, B2. The A superfields transform in the (N1, N̄2), and the B superfields
transform in the (N̄1, N2) representation of the gauge group. Each of these
chiral superfields have R-charge 1

2 and dimension 1
2 , as it corresponds to a

free scalar field in three dimensions.

The theory has an SU(2) symmetry of rotations of the A into themselves,
and another SU(2) symmetry of the B transforming into themselves. This
manifest symmetry is an SO(4) subgroup of the SO(6) ∼ SU(4) R-symmetry
of the ABJM model that commutes with the manifest SO(2) R-symmetry
of the N = 2 superspace. In the ABJM model the scalars are in a spinor of
SO(6). When considered as spinors of SO(4) they split into (0, 1

2) ⊕ (1
2 , 0)

representations. The A,B† can transform into each other in the ABJM
theory. This mixing does not commute with the SO(2) R-charge that we
have singled out with our choice of N = 2 superspace. These extra mixings
will in general be broken by our choices of the orbifold group action.

The ABJM model also has a superpotential that preserves the SO(4) ∼
SU(2) × SU(2) symmetry. The field content and superpotential of the matter
fields are identical to the conifold field theory [34], except that the gauge
groups are U(N) × U(N) rather than SU(N) × SU(N) and the Lagrangian
for the gauge degrees of freedom is different.

To preserve the N = 2 supersymmetry in an orbifold, we should choose
an orbifold by a subgroup of the original SO(6) 	 SU(4) R-symmetry that
commutes with the SO(2) R-charge of superspace we are preserving (it has
to be embedded in the commutant). We will thus consider an orbifold by
a group Γ that sits in the SO(4) 	 SU(2) × SU(2) that acts separately in
the A and B fields. Thus, the orbifolds we are studying are classified by
discrete subgroups of SU(2) × SU(2). The problem of classification of these
subgroups will not be considered here in full detail. We will consider spe-
cial subgroups that are easy to construct. These are either products of
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discrete subgroups of the two SU(2) subgroups, or diagonal embeddings of
a group into the two SU(2) subgroups. In turn, the discrete subgroups of
SU(2) have an ADE classification that is well understood. Thus, we will
be able to use this classification to build new quiver diagrams starting from
the ABJM model using the method of images. This can be made more for-
mal using group theory analysis and representation theory of algebras as
described in [28]. This is conveniently expressed in terms of a crossed prod-
uct algebra and stating that a physical configuration is always a representa-
tion of an algebra up to isomorphism. The equivalence up to isomorphisms
is encoded in the fact that gauge theories allow gauge transformations, and
physical configurations are equivalence classes under gauge transformations.
We will describe this construction in detail later in this section.

A quiver theory is usually presented as a graph with nodes and arrows.
The nodes represent gauge groups, and the arrows are interpreted as matter
fields in various bifundamental representations of the gauge groups depend-
ing on the beginning and end of the arrows.

The set of arrows and nodes of a quiver can be thought of as describing
some sort of matrix algebra as well (the path algebra of the quiver). Because
incoming arrows and outgoing arrows are in fundamental (antifundamental)
representations, we can contract them using matrix multiplication. This
tends to produce composite arrows that can be thought of as composite
meson fields and that also transform in bifundamental representations. The
operators act on an auxiliary Hilbert space as follows. If at each node s we
have a gauge group U(Ns), then we can build an auxiliary Hilbert space
given by

H = ⊕sVs, (3.1)

where Vs is a vector space of dimension Ns in the fundamental of U(Ns).
All the fields of the theory can act on H and produce new elements of
H, because of the index structure of matrix multiplication. Under gauge
transformations, H transforms in an obvious way. This can be thought of as
reshuffling the basis of the Vs. This can be done for each position in space
if we want to. Here, we are indicating the matrix structure only.

We will be dealing with the scalar chiral fields and their complex con-
jugates and with a standard condition of reality. In mathematical terms,
we are saying that we are interested in a C

∗ algebra structure. In other
setups it is customary to use a holomorphic path algebra only [35], as
that is the simplest way to describe the chiral ring of field theories in four
dimensions. Such an algebraic approach includes the F -term equations of
the field theory as part of the description of the algebra. However, the
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setup we need requires a slightly different take on these ideas which is why
we are spending a lot of effort describing it in this slightly more elabo-
rate way.

The discrete symmetry of the orbifold will act on these nodes and arrows
in some way, so that it preserves the action (Lagrangian) of the system. This
can be translated as saying that we have an automorphism of this operator
algebra that acts on H, preserving some structure. For the purposes of this
paper, it suffices to study symmetries that leave the nodes fixed. This is, the
discrete group will not change one type of gauge field into another. More
general actions can be found in various examples [35].

To understand what the crossed product structure is, we first build the
group algebra of Γ, which we will call CΓ. This is an algebra with a generator
eg for each element g ∈ Γ and any element of the algebra is a formal linear
combination of these generators with coefficients in C. The multiplication
in the algebra is done as follows:

egeg′ = eg◦g′ , (3.2)

which makes obvious the multiplication rule in the group. Associativity in
the algebra follows from associativity of the group multiplication. Knowl-
edge of CΓ is equivalent to the knowledge of Γ. This algebra has an identity
1 = e1. A representation of Γ of dimension d is equivalent to a representa-
tion of CΓ in terms of d× d matrices. This is, a map μ : CΓ →Md×d(C)
that preserves all the algebraic relations (sums, products and multiplications
by scalars) and such that μ(1) = 1. It is a standard result in finite group
theory that all representations are unitary, and moreover they admit decom-
positions into direct sums of irreducibles. These are all finite-dimensional.
Thus any finite dimensional representation of Γ can be written as a sum
R = ⊕NiRi, where the Ri are irreducible, and the Ni are the multiplicity
of these irreducible representations. On each of these Ri, we can choose a
canonical matrix representation for Γ. This is a gauge choice. This implies
that the μ(g) can be assumed to be completely known and fixed by the Ni

labels.

If one builds an orbifold according to the prescription of Douglas and
Moore [29], we have to gauge a discrete symmetry Γ. This can be thought
of as some action of Γ on the operator algebra of a quiver diagram up to
gauge transformations. This should be though of as a group action on the
fields of our theory that preserve various desired structures. For example,
connections should map to connections, etc.
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When acting on the gauge group (on the Vμ multiplets), we have to embed
the symmetry in the gauge group via some representation of the right dimen-
sion, characterized by a gauge transformation γ(g) for each element g of the
group.

This leads to the following equation for the gauge field connection

γ(g)Vμγ
−1(g) = Vμ. (3.3)

This indicates the invariant nature of the gauge field under the orbifold
action. Usually we ask that the discrete symmetry we are gauging does not
act on the coordinates along the brane. There is another similar way to
write these equations that encodes the geometric information better

Dμγ(g)(x) = 0. (3.4)

These indicate that if we had chosen the embedding of γ(g) to be position
dependent, then the structure of the embedding is such that it is covariantly
constant. We can then choose a gauge where it is constant. This produces a
reduction of the holonomy group to the commutant with γ(g). The condition
on Vμ written above has exactly that interpretation: the allowed connections
are those in the commutant of γ(g).

If we interpret this as an algebraic equation for matrices, we can read this
equation as if we have associated matrices γ(g) to the elements of the group
algebra eg of Γ via a map μ as above. These can be interpreted as linear
operators acting on H also. Thus, we can read the operator equations as

egVμeg−1 = Vμ. (3.5)

This is done for each gauge field that we have, with different possible γ(g)
for each. Writing it this way we are stating that the algebraic relations are
such that the algebra CΓ is part of the full algebra, rather than an external
object.

The quiver algebra should also have an idempotent πs for each node
(parametrized by s) in the quiver. These satisfy

πsπr = δrsπs. (3.6)

This can be thought of also as the generator of the U(1) ‘baryon’ symmetry
at each node, the one that distinguishes the fundamental and the antifunda-
mental representation of U(Ns). We can recover the Vs by projecting on the
corresponding nodes with πs, Vs 	 πsH. These projectors are very useful
objects to consider.
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The fact that the γ(g) do not permute the gauge fields into each other is
expressed as follows:

egπs = πseg. (3.7)

Moreover, because we have the direct sum decomposition in the Vs already
spelled out, the πs are diagonal by blocks. Their eigenvalues are one or
zero. Again, we can say that the πs are covariantly constant and produce a
reduction of the gauge group to the gauge groups of each node.

Finally, for the matter fields, a bifundamental matter field associated to
an arrow connecting nodes s and s′ will be associated to a matrix such that

πrφ
i
ss′ = δrsφ

i
ss′ , (3.8)

φi
ss′πr = φi

ss′δrs′ . (3.9)

This just indicates that it is an off-diagonal matrix connecting the corre-
sponding Vs,Vs′ . These equations merely indicate how the fields are charged
under the different gauge groups.

Also, we should impose standard hermiticity conditions as follows:

(φi
ss′)

† = φ̄i
s′s, (3.10)

π∗s = πs, (3.11)

e∗g = eg−1 . (3.12)

Notice that writing the equations in this way, we are starting to forget the
labels Ns. This is a very convenient point of view, because what we care
about are the relations in the algebra, which are independent of the values
of Ns. The values of Ns are obtained from studying a particular represen-
tation of the algebra. Whereas if we study a general representation we can
decompose it in terms of irreducibles. The nature of this decomposition is
diagonalization by unitary transformations of various fields.

So far, we have an action of the original quiver algebra on H, and now we
have an action of CΓ on H by unitary transformations. We also have the
compatibility conditions [Vμ, eg] = 0, which is an algebraic representation
stating that the gauge field is Γ-invariant. Notice that these equations can
also be applied to the Yang–Mills curvature

[Fμν , eg] = 0 (3.13)

and, in general, composite fields will have definite commutation relations
with the eg.
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One also has the invariance condition under the orbifold action for the
scalar fields, given by

γs(g)φi
ss′γs′(g−1) = Ri

j(g)φ
j
ss′ , (3.14)

where R is the action of the group Γ on the matter fields and the embedding
of Γ in the gauge group is given by the representation γ(g) = ⊕sγ(g)s. These
can also be read abstractly as

egφ
i
ss′eg−1 = Ri

j(g)φ
j
ss′ . (3.15)

In the matrix algebra whose generators are the (vacuum expectation val-
ues of the) quantum fields of the theory, the equations of how the eg relate
to each other and the fields are external constraints. Solving these equa-
tions gives a representation of the formal algebra generated by the symbols
πs, eg, φ, Vμ subject to the list of equations that we have written above. The
size of the representations are determined by the brane charges that one
wants to analyze in a specific example, but these can be left undetermined
without changing the nature of the algebra relations. If one wants to look
at supersymmetric vacuum solutions, then there are additional equations
that indicate that we are on a vacuum manifold and these can also be inter-
preted in terms of representation theory of a C

∗ algebra described above,
with additional equations representing the F,D equations of motion for the
vacuum. This is not automatic. The reason why this works is that the
action is of single trace type (generated by disc diagrams), so the equations
of motion from the variation read as additional algebraic relations in the
path algebra of the quiver. Since the equations of motion are covariant
under the action of Γ, the equations describing the conditions for vacua or
the equations of motion are compatible with the action of Γ: the action of
Γ commutes with the equations of motion. The general solution will be a
solution of the equations of motion of the non-orbifolded theory, and these
solutions are constrained to be covariant.

One can find the most general solution of the equations describing the
quiver algebra above rather directly. These can be conveniently expressed
in terms of a quiver diagram also. Notice that the πs commute with each
other. Thus they can be diagonalized simultaneously, and the Vs blocks
provide this diagonalization. The equations (3.7) are also easy to solve.
Since the πs commute with the eg, then after diagonalizing the πs, the e are
block diagonal in the same basis. It follows in a straightforward way that
to each node πs we need to associate a representation of the group Γ. We
have already seen this. The representation is the embedding associated to
the γ representation in Vs. Any such representation γs of Γ can be written



1734 DAVID BERENSTEIN AND MAURICIO ROMO

as a sum of irreducibles
γs = ⊕NisRi, (3.16)

where the Nis are the mutiplicities of representation Ri in γs. These can
be written in canonical form (as given by our canonical choice of matrices
described previously).

To each such factor we will end up associating a residual U(Nis) gauge
group. This is what we get from Vμs commuting with Γ. The Vμs as a matrix
has to be an element of Hom(⊕NisRi,⊕NisRi). This just states that Vμ is a
matrix in the Vs block. Since Vμ respects the action of Γ, we find, following
the prescription of [36], that it is an element of

Vμ ∈ Hom(⊕NisRi,⊕NisRi)Γ 	 ⊕iMat(Nis ×Nis) (3.17)

this is canonically equivalent as a set to a collection of Nis ×Nis matri-
ces for each s. But this is the adjoint representation of U(Nis), so the
U(
∑
Nisdim(Ri)) = U(Ns) connection is reduced to a subgroup that is

embedded diagonally, with the Nis providing all the important data. We
associate nodes of a quiver to these gauge subgroups. There is one node per
s per irreducible representation of Γ. This is, each node decomposes into
many nodes, as many nodes as there are irreducible representations of Γ.

We also need to solve the equations (3.15). However, it becomes more
obvious how to do that in the operator language. φss′ acts as a map from Vs′

to Vs. These spaces are decomposed into Vs = ⊕NisRi and Vs′ = ⊕Nis′Ri.
The field φ is an operator that transforms according in a representation R
of the R-symmetry group. If we act on the Nis′Ri subspace for fixed i, we
obtain objects that transform in the R⊗Ri representation of Γ, where R
is determined by (3.14). This is the generalization of the Wigner–Eckart
theorem in quantum mechanics to arbitrary group actions.

What is important then is the decompositions of R⊗Ri into irreducibles.
These are obtained from tables of products of representations:

R⊗Ri = ⊕rNrRr ⊗Ri 	 ⊕r,kNrN
k
riRk, (3.18)

where the Nr, Nk
ri are the multiplicities of irreducible representations of Γ

in R, and Rr ⊗Ri, respectively.

The φ are Clebsch–Gordon decompositions for these products times matri-
ces that commute with Γ. The arrows from Vs′ to Vs split according to these
rules. For each Nis′Ri, NjsRj , there will be

∑
r NrN

j
ri arrows representing

the possible actions of the φ acting on Ri, and each of these arrows transform
in the (Njs, N̄is′) representations of the group.
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The quiver algebra characterized by A, φ, π, eg according to the equations
above is the crossed product algebra of the quiver algebra of A, φ, π subject
to the automorphism by an action of Γ. This setup generalizes easily to the
cases where we have discrete torsion: we use the twisted algebra of Γ by the
cocycle in H2(Γ, U(1)) that describes discrete torsion [35] (see also [37,38]).
This can also be generalized to cases where Γ acts with permutations on the
nodes of the original quiver. This has been worked out in some detail [35],
but a complete analysis of what happens in this situations has not been done
in the general case.

The action of the new orbifold theory is the same action as that of the
parent theory. However, we are restricted to field configurations that are
compatible with the group action of Γ as described algebraically above.

For the ABJM model, there are various discrete subgroups of SU(2) ×
SU(2) that one can consider.3 We will consider two cases: a Zn group
embedded into SU(2) × SU(2), or a discrete subgroup Γ ∈ SU(2). Remem-
ber that A and B are doublets transforming in the (1/2, 0) and (0, 1/2)
representation of the global symmetry. These are the fundamental repre-
sentations of both SU(2).

First, we need to consider the irreducible representations Ri of Zn. These
are all one-dimensional and given by Ri ∼ [ηi], where η = exp(2πi/n) is a
fundamental root of unity. The classification [ηi] is the action of the gener-
ator of Zn on the one dimension Hilbert space.

If we let Zn act on a two-dimensional representation of SU(2), the action
is characterized by a root of unity ω, such that ωn = 1, where

2SU(2) ∼ Rω ⊕Rω−1 ∼ [ηj ] ⊕ [η−j ]. (3.19)

Remember we need to act with matrices of determinant one in order to be
inside SU(2).

From the ABJM theory, we get that each of the two nodes, associated
to π1, π2 decomposes into n nodes (the irreducibles of Zn). These can be
put side by side on a graph with the same labels. The superfields A1,2 will
transform according to some value j,−j (after choosing a basis where Zn

3It is important to point out at this stage that any two embeddings of Γ in SU(4) which
differ by a diagonal U(1) gauge transformation are considered equivalent. If we call this
subgroup of gauge transformations U(1)D, we are really embedding Γ in SU(4)R ⊗ U(1)D

and U(1)D acts on an element of SU(4)R multiplying it by a phase. This is not surprising
since at the end the only thing that matters are gauge invariant quantities. The A and B
fields are not gauge invariant.
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Figure 1: Quiver diagram for the QABJM/Zn orbifold algebra. Only the
fields emanating from one of the nodes inside π1,2 are shown.

acts diagonally), while the B superfields will transform according to some
value k,−k. We will analyze the case where j = k in a quite detailed fashion
later on.4

The new quiver will be bipartite (this is the splitting on π1, π2). The A
arrows will connect nodes (1, t) (associated to π1, [ηt]) with nodes (2, t± j),
while the B will connect nodes (2, t) with nodes (1, t± k). The quiver will
look as follows. We only show the A and B arrows of one node in figure 1.

Notice that the vector fields are split as follows:

V 1
μ →

⎛

⎜
⎜
⎜
⎝

V 1
μ [1]

V 1
μ [η]

V 1
μ [η2]

. . .

⎞

⎟
⎟
⎟
⎠
, (3.20)

where each block indicates the irreducible blocks of Ri in the Lagrangian.
These are all one dimensional. We get a similar answer for V 2

μ . With this
embedding, when replacing this splitting of Vμ in the ABJM Lagrangian, we
find out that all the V 1

μ [ηi] are at level k, while all the V 2
μ [ηi] are at level

−k. Thus, the coupling constant is inherited in all the nodes.

We can now consider the simplest non-abelian case Γ = D̂k. Again, the
graph is bipartite. Each of π1 and π2 is split into the irreducible repre-
sentations of D̂k. These are the nodes of the affine D̂k Dynkin diagram.
If we tensor these with the fundamental representation (the one given by
the canonical embedding in SU(2)), the product rules of the representations
reproduces the Dynkin diagram of the affine D̂k group. This observation
was fundamental for the understanding of dualities.

The quiver is shown in figure 2. Since the A fields are chosen not to
transform under Γ, they necessarily connect the same representation of the

4Note that the transformation (A, B) → (−A,−B) corresponds to a gauge transforma-
tion, hence a diagonal Z2n action (j = k) is equivalent to a Zn orbifold.
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group Γ, between the nodes on the top and bottom of the figure (these are
the ones associated to π1, π2).

Again, we can decompose the V 1
μ according to the irreducible representa-

tions of D̂k, of the form

V 1
μ → diag(V 1

μ [Ri]). (3.21)

The difference with the previous case is that the Ri have different dimension.
In the decomposition pictured above, we have that V 1

μ [Ri] is proportional
to the identity of the group algebra times an N1i ×N1i matrix. When eval-
uating the action, we have to take the trace over both the N1i ×N1i matrix
and the group algebra. The level of the R1

i block is given by

k1
Ri

= dim(Ri)k. (3.22)

Similarly, we find that the levels for the V 2
μ splitting are given by

k2
Ri

= −dim(Ri)k. (3.23)

This is similar to the patterns of gauge coupling constants in orbifold theories
of D-brane models with Yang–Mills interactions, where gi

−2 = dim(Ri)g−2.

The Ê series of discrete subgroups of SU(2) is also easy to draw, it follows
the same pattern of the D̂ series. The example of the D̂ series is enough to

Figure 2: Quiver diagram for the QABJM/D̂k orbifold algebra. The labels
on top of the representations indicate the dimension of the irreducible of D̂k

that the node is associated to. The arrows pointing downward come in pairs
and transform as a doublet of the unbroken SU(2) global symmetry.
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understand the broad patterns of behavior. The levels of the Chern–Simons
orbifold theories are ka

R = dim(R)ka, where ka are the levels of the parent
theory.

For all of these theories the superpotential and the Lagrangian are the
same as those of the parent theory. The algebraic constraints imposed on
the solutions (these can also be thought of as states) distinguish the theories
amongst each other.

4 Chiral operators and BPS states on the cylinder

Conformal field theories in d+ 1 dimensions can be characterized by the
correlation functions of operators in the vacuum. In such theories there
is in general an operator state correspondence that makes it possible to
equate operator insertions at the origin with the spectrum of the conformal
field theory compactified on a cylinder, whose base is a sphere Sd. Such a
compactification has a manifest SO(d+ 1) × R symmetry from isometries of
the sphere and time translations. This symmetry makes it very amenable
to study the system by Hamiltonian methods. Also, the presence of a finite
box implies that the spectrum of the cylinder Hamiltonian is discrete and
therefore semiclassical methods can provide a good starting point to analyze
the theories.

In the presence of N = 2 supersymmetries in three-dimensional conformal
theories, there is additionally an SO(2) R-charge symmetry and a unitarity
bound that makes state energies greater than or equal to their R-charge.
States that saturate this inequality preserve some of the supersymmetries
(they are BPS) and when quantized they generate the chiral ring of the
theory. Knowledge of the chiral ring translates directly into understanding
the exact geometry of the moduli space of the theory. This point of view has
been explained recently in detail in [15]. We will follow the ideas presented
there to perform the calculation of the chiral ring of the orbifold theories
we have considered so far. The advantage of this formulation is that it can
be applied in the presence of magnetic monopole operators and that it can
resolve subtle details of the geometry of moduli space.

The details follow the analysis in [6,15,39] (for other recent work, see [16]).
For the ABJM theory, the complete analysis was done in [15]. Here, we
can follow similar steps. The analysis is not changed substantially so long
as all fields have canonical dimension and R-charge. For orbifolds this is
automatic. Moreover, for orbifolds the main part of the analysis can be
done in the parent theory or in the orbifold field theory without change. It
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is when we get to details of the solutions to the chiral ring classical states
that the differences become apparent.

The first step is to go from the Lagrangian formulation to the canonical
quantization of the theory. This is done most simply for the matter fields in
the gauge A0 = 0. We only need to use the scalar Lagrangian since we are
going to look at semiclassical solution of the theory. For the Chern–Simons
fields, since the Lagrangian is of first order type, the Legendre transform
of the term with first order time derivatives vanishes. We are left with a
constraint whose Lagrange multiplier is A0, hence it also vanishes. The
only contributions of the gauge fields to the energy is via the terms in the
Lagrangian that involve the matter fields. There is also a Poisson structure
for the gauge fields that is important for recovering the gauge field equations
of motion from the Hamiltonian.

Since the fields are complex, the kinetic term for the matter fields is given
by

K =
∫

S2

tr(ΠφΠφ̄), (4.1)

where Πφ is the canonical conjugate variable to the field φ. If we choose a
gauge A0 �= 0, then one gets a different set of expressions that reflect the
minimal coupling of the field to the gauge connection. The potential includes
a gradient term of the fields given by

Vgradient =
∫

S2

tr(Dφ(Dφ)†), (4.2)

where D are gauge covariant derivatives along the sphere. We also have
an effective mass term from the conformal coupling of the scalars to the
background curvature of the sphere. In units where the sphere is of radius
one, we have that this is equal to

Vconformal mass =
∫ 2

S

1
4
tr(φ̄φ). (4.3)

For an s-wave mode on the sphere on a trivial gauge background, the corre-
sponding frequency of the oscillator is given by w2 = 1/4, so that w = 1/2.
This reflects the fact that a free scalar field has dimension 1/2 in three dimen-
sions. These expressions are independent of which orbifold we are choosing:
the schematic form of the Lagrangian is the same, and the dimensions of
fields do not change. The interpretation of the group algebra constraints
change between theories, but at this level they eliminate fields and their
canonical conjugates in pairs.
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There are additional terms in the Lagrangian from the potential of the
theory. If we use the superspace appropriate for N = 2 supersymmetry in
three dimensions (the same standard superspace of four dimensions), then
it is convenient to write the interaction potential as

Vpotential ∼ tr([σ, φ][σ, φ̄]) + |Wφ|2, (4.4)

which makes manifest the fact that it is a sum of squares. Again, this expres-
sion is independent of the orbifold constrains. The components of φ that
can be non-zero vary between models, but the action and the Hamiltonian
is identical to the one of the ABJM model. These are simply constraints on
the fields.

Each of the chiral scalar fields has R-charge one half, as inherited from
the parent ABJM theory. This means that the R-charge is given by

QR =
∑

φ

∫

S2

tr
(

i
2
Πφφ− i

2
Πφ̄φ̄

)

. (4.5)

This generates R-charge rotations by Poisson brackets

δRφ ∼ {QR, φ}PB. (4.6)

If we consider the BPS unitary inequality H −Q ≥ 0, we can look for solu-
tions that saturate this inequality. It is easy to show that

K + Vconformal mass −QR =
∫

tr
(

ΠφΠφ̄ +
1
4
φ̄φ

)

−QR

=
∫

tr

(∣
∣
∣
∣Πφ̄ − i

2
φ

∣
∣
∣
∣

2
)

(4.7)

So that when we consider H −QR = 0, we find that H −QR is a sum of
squares. Each of these has to vanish.

These result in the following sets of equations:

Dφ = 0, (4.8)

Wφ = [σ, φ] = 0, (4.9)

Πφ̄ = φ̇ =
i
2
φ. (4.10)

The first equation says that the scalar field is covariantly constant on the
sphere. These equations imply that φ is spherically symmetric. If we sup-
plement these conditions with the equations of motion of the gauge field,
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the equation of motion of A0 implies that the gauge field curvature Fθϕ

is also covariantly constant in the sphere. The Aθ and Aϕ equations imply
F i0 = 0, which in our gauge choice reduces to Ȧi = 0. The second line above
indicates that the interaction potential vanishes.

This is the condition that needs to be satisfied by a solution of the moduli
space of vacua of the theory on flat space in order to have a supersymmetric
vacuum. Since the field is covariantly constant on the sphere, this implies
that the field is constant in an appropriate gauge as an initial condition. The
first-order equations indicate that the field remains constant after evolution
in the gauge A0 = 0, so the initial gauge condition is compatible with the
gauge A0 = 0 that we chose previously.

Putting these results together, we find that the BPS classical configuration
are classically in correspondence with points in the moduli space of vacua of
the theory. Notice that we have to be careful because we have not completely
analyzed the gauge redundancies and how they affect this correspondence.
This is especially important when quantizing the results. At the classical
level the gauge redundancy of solutions is not as important to describe the
dynamics.

If we include the Gauss’ law constraints, (the equation of motion of A0),
we find that the magnetic field is covariantly constant and given by the
current of schematic form

kF = (φΠφ − Π̄φφ̄) ∼ i
2
φφ̄, (4.11)

where we have assumed φ is in the fundamental and we have used the
BPS equations of motion. For the antifundamental, signs and ordering are
reversed. Both contribute. Remember that F is a matrix, as well as Π, φ.
To take into account both possibilities, this can be written as the following
matrix equation:

kFv =
i
2
πv[φ, φ̄]. (4.12)

One of the products will be zero in the quiver algebra because of the pro-
jector πv. The notation includes implicit matrix multiplication, which also
affects the ordering of the fields. These covariantly constant solutions of the
magnetic field are also solutions of the Yang–Mills equation in two dimen-
sions. The magnetic fluxes are quantized at the classical level as originally
shown by Atiyah and Bott [40].

So the program is clear: we need to first evaluate the classical vacuum
equations of the field theory in flat space. We then need to impose these
as initial conditions of the theory. The manifold of initial conditions has
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a Poisson structure. It is induced from the first-order equations of motion
treated as constraints. Since Πφ ∼ φ̄, we see that φ̄ becomes canonically
conjugate to φ in a well defined sense.

This means that the Poisson structure of initial conditions makes the
holomorphic variables a complete set of commuting coordinates. This lets
us perform a holomorphic quantization of the moduli space of vacua: wave
functions are holomorphic wave functions. These are supplemented by a
measure that we will not determine.5

These wave functions also need to be single valued, which places con-
straints on them. These holomorphic wavefunctions end up describing the
full structure of the chiral ring in the ABJM case [6, 15]. This lets one
study the exact topology of the moduli space of vacua: the chiral ring is
assumed to be the complete set of order parameters classifying the vacua of
a supersymmetric theory.

There are two ways to proceed now. We can either analyze the quiver
theory of the orbifold or we can analyze the theory in the parent theory
and impose the projection conditions, and recover the same information.
Both ways of proceeding will give the same answer in this case. We will
show how this works in a particular example in a lot of detail by working
directly in the orbifold theory. We will then see what implications the sec-
ond formulation has in the case of non-abelian orbifolds where it is more
convenient.

5 A quiver example in complete detail

5.1 The BKKS example

We consider a modification of the ABJM theory [3] with G =
∏2n

i=1 U(Ni),
described by Benna et al. in [32]. We will call this model the BKKS model
for simplicity. The field content and conventions are mostly from [32]. The
quiver is given by figure 3.

5These measures can be calculated in a semiclassical limit [6, 41–43], and based on
the structures found generalizations can be made to other setups [44]. The calculated
measure can be used to match other calculations that can be done at weak coupling in
three-dimensional theories [6], but it is not understood how to calculate these measures
at strong coupling.
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The orbifold acts on the A1,2 and B1,2 superfields by a Zn action. The
generator of Zn g acts by sending

A1 → η1/2A1, (5.1)

B1 → η1/2B1, (5.2)

A2 → η−1/2A2, (5.3)

B2 → η−1/2B2. (5.4)

where η = exp(2πi/n). Notice that this is a Zn action, because gn acts as
the gauge transformation (−1). Indeed, the gauge transformations let us do
any of the following identifications:

A1 → exp(iφ)η1/2A1, (5.5)

B1 → exp(−iφ)η1/2B1, (5.6)

A2 → exp(iφ)η−1/2A2, (5.7)

B2 → exp(−iφ)η−1/2B2. (5.8)

with the same field content. There is one simple choice of phases as follows:

A1 → ηA1,

B1 → B1,

A2 → A2,

B2 → η−1B2. (5.9)

which shows more clearly that we have a Zn action, but it is less symmetric.
These choices are equivalent.

Figure 3: Quiver diagram the BKKS orbifold. The nodes are numbered and
are given a sign: the sign of the Chern–Simons level.
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The graph is Identified at both ends: node 0 and node 2n are the same.
From the picture the superfields transform as

Z2l → U2l+1Z2lU
†
2l,

W2l → U2lW2lU
†
2l+1,

Z2l−1 → U2l−1Z2l−1U
†
2l,

W2l−1 → U2lW2l−1U
†
2l−1. (5.10)

Their components in the superspace expansion are

Zl = Zl +
√

2θζl + θ2Fl,

Wl = Wl +
√

2θωl + θ2Gl,

Z̄l = Z†
l −

√
2θ̄ζ†l − θ̄2F †

l ,

W̄l = W †
l −

√
2θ̄ω†

l − θ̄2G†
l . (5.11)

As we are interested in the moduli space then, the relevant terms in the
action are those of the scalars (we omit terms that involve fermions)

SCS =
κ

4π

∫

d3xTr
[ n∑

l=1

(LCS(V2l−1) − LCS(V2l) − 4D2l−1σ2l−1 + 4D2lσ2l)
]
,

Smat =
∫

d3xTr
[ n∑

l=1

|∇Zl|2 + |∇Wl|2

× (F †
2l−1F2l−1 + Z†

2l−1D2l−1Z2l−1 − Z†
2l−1Z2l−1D2l

− Z†
2l−1σ

2
2l−1Z2l−1 − Z†

2l−1Z2l−1σ
2
2l + 2Z†

2l−1σ2l−1Z2l−1σ2l

+G†
2l−1G2l−1 +W †

2l−1D2lW2l−1 −W †
2l−1W2l−1D2l−1

−W †
2l−1σ

2
2lW2l−1 −W †

2l−1W2l−1σ
2
2l−1 + 2W †

2l−1σ2lW2l−1σ2l−1

+ F †
2lF2l + Z†

2lD2l+1Z2l − Z†
2lZ2lD2l

− Z†
2lσ

2
2l+1Z2l − Z†

2lZ2lσ
2
2l + 2Z†

2lσ2l+1Z2lσ2l+1

+G†
2lG2l +W †

2lD2lW2l −W †
2lW2lD2l+1

−W †
2lσ

2
2lW2l −W †

2lW2lσ
2
2l+1 + 2W †

2lσ2lW2lσ2l+1)
]
,
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Spot =
L

2

∫

d3xTr
[ n∑

l=1

(F2l−1W2lZ2lW2l−1 + Z2l−1W2lF2lW2l−1

+ Z2l−1G2lZ2lW2l−1 + Z2l−1W2lZ2lG2l−1)

−
n∑

l=1

(F2lW2lZ2l+1W2l+1 + Z2lW2lF2l+1W2l+1 + Z2lG2lZ2l+1W2l+1

+ Z2lW2lZ2l+1G2l+1)

+
n∑

l=1

(F †
2lW

†
2l+1Z

†
2l+1W

†
2l + Z†

2lW
†
2l+1F

†
2l+1W

†
2l + Z†

2lG
†
2l+1Z

†
2l+1W

†
2l

+ Z†
2lW

†
2l+1Z

†
2l+1G

†
2l)

−
n∑

l=1

(F †
2l−1W

†
2l−1Z

†
2lW

†
2l + Z†

2l−1W
†
2l−1F

†
2lW

†
2l + Z†

2l−1G
†
2l−1Z

†
2lW

†
2l

+ Z†
2l−1W

†
2l−1Z

†
2lG

†
2l)
]
, (5.12)

where 2n+ 1 ∼ 1 and 0 ∼ 2n. Solving the equations for the auxiliar fields
gives

F †
2l−1 =

L

2

(
W2l−1Z2l−2W2l−2 −W2lZ2lW2l−1

)
,

F †
2l =

L

2

(
W2lZ2l+1W2l+1 −W2l−1Z2l−1W2l

)
,

G†
2l−1 =

L

2

(
Z2l−2W2l−2Z2l−1 − Z2l−1W2lZ2l

)
,

G†
2l =

L

2

(
Z2l+1W2l+1Z2l − Z2lW2l−1Z2l−1

)
,

σ2l =
1

4K

[
Z†

2l−1Z2l−1 −W2l−1W
†
2l−1 + Z†

2lZ2l −W2lW
†
2l

]
,

σ2l−1 =
1

4K

[
Z2l−1Z

†
2l−1 −W †

2l−1W2l−1 + Z2l−2Z
†
2l−2 −W †

2l−2W2l−2

]
.

(5.13)

5.2 The moduli space

As was described in the previous section, we need to compute the moduli
space of the theory. After this is calculated, we need to impose the equations
of motion of the gauge fields and the flux quantization. First, we need to
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solve the equations F = F † = G = G† = 0 and

σ2l−1Z2l−1 − Z2l−1σ2l = 0,
σ2lW2l−1 −W2l−1σ2l−1 = 0,

σ2l+1Z2l − Z2lσ2l = 0,

W2lσ2l+1 − σ2lW2l = 0. (5.14)

These equations describe the minimum of the potential. We will show how
this is a lot easier by constructing the algebra of the quiver, rather than
trying to solve them as they appear above.

So, we define the set of projectors {πi}i=1,...,2n which are associated with
the nodes of the quiver and which satisfy πiπj = δijπj . Since the quiver
has a Zn symmetry of cyclic permutation of + nodes and − nodes, it is
convenient to define the monomials

ς+ =
n∑

i=1

ηiπ2i, η = e2iπn, (5.15)

ς− =
n∑

i=1

η(2i+1)/2π2i+1. (5.16)

The ς+ and ς− transform by phases when we act with the permutation of
the nodes.

Clearly we can invert this formulae

π2k =
1
n

n∑

j=1

η−jk(ς+)j , (5.17)

π2k+1 =
1
n

n∑

j=1

η−(2j+1)k/2(ς−)j . (5.18)

Notice also that (ς+)n = π+, and (ς−)n = −π−, these are the projectors on
the even/odd nodes respectively, and that ς+ς− = ς−ς+ = 0.

Consider now an algebra with two projectors π+, π− and a group Zn

generated by g (so that eng = 1), with the relations [eg, π] = 0. It is easy to
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see that this algebra is equivalent to the one generated by ς+, ς−, with the
following identifications:

eg = ς+ + η1/2ς−, (ς+)n = π+, (ς−)n = −π−. (5.19)

Then, we put the Z and W operators in some element of the path algebra,
say ξ, such that

π2lξ = 0, π2l+1ξ = ξπ2l + ξπ2l+2, π2l+1ξπ2l = Z2l,

π2l+1ξπ2l+2 = Z2l+1. (5.20)

Likewise

π2l+1ω = 0, π2lω = ωπ2l+1 + ωπ2l−1, π2lωπ2l+1 = W2l,

π2lωπ2l−1 = W2l−1. (5.21)

We should split these into their even and odd part, as follows:

n−1∑

l=0

π2l+1ξPπ2l = ξe,
n−1∑

l=0

π2l+1ξπ2l+2 = ξo, (5.22)

n−1∑

l=0

π2lωπ2l+1 = ωe,
n−1∑

l=0

π2lωπ2l−1 = ωo. (5.23)

After using these symbols and the formal algebra manipulations, we can
express all F -term conditions as

ωeξeωo = ωoξeωe,

ωeξoωo = ωoξoωe,

ξoωoξe = ξeωoξo,

ξoωeξe = ξeωeξo. (5.24)
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Notice that in this formulation, we have set up the following matrices made
of the Z:

ξe =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 · · · 0 0 Z2n

0 0 0 0 · · · 0 0 0
0 Z2 0 0 · · · 0 0 0
0 0 0 0 · · · 0 0 0
0 0 0 Z4 · · · 0 0 0
...

...
... 0

. . . 0 · · · 0
0 0 0 0 · · · Z2n−2 0 0
0 0 0 0 · · · 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

ξo =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 Z1 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 Z3 · · · 0
...

...
... 0

. . .
...

0 0 0 0 · · · Z2n−1

0 0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.25)

so that they are off-diagonal connecting the various vector spaces that we
have set up in each node. The multiplications with projectors encode just
which off-diagonal blocks are occupied and which are empty. We have done
something similar with the W , and called it ω.

On the other hand, the D-term conditions are expressed as

[Σ, ωe] = [Σ, ξe] = [Σ, ωo] = [Σ, ξo] = 0, (5.26)

where

Σ =
1

4K

(
ξoξ

†
o + ξeξ

†
e − ω†

oωo − ω†
eωe + ξ†oξo + ξ†eξe − ωoω

†
o − ωeω

†
e

)
. (5.27)

It is easy to check that with eg = ς+ + η1/2ς−, eg−1 = en−1
g , A1 = ξe, A2 =

ξo, B1 = ωo, B2 = ωe, then the quiver algebra spanned by the variables Zl

and Wl is identical to the crossed product algebra of the Zn orbifold. That
is A � Zn, where A is the ABJM C

∗ algebra spanned by A,B. The product
between elements a� eg, a

′
� eg′ ∈ Ac � Zn is given by

(a� eg)(a′ � eg′) = aega
′eg−1 � egeg′ . (5.28)

Moreover, the equations of motion describing the moduli space are the
same equations of motion that one would obtain for the ABJM model.
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So not only do we recover the off-shell crossed product algebra from the
quiver we can also recover the equations of motion that describe the mod-
uli space in the parent theory when we impose that we are in a vacuum
configuration.

These equations are also algebraic in nature: they are matrix equa-
tions which involve only sums and matrix multiplications, so the theory
of algebra representations can help solve the problem. In particular, notice
that the ABJM algebra A is a subalgebra of the crossed product algebra.
Thus any representation of the crossed product algebra (with vacuum con-
straints) is automatically a representation of the ABJM model (with vac-
uum constraints). Since the vacuum constraints are equivariant, we can
build repesentations of the crossed product algebra by inducing representa-
tions of the orbifold vacuum solutions from solutions (representations) of the
ABJM model. This essentially reduces to the method of images in orbifold
setups.

5.2.1 The regular representation

The idea now is to build the general representation of the vacuum equations
of the ABJM orbifold models from solutions of the ABJM theory for a
generic case. The structure that we need resembles the analysis of four-
dimensional theories very closely. This has been discussed in [19], where it
is observed that the dimension of the moduli space for a single brane is one
complex dimension bigger than in the case of four-dimensional theories, and
that the extra dimension is fibered over a base which is the moduli space
of the associated four-dimensional quantum field theory. Thus, we need to
explore how this structure can be analyzed in detail and how it plays a role
in our understanding of the system.

Let us begin with the ABJM vacuum representations. It has been shown
in [6, 15, 19] that the U(N) × U(N) ABJM model vacuum solutions have a
decomposition into N copies of the U(1) × U(1) model: this is a direct sum
of two-dimensional representations of the algebra A. For the U(1) × U(1)
model, we can choose A1,2, B1,2 to be parametrized by arbitrary complex
numbers.

Thus the general solution will be of the form of block-diagonal matrices
as follows:

A1,2 ∼ diag(a1,2
i ) ⊗

(
0 1
0 0

)

, B1,2 ∼ diag(b1,2
i ) ⊗

(
0 0
1 0

)

. (5.29)



1750 DAVID BERENSTEIN AND MAURICIO ROMO

There is a (U(1) × U(1))N block of continuous gauge transformations that
preserve this block decomposition acts as follows:

a1,2
i → exp(iφi)a

1,2
i , (5.30)

b1,2
i → exp(−iφi)b

1,2
i , (5.31)

where φi = χ1
i − χ2

i is a sum of two phases, one in each one of the two
U(1) gauge groups associated to an eigenvalue. This is the ‘unbroken’ gauge
group associated to each of the image branes. This is not the same as
the unbroken gauge group of the configuration, although it seems similar.
This is the gauge freedom of defining the basis as ‘eigenvalues’ of the A,B
matrices. This gets frozen when we act with the group Γ and require that Γ
commute with the A in particular ways, so that the ai’s are related to each
other. Some of these phases can survive as the unbroken gauge group of the
orbifold theory.

We have to be careful with these gauge transformations. As we have
noticed before, the group of automorphisms of the orbifold might close onto
a gauge transformation. This will be very important for us later on when
we discuss the structure of singularities. Because of this, we need objects
that have less gauge freedom to tie the analysis down.

Consider for example the composite mesons AsBt +BtAs where s, t ∈
{1, 2}. The sum is there because we are using matrix multiplication and we
think of these as matrices (operators) on a Hilbert space H, so the order
of multiplication matters. The coordinates of these on a U(1) × U(1) brane
are

Ws,t = AsBt +BtAs =
(
asbt 0
0 asbt

)

, (5.32)

where we are keeping the convention of having one vector space of dimension
one for each node in the quiver (this is what the U(1) × U(1) indicates us
to do). The operators Ws,t generate the center of the conifold algebra Ac

ZAc = 〈Ws,t〉 (5.33)

hence these matrices are diagonal and proportional to the identity in irre-
ducible representations. The proportionality constant is complex.

Moreover, these are gauge invariant under the U(1) × U(1) group. Vari-
ables like this generates the center of the ABJM C

∗ algebra. Other examples
are

A1(A1)† + (A1)†A1 	
(|a1|2 0

0 |a1|2
)

, (5.34)

which is clearly Hermitian.
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The gauge transformation (5.30) does not affect these diagonal variables.
Thus on these objects the action of the Zn algebra can be defined unam-
biguously (not up to a gauge transformation).

For example, as mentioned earlier, the variables Ws,t are holomorphic,
and the relations between them are those of the conifold

W1,1W2,2 = W1,2W2,1. (5.35)

Indeed, if we were solving the problem in four dimensions, this would com-
pletely characterize the representation theory content of points in the moduli
space. This is what one does for the conifold field theory of Klebanov and
Witten [34] and was analyzed using these techniques in [39]. The idea of
using the center of the algebra to describe the moduli spaces of branes was
developed in [28], but it was used in the holomorphic context only. In this
case, we need to also consider the real structure that is imposed on us from
some of the equations describing the moduli space of vacua.

Also, the traces of W[r] are gauge invariant polynomials in the field theory.
These would describe the (mesonic) chiral ring operators of the conifold the-
ory in four dimensions and their vevs parametrize the moduli space of vacua.
These same polynomials form part of the chiral ring of the three-dimensional
field theory as well. However, there are other non-perturbative contributions
that complete the chiral ring and are magnetic monopole operators. With-
out them one cannot understand the full moduli space. One would get the
same results as the four-dimensional theory. Our purpose is to address these
non-perturbative operators systematically later on.

Given these holomorphic W variables, it is natural to consider how the
Zn orbifold acts on them. We clearly see that

W1,1 → η W1,1, (5.36)

W1,2 → W1,2, (5.37)

W2,1 → W2,1, (5.38)

W2,2 → η−1W2,2. (5.39)

These types of orbifolds of the conifold in four dimensions have been ana-
lyzed in the work [45]. Here we give a more complete algebraic characteriza-
tion of various features of the Calabi–Yau geometry, from the point of view
of algebra representations.

The center of the orbifold algebra A � Zn is generated by the elements of
ZA which are invariant under the action of Zn. This happens often. Given
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that the rephasings by η are to become gauged, the new set of invariants is
given by W1,2,W2,1 and

U = (W1,1)n, (5.40)

V = (W2,2)n, (5.41)

Z = W1,1W2,2 = W1,2W2,1. (5.42)

Notice that the variable Z becomes redundant because of the original conifold
equations. The new relations between the variables is

UV = (W1,2W2,1)n. (5.43)

However, we can understand how these variables describe the moduli space
a lot better if we think of them in terms of the representation theory of the
orbifold algebra.

What we need to do now is understand how the representations of the
moduli space algebra can be characterized by these numbers. In particular,
we can always choose a gauge where the W are diagonal. Now we want to
analyze how to put various representations together into representations of
the crossed product algebra.

Making W diagonal reflects a choice of basis on our representation space
H. In this basis, if the W are generic, they are invertible and any element
of the group action changes at least one of the W variables. That is, it is
associated to an orbit where the subgroup that leaves the point fixed is the
trivial one. If our basis is labeled by the eigenvalues of W, we have that

Wi,j |w〉 = wi,j |w〉, (5.44)

where the wi,j are now the eigenvalues. Given one such |w〉, we can act with
the group element g to find that

Wi.j(eg|w〉) = eg(Wi,j)g|w〉 = eg(wij)g|w〉 = (wij)g(eg|w〉), (5.45)

where Wg denotes the W that is obtained by the action of the group element
g as described by equation (5.39). Notice that in the generic case we are
describing, all of these kets are linearly independent, because their eigen-
values with respect to the commuting W are different for at least one such
variable.

Starting from a single ket |w〉, we find that the action of the group gen-
erates images of |w〉 characterized exactly by the label of group elements g.
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Moreover, we find that the action of the group on this basis is by permu-
tations that exactly follow the group multiplication. That is, the typical
irreducible (generated by |w〉) can be labeled by the group elements g ∈ Γ,
and the action of Γ on these states is the same action of Γ on Γ itself: by
permutations. This representation of the discrete group algebra is the group
algebra CΓ itself as a left module over CΓ. This is called the regular repre-
sentation of the group. If we decompose it into irreducibles, we find always
that

CΓ 	
∑

i∈irreps(Γ)

dim(Ri)Ri, (5.46)

where CΓ contains each irreducible representation Ri of Γ dim(Ri) times.
This can be found in standard texts in representation theory of finite groups,
(see [46], p. 17 for example).

In the ABJM model, for each |w〉 with fixed eigenvalues under the W, we
have a two-dimensional space, characterized by |w,±〉, where π+|w,+〉 =
|w,+〉, and π+|w,−〉 = 0. These are the two eigenspaces for the nodes of
the ABJM quiver. The argument we did above works for each of these two
eigenspaces. Also notice that it was not particularly important which group
Γ we used. When we look at this information and compare to the quiver
diagrams presented in Section ??, we see that a bulk representation (generic)
has ranks dim(Ri) on each of the ± nodes. Remember that these also have
levels proportional to dim(Ri).

Each of these eigenspaces of the W would be considered as a brane in the
ABJM or KW theory, where the brane positions are inferred from the wi,j

eigenvalues. What we see is that we have produced brane positions and their
images in the conifold geometry. This way of proceeding makes it clear that
we can analyze the theory with algebraic methods in a way that parallels
very closely our geometric thinking on orbifold spaces.

So far, we have only solved the gauge invariant holomorphic data for a
single brane. This would be enough to characterize the moduli space in
four-dimensional gauge theories. However, the three-dimensional case is
more involved, as some of the equations require real variables and the full
C
∗ algebra structure.

Notice now that if we consider the U,V variables, they have all the same
eigenvalues for all the |w,±〉. Thus, on each of these solutions, these vari-
ables belong to the center of the algebra. After all, they are proportional
to the identity in any irreducible representation. We have not show that
these are irreducibles of the full C

∗ algebra, but they are irreducibles of the
solutions of the F -term equations.
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Let us show that given this Hilbert space associated to the regular rep-
resentation, we can completely solve for the set of representations. This is,
given the W,U,V as scalar values, satisfying the relations we have described,
we want to solve for A,B variables.

By direct evaluation, we can find that W1,2 = a1
1b

2
1 = a1

2b
2
2 . . . . We can

choose the orbifold algebra to act also by leaving A1, B2 invariant (this
corresponds to choosing phases so that φ cancels the phase of η1/2). Denote
the basis of the regular representation by |wηj±〉, where wηj is the eigenvalue
of W1.1. Then in this basis

A1|wηj+〉 = a1
j |wηj−〉 (5.47)

since we choose Γ to act trivially on A1

(A1)g|wηj+〉 = a1
j |wηj−〉 = a1

j−1|wηj−〉. (5.48)

Thus, the a1
i must be equal to each other, as well as the b2i . This reflects

the fact that we can do this operation also by a gauge transformation.

Given this information, we learn that W1,1 = diag(a1b1i ), and that the
action of the group on the W1,1 forces the b1j = b10η

−j , so that they are all
the same up to a phase. Remember that once we make a gauge choice for
A, there is no more freedom on the B. So, in matrix notation, we have that
A is block diagonal

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(
0 a1

0 0

)

0 . . .

0
(

0 a1

0 0

)
...

...
. . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= a11 ⊗
(

0 1
0 0

)

(5.49)

and

B2 = b21 ⊗
(

0 0
1 0

)

. (5.50)

We also get that

A2 = a2 diag(ηj) ⊗
(

0 1
0 0

)

B1 = b1 diag(η−j) ⊗
(

0 0
1 0

)

. (5.51)

These are tensor products of the ‘Clock’ matrix, times a matrix in the |±〉
basis.



ASPECTS OF ABJM ORBIFOLDS 1755

Similarly, the group generator acts as

eg =

⎛

⎜
⎜
⎜
⎝

0 0 . . . 1
1 0 . . . 0

0 1
. . .

...
...

. . . . . .

⎞

⎟
⎟
⎟
⎠

⊗
(

1 0
0 1

)

(5.52)

so it is a tensor product of a ‘Shift’ matrix and the identity.

If we now choose a different basis, we can diagonalize eg into a clock
matrix, and then A2, B1 become shift matrices, giving us the usual quiver
representation, where the eigenstates of eg are the vector spaces associated
to the nodes of quiver diagram. This change of basis is a discrete Fourier
transform.6

It is easy to check that these matrices suffice to reconstruct the W1,2,W2,1,
and that U,V can be computed easily. They all satisfy the relations that
are needed, so this gives a representation of the holomorphic part of the
algebra.

In general supersymmetric theories we would expect the gauge group to
be complexified in the superfield formulation. However, this is usually fixed
by imposing theD-term constraints. In our setup, we find that the equations
that replace the D-terms are those that state that the auxiliary field of the
gauge potential is composite

Σ ∼ A†A+AA† −B†B −BB†. (5.53)

Explicitly, we have that Σ is the set of usual D-terms of the field theory in
four dimensions. Since Σ commutes with A,B and it is real, it is proportional
to the identity. Hence, all the D-terms for the (U(1) × U(1))N are the same:
the only freedom we have is in changing the scale of as, bs by a complexified
gauge transformation, but we can not do that independently at each node,
because that would modify the D-terms and we would not be able to satisfy
[Σ, B] = [Σ, A] = 0.

Let us see how this argument would work in more detail. If we consider
a four-dimensional theory, like the Klebanov–Witten conifold theory for the
U(1) × U(1) gauge group, the complexified gauge transformations can act

6Indeed if we consider the quiver algebra spanned by ξ, ω and solve for representations
of it, imposing the D-term constraints (Σ ∼ 1), we arrive at the basis where the eg are
diagonal.
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on the fields as follows A1,2 → exp(γ)A1,2 and B1,2 → exp(−γ)B1,2. The
D-term equations of motion, which are given by

|A|2 − |B|2 − α = 0, (5.54)

where α is a FI term that we fix to some value, need to vanish. Under these
gauge transformations we can set reference values where |A0|2 = |B0|2 =
Ω/2. We can then solve the D-term equations, by using a γ such that

Ω sinh(2γ) = α (5.55)

and since the function sinh covers the real line, there always exists a solution
to this equation. This gives us a parametrization of the moduli space.

Here, we find that in the case of three-dimensional theories we are study-
ing the FI terms must all be essentially equal (the Chern–Simons level of
the node appears as part of the calculation). For each set of values of the
α parameter, there is a unique set of real exponents that solves the cor-
responding set of equations. However, these are the complexified gauge
transformations that commute with the action of Γ, so they are diagonal in
the basis where the action of Γ has been diagonalized. This is different than
the basis we chose above where the W are all diagonal. We still will use the
same letters to label the representations, with the understanding that there
is a linear transformation between the a1,2, and a discrete Fourier transform
ã1,2, and b1,2 gets also replaced by b̃1,2. In the quiver, these are the variables
Z and W . The D-term equations are given by

σ2l =
1

4K

[
Z†

2l−1Z2l−1 −W2l−1W
†
2l−1 + Z†

2lZ2l −W2lW
†
2l

]
(5.56)

and similar for σ2l+1. Given that the σ must all be equal to each other in
an irreducible representation (this is an application of Schur’s lemma, since
Σ commutes with everything), there is only one degree of freedom to tune,
that is the value of σ itself, on any one node.

So if the |A|2 and |B|2 are independent of the nodes that we are consider-
ing, we obviously solve these equations, and this solution is unique for each
σ. There is still one real parameter γ that can be used on all A, B with the
same weights as the conifold which we are free to vary (the diagonal U(1)
gauge transformation). This parameter and its corresponding complexified
phase give us that the set of representations of the C

∗ algebra is one com-
plex dimension higher than the same set of solutions in the four-dimensional
theory, for all setups that correspond to a single brane. We explained this
in Section 2. This phase is a gauge redundancy at the level of these fields.



ASPECTS OF ABJM ORBIFOLDS 1757

However, we know that moduli spaces should be complex, so σ will end up
complexified in the true moduli space. This has its source in the dual scalar
of the photon, whose vev is not manifestly present in the Chern–Simons
Lagrangian formulation. However, just keeping this phase can account for
it. In a U(1) theory we fix the gauge of that dual scalar to a fixed value,
leaving only discrete gauge transformations that keep that dual scalar fixed.

Thus, the general brane is described by four complex numbers a1, a2, b1, b2.
There is one-phase redundancy of gauge transformations. However, when
we include the Chern–Simons degrees of freedom, this becomes a discrete
phase rather than a continuous one.

Notice also that if we fix a1, in the representation there is a discrete
identification

(a1, a2, b1, b2) ∼ (ηa1, a2, b1, η−1b2) (5.57)
after a simple change of basis. We had a representation classified by these up
to the (cyclic) discrete permutations of the eigen-blocks of the A,B matri-
ces that keep eg invariant. This discrete identification is the fact that the
discrete symmetry of the original quiver was gauged, so that we can not tell
apart a brane from its image.

So we have shown that the method of images lets us construct a solution of
the equations in the quotient theory by the method of images. That solution,
for a single brane in the bulk and its images, is an irreducible representation
of the algebra. The non-degeneracy of the eigenvalues of Wi,j guarantee this.

5.2.2 The singularities and fractional branes

The next step is to analyze what happens at the non-generic points of the
‘orbifold of the conifold’. These are the locus where the Wi,j degenerate.
This is a set of positions where the Wi,j are repeated between a brane and
its image. Such degeneracy implies that there is a 1 �= g ∈ Γ that does not
change the position of the brane in the conifold. Indeed, it is a subgroup
of Γ that has this property, and the fixed point is an orbifold singularity.
If at least one of the Wi,j is non-zero, then this is not at the tip of the
cone, and we would expect locally that we have a curve of such singularities,
because the geometry is a cone and the group identifications are compatible
with rescalings in the cone. For the Calabi–Yau three-fold, this corresponds
locally to a C

2/Γ̃ × C
∗ singularity. These are generally classified by ADE

groups. In this particular case, we get an An−1 singularity. The general
wisdom is that a brane hitting such a singularity will split according to
the irreducible representations of Γ̃ ⊂ Γ. This is easy to see. We started
with the regular representation of Γ. When we reach the singularity, the
degeneracy of the subspaces are classified by the regular representation of Γ̃.
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This is because these subspaces are classified by the eigenvalues of the W.
The regular representation of Γ̃ splits these eigenspaces into irreducible rep-
resentations of Γ̃. One can show that these do not mix when we take into
account the rest of the group elements not in Γ, because the group Γ × Γ̃
acts naturally on Γ by a left of action of Γ, and a right action of Γ̃. This
guarantees that the actions can be made compatible. For the abelian group
we are considering it is always obvious.

The location of the singularities of the Calabi–yau three-fold can be under-
stood by noticing that these are singularities of the equations defining the
Calabi–Yau geometry. These are given by the locus

U = V = 0 W1,2W2,1 = 0. (5.58)

There are two such lines of singularities in our case. Those where W1,2 = 0,
or those where W2,1 = 0. Let us consider the second such locus first W2,1 =
0 = U = 0 = V = 0. Having these set equal to zero gives us the following
locations in terms of the a1, a2, b1, b2 variables:

a1b1 = a2b2 = a2b1 = 0, (5.59)

a1b2 �= 0. (5.60)

This makes us set a2 = 0 = b1. From the action given in equations (5.9),
these are exactly the locus where the action on the fields has a fixed point.

For the other singularity, we would have a1 = 0, b2 = 0 and we would at
first think that equation (5.9) would imply that it is not a fixed point. How-
ever, another gauge transformation is possible that will let us keep A2, B1

fixed, while transforming A1, B2 with phases. With respect to this action
on the fields, the fields are a fixed point of the orbifold group. This shows
why it is so important to keep track of the gauge redundancy when deciding
if we have a fixed point of the orbifold action or not.

These solutions with singularities give us a copy of C
2 for each fractional

brane at a singularity. If we only keep the fields that are non-zero in the
quiver, we see that we get a picture as shown in figure 4

Figure 4: Quiver with groups of nodes shaded according to vevs.
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There are n such nodes. The fact that some nodes are not connected,
means that the representation is reducible: we cannot go from the vector
spaces V joining them by a non-zero map. The set of n irreducibles is exactly
what we expect from brane fractionation at An−1 singularities [29]: there
should be n irreducibles, one for each blow-up cycle and one extra for the
extended root of the affine Dynkin diagram of the An−1 system.

The arrows that are missing are the fields that can become massless when
two of these fractional branes are in the same position in the CY-geometry.
If we contract the shaded areas to points, these missing arrows would give
us the quiver of the An−1 singularity.

Each of those blocks would correspond to a branch of moduli space for
a U(1) × U(1) subquiver7. Moreover, we can see easily that the vevs of the
A,B fields can be complete uncorrelated between the different fractional
branes. Thus, there is no unique a1, b2 characterizing them, instead there is
one such value for each subquiver.

For the other set of singularities, the splitting is different, along the other
diagonal cells in the quiver graph.

There is an extra potential set of singular solutions where U = V = W1,2 =
W2,1 = 0, which are characterized by either a1, a2 = 0 or b1, b2 = 0. These
solutions in the four-dimensional Klebanov–Witten theory would correspond
to vacua at the tip of the cone, unless the FI-terms are set to be different
from zero. In such a case, these would give rise to points in the exceptional
divisor of the blow-up of the conifold. The coordinates (a1, a2) (or (b1, b2)
for a different choice of the FI-term) would be the homogeneous coordinates
on this CP

1. Generically, these are not fixed points of the orbifold group
if a1 and a2 are different from zero. In the C

∗ algebra setup, we see that
the non-holomorphic coordinates a1a2∗ would be invariant under the gauge
transformations, but would transform, hence these are not fixed points in
the blow-up. If one of them is zero, it is in the locus that the subquivers
described above cover. These singularities do not intersect in the blow-up,
so there is no additional fractionation.

This shows us a nice correspondence of the singularity structure of the
Calabi–Yau geometry associated to the four-dimensional theory relative to
the singularities of the moduli space of the three-dimensional theory. The
two lines of An−1 singularities in the Calabi-yau geometry become two copies
of C

2, with the same An−1 singularity around them. In this case, these are all

7An equivalent way to see this is by looking at the simple modules of A � Zn at the
singular points of the moduli space. In these points we get a collection of irreducibles that
are exactly the fractional branes, lima2,b1→0 R(a1, a2, b1, b2) =

⊕n
l=1 Rl(a

1, b2).
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the singularities of the geometry that are not the tip of the four-dimensional
complex geometry.

5.3 The complete moduli space

We have described how to build some solutions of the vacuum constraints
of the theory. For theories that have couplings of single trace type, there
is a general recipe to build the moduli space from the components we have
studied so far [28]. The idea is that solutions of the vacuum equations
for block diagonal matrices can be obtained if every block satisfies these
equations on its own.

We have classified the solutions in terms of representations of the quiver
algebra with vacuum relations. Let us call them Rα. The α are the parame-
ters that describe a particular irreducible representation of the quiver alge-
bra (for example, R(a1, a2, b1, b2), or Rl(â1, b̂2) for the fractional branes),
and they also contain discrete labels for the fractional branes: the sublock
of nodes of the quiver that the representation covers. We have also kept one
extra degree of freedom for each brane that arises from dual photons on the
theory. This vev does not have any implications at the level of perturbation
theory: for example, masses of off-diagonal fields are independent of these
phases, as can be seen very explicitly in the ABJM model [6]. Here, the same
equations work by the method of images, as expected from general features
of the construction [29]. Given these blocks, one can build new solutions of
the equations of the vacuum by taking direct sums:

R = ⊕αRα. (5.61)

This general solution by a representation of the algebra solves all the equa-
tions of motion of the vacuum. The representation space has constraints
from the ranks of the gauge groups to be fixed, but are otherwise uncon-
strained.

For each brane there is a massless photon, and the dual scalar action
can be used in the low-energy effective action. This is allowed since in the
generic representation of this set there are no massless charged particles.
Thus, we need to remember that for each brane there is a circle direction
that is invisible in perturbation theory.

The labels α can vary for each brane, so the moduli space generically
described a collection of branes at various loci. The sum is unordered,
because how to organize blocks into matrices is a gauge choice. Thus, the
general moduli space is a generalization of a symmetric product space, and
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give an appropriate notion of a symmetric product for a non-commutative
geometry [28]. It would be a standard symmetric product if all branes could
be exchanged with each other by motions in parameter space. However,
the process of brane fractionation involves processes where one brane can
split into many. These give rise to different branches in moduli space. The
simplest example of a variety with two branches meeting at the origin is the
subset of C

2 characterized by the equation xy = 0. There are two branches,
x = 0 and y = 0, each of them a complex line. These two meet at the origin.
A general system of branes where branes can fractionate and give rise to
new branches of moduli space has a similar structure. This implies that in
the chiral ring there will relations like the one above, xy = 0, where x and
y can be elements of the chiral ring, but not their product.

These relations become rather complicated for the chiral ring of theories
with many branes. But if we know what the geometry of the moduli space
looks like, then the relations are implicit in the geometry. We will not
address this issue further in this paper.

Also, for each brane there are discrete phases that need to be taken into
account. These give identifications between the Rα parameters that we
need to analyze further. These can be conveniently described in terms of
the chiral ring elements. We will describe these in what follows.

5.4 The chiral ring

As described previously, the chiral ring can be obtained from a semiclassical
quantization of solutions of the BPS equations on the sphere (we quantize the
space of those solutions by wiring a wave function on them and counting the
allowed wave-functions). We will describe the chiral ring here in this manner,
rather than as local words on the elementary fields. The BPS equations
force the fields to be spherically symmetric and to evolve according to their
R-charge.

Moreover, we saw that the classical solutions require that the scalar field
expectation values are in the moduli space of the theory in flat space. The
semiclassical quantization will place constraints that will determine the full
topology of the moduli space of vacua in the end. What we have calcu-
lated so far is a cover of the moduli space of vacua, as there are possible
identifications between configurations that we have not described yet. We
have already constructed the full basic structure of moduli space. Since
the moduli space of vacua has different branches, we need to analyze these
equations in different branches to obtain results.

The next step is to include the equations of motion of the Chern–Simons
gauge fields and to perform the correct holomorphic quantization of moduli
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space. In particular, we have found the wave functions on moduli space are
naturally holomorphic. So the chiral ring is identified exactly with holomor-
phic wave functions on moduli space.

There is one last thing to consider. That is that the moduli space is a gen-
eralization of a symmetric product, which is a collection of representations
with various charges assigned to them: fractional branes have additional dis-
crete charges. These are counted by the rank of the different gauge groups.

This means that wave functions need to be symmetrized between com-
ponents. This symmetrization will be assumed throughout. It gives rise to
a natural structure in terms of products of traces (summing over branes).
This is automatically invariant when we permute branes. Thus, we can ana-
lyze the chiral ring one brane at time and this description is sufficient for
describing the whole chiral ring.

We will do this in what follows. First we need to verify what the classical
equations of motion say about the chiral ring classical BPS states.

When we consider the theory with the fields in S2 × R we get a coupling
of the background curvature to the scalars. Since on BPS configuration the
potential vanishes, the effective action on these reduced configurations can
be without potential terms. Moreover, if we apply this to our case, ignoring
fermionic and potential terms the effective action on BPS states takes the
form

S = − κ

4π

∫

dΩ dτ
2n∑

l=1

(−1)lεμνλTr
(
A(l)

μ ∂νA
(l)
λ +

2i
3
A(l)

μ A(l)
ν A

(l)
λ

)

−
∫

dΩ dτ
2n∑

l=1

Tr
(

(DμZl)†DμZl + (DμWl)†DμWl +
1
4
W †

l Wl +
1
4
Z†

l Zl

)

,

(5.62)

where

DμZ2l = ∇μZ2l + iA(2l+1)
μ Z2l − iZ2lA

(2l)
μ ,

DμZ2l−1 = ∇μZ2l−1 + iA(2l−11)
μ Z2l−1 − iZ2l−1A

(2l)
μ ,

DμW2l = ∇μW2l + iA(2l)
μ W2l − iW2lA

(2l+1)
μ ,

DμW2l−1 = ∇μW2l−1 + iA(2l)
μ W2l−1 − iW2l−1A

(2l−1)
μ , (5.63)

for spherically symmetric configurations

DiF
(l)
μν = 0, ∇iZl = ∇iWl = 0, ∀l i = ϕ, θ (5.64)
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then F
(l)
0i = 0 and by gauge fixing A(l)

0 = 0, and F
(l)
ϕθ = Φ̃(l), where Φ̃(l) is a

diagonal constant matrix. The magnetic fluxes Φ(l) =
∫
S2

Φ̃(l)

sin(θ) are classi-
cally quantized.

For a single brane in the bulk, the BPS equations mandate that DμZl =
DμWl = 0 for all l, and so Φ̃(l) = Φ̃ for all l. If the fluxes would not be the
same the matter would be charged under a magnetic monopole background
and it would not be spherically symmetric (monopole spherical harmonics
carry spin). This is the same reasoning found in [6, 15].

The equation of motion forA(l)
μ vanishes identically for μ = θ, ϕ, the e.o.m.

for μ = 0 gives

− κ

π sin(θ)
F

(2l)
θϕ = −iŻ†

2lZ2l + iW2lẆ
†
2l − iŻ†

2l−1Z2l−1 + iW2l−1Ẇ
†
2l−1 + h.c.,

κ

π sin(θ)
F

(2l−1)
θϕ = iŻ†

2l−2Z2l−2 − iW2l−2Ẇ
†
2l−2 + iŻ†

2l−1Z2l−1

− iW2l−1Ẇ
†
2l−1 + h.c. (5.65)

In this prescription, the Z and W fields satisfy the equation of an harmonic
oscillator Ż = i12Z, Ẇ = i12W as they are of dimension 1

2 . Then

− κ

π sin(θ)
Φ̃ = −|Z2l|2 + |W2l|2 − |Z2l−1|2 + |W2l−1|2,

κ

π sin(θ)
Φ̃ = |Z2l−2|2 − |W2l−2|2 + |Z2l−1|2 − |W2l−1|2, (5.66)

where κ is the Chern–Simons level.

When we are away from the singularities, we can substitute the solutions
of these equations for a brane in the bulk. These are characterized by
a1, a2, b1, b2, so we find that

κ

π
Φ =

∫

S2

|b|2 − |a|2 (5.67)

and in the Hamiltonian all of a1,2, b1,2 have the same frequency, ω = 1
2 .

The effective Hamiltonian for these variables is of the form

Heff = (iΠaa+ iΠbb), (5.68)

where Πa and Πb are the canonically conjugate momenta to the a, b variables.
This obviously reproduces the BPS equations of motion ȧ = ia/2, etc.
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We also have to take into account the constraint (5.67). Moreover, we
have the identifications on the parameters a that are characterized by the
discrete action (5.57), or some equivalent identification that depends on a
gauge choice for one variable.

When replacing all the Z,W by their expressions in terms of a, b, we find
that the R-charge is given by

QR = n
(
−i ˙̄aa− i ˙̄bb

)
(5.69)

and comparing with Heff , we find that Πa = −in ˙̄a. This can be derived also
by direct substitution in the original Lagrangian. The factor of n is here
because we have to sum over all Z,W identical factors.

The a commute with each other and with b on the set of BPS solutions,
while their complex conjugate variables have non-trivial commutation rela-
tions with a, b on the reduced phase space of solutions (see [15] for more
details). A holomorphic quantization will give us polynomials in the a vari-
ables, while the canonical conjugate momenta get represented by derivatives
Πa ∼ i∂a.

As can be seen, the effective Hamiltonian is the same as that for a Har-
monic oscillator in four dimensions (four complex dimensions since we are on
phase space), and the natural variables are holomorphic. Thus, wave func-
tions are polynomials in the a, b, and the energy of a monomial is the degree
of the monomial divided by two. A typical wave function will be as follows:

ψ ∼ (a1)k1(a2)k2(b1)m1(b2)m2 . (5.70)

Since the system has an extra U(1)3 symmetry, we can choose wave func-
tions that are eigenfunctions of these U(1) charges (they count the number
of a1,2, b1,2) and these are just monomials. However, not all of these are
allowed. There are constraints that need to be satisfied.

First, for the standard integral quantization of the magnetic flux requires
that

∫
S2

Φ̃
sin(θ) = 2πm, from which

κm =
1
n

(k1 + k2 −m1 −m2) (5.71)

so that k1 + k2 −m1 −m2 is a multiple of κn. This combines the classical
integrality of the magnetic flux with the integral quantization of harmonic
oscillator wave functions. As shown in [15], one can also have fractional flux
on all fluxes simultaneously. This enlarges slightly the space of possibilities.
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The detailed study of the fractional flux configurations is beyond the scope
of the present paper, suffice to say, these are described by D4-branes in the
dual theory and gives rise to a discrete fibration over a symmetric product
of the orbifolded space.

Similarly, the other identification from redundancy of the representation
content should impose that the wave function is single valued under those
replacements (the same prescription was used in [42, 43]). This forces us to
have m2 − k1 being a multiple of n. Thus, the allowed polynomials are those
that correspond to the invariant ring of C

4 under the following two actions:

(a1, a2, b1, b2) → (βa1, βa2, β−1b1, β−1b2), (5.72)

(a1, a2, b1, b2) → (ηa1, a2, b1, η−1b2), (5.73)

where βnκ = ηn = 1 are primitive roots of unity.

Let is, we describe this way a single brane on the quotient space C
4/Zκn ×

Zn. When we have many representations, the flux quantization is done on
each of them independently. This result was obtained first in [18,27].

For the case m = 1, the minimal energy solutions have k1 + k2 = κn and
m1 = m2 = 0. The energy of this state is κn. Also, k1 − k2 should be a
multiple of n. The simplest solution has k1 = κn, k2 = 0.

This covers the chiral ring elements that on the cylinder probe the ‘brane
in the bulk’ solutions. There are also the chiral ring elements that probe
the fractional brane branches. These are classical solutions in a subquiver
with group U(1) × U(1), and can also be analyzed easily.

In this subquiver, we have variables ã1
i , b̃

2
i for only one i �= 0. Again,

the effective Hamiltonian will be that for a harmonic oscillator in two-
dimensional phase space (we only have two coordinates).

The flux quantization condition becomes

κm = n1 −m2, (5.74)

which shows that the allowed monomials are given by (ã1
i )

n1(b̃2i )
n2 , and that

n1 −m2 are a multiple of κ, the level. This is the same reasoning for all
the possible fractional brane representations parametrized by i. There is a
similar set of states for the other singularities. Again, the simplest operator
with non-zero flux appears for m = 1, and n1 = κ, while m2 = 0.

This means that the fractional brane branch corresponds to the invariant
ring of a C

2/Zκ quotient, without a factor of κn appearing in it. Notice that



1766 DAVID BERENSTEIN AND MAURICIO ROMO

the only states that can sense the multiples of κ have flux and are therefore
associated to monopole operators.

When this fractional branch is considered, there is monodromy along the
circle fiber with respect to the branes in the bulk, since in the bulk the
circle fiber is divided by κn, rather than just κ. This monodromy is similar
to fractional branes in orbifolds with discrete torsion [47] where a similar
monodromy of fractional branes is encountered, except that in that case the
monodromy is already visible with perturbative gauge invariant operators
and does not require monopole operators.

5.5 Matching monopole states to the AdS dual states

We have found quite a variety of solutions of the equations of motion of the
fields on a sphere that we can identify with states on the cylinder under quan-
tization. We want to compare these states to those that are expected from
the AdS dual theory on AdS4 × S7/Zκn × Zn, where the Zκn acts along the
Hopf fibration, and the corresponding type IIA theory on AdS4 × CP

3/Zn

with fluxes. Here, the CP
3 is the base of the Hopf fibration of S7. The fiber

of the Hopf-fibration is the circle of gauge transformations that the dual
photon makes physical. Hence, from the point of view of the natural fields
of the quiver, it is very closely related to gauge transformations (see also [6]).

In terms of the a1, a2, b1, b2 coordinates that we have been describing so
far, the homogeneous coordinate ring of CP

3 are formed by a1, a2, (b1)∗, (b2)∗,
similar to how the CP

3 coordinates of the ABJM model work. Notice that
in the ABJM model the matter fields associated to A,B∗ have the same
gauge theory representation content. Hence they can be grouped together,
and their ratios can be considered to be gauge independent.

In the type IIA picture, the operators that carry momentum along the
Hopf fiber have D0-brane charge. The coordinates a1,2, (b1,2)∗ carry positive
charge, since they have period one on the Hopf-fiber of CP

3.

Also, for BPS states that are BPS with respect to our choice of N = 2
supercharge, (b1,2)∗ have the opposite time dependence than a1,2. Thus,
when we time evolve the system, the homogeneous coordinates on CP

3

change unless either a = 0 or b = 0.

We find that therefore the D0 brane charge should basically count the
number of a minus the number of b letters in a monomial. Such monomials
require magnetic flux. We therefore have to identify the uniform magnetic
fluxes on the cylinder theory to give rise to the D0 brane charge.
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Given the topological classification of line bundles on a sphere, for each
node in the quiver diagram there is a determinant line bundle associated to
it. The first Chern class of that line bundle is the sum of the fluxes on each
of the eigenvalues. This is not allowed to change, as it is an invariant under
homotopies. Therefore we find that the total magnetic flux on each node is
a topological invariant. These should be associated to conserved charges in
the theory. Because all of these fluxes add to the notion of D0 brane charge,
we should identify magnetic fluxes with brane charges.

Now, let us look at the tension of a D0 brane on AdS4 × S7/Zκn × Zn. A
D0 brane can move along the Hopf fiber without any extra motion on the
base, so from the point of view of CP

3, it will stay at a fixed position. Since
the Hopf fiber is reduced in size by a factor of 1/κn relative to a natural S7,
the typical momentum along the fiber is κn. This translates into an energy
equal to κn/2 in AdS units. This is exactly the energy of the simplest flux
configuration we could find associated to a brane in the bulk.

However, not all positions of a D0 brane in the bulk correspond to a
holomorphic operator in the field theory. Only those where b = 0 correspond
to BPS states that saturate the correct BPS inequality. From the point of
view of the type IIA theory, the D0 branes see a magnetic field on the
CP

3 base. There is a lowest Landau level associated to these particles in
a magnetic field. Since in this particular orbifold we preserve an SO(4)
R-charge, we find that the states in the lowest Landau level that we are
describing have maximal angular momentum. This is why they reside in a
submanifold of the set of possible D0-brane configurations.

If we excite some of the holomorphic bmonomials, we end up in a situation
where the D0 brane moves. Again, this puts us in excited Landau levels,
in the maximal angular momentum band. Again, these states are near the
locus of the D0-branes that not move, until we go to very high excitations.

Notice that we can bring a BPS D0-brane near the orbifold singularities
on CP

3. At the singularity we expect the D0 branes to fractionate into
n fractional branes. Indeed, this is what we see. So we find that the total
fluxes on the nodes of the quiver must correspond to the number of fractional
branes of each type.

Each of these should have a tension that is 1/n times the tension of
D0 brane in the bulk. This is exactly what we find. The simplest frac-
tional brane solutions carry R-charge equal to κ, rather than κn. Since the
R-charge is equal to the energy (tension) of the configuration, we find the
expected result. Since we have an SO(4) R-charge, these charges necessarily
are quantized in half-integer units. This is why the charge of a D0-brane
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in the bulk is n times larger than a naive guess would have suggested: the
fractional branes that combine to make it have charge that is a multiple of
κ. This explains why the orbifold where the branes move is in the end for
branes on C

4/Zκn × Zn.

There are also solutions without magnetic flux that correspond to the
‘fractional’ brane classical solutions. These just describe the expected mass-
less modes arising from twisted sector strings at the singularity [47, 48].
Since these do not carry flux, they can be expressed as words in elementary
fields: they are perturbative solutions of the theory with small energy.

We should also notice that the field theory permits us to have flux greater
than one on a single eigenvalue for fractional brane solutions. These indicate
a bound state of fractional branes at the singularity. Such states are usually
forbidden for the theory on a flat space orbifold [49] (more information
on the index computations that are necessary for these statements can be
found in [50]). Here, we see that these solutions can not be deformed by
a small parameter into two fractional branes moving separately from each
other (it requires a jump in flux from one eigenvalue to another). This
suggest that these bound states are separated from the set of solutions with
two fractional branes moving independently from each other by a potential
barrier. Happily, fuzzy spheres in string theory can provide such a barrier
in the presence of fluxes, as discovered by Myers [51]. Indeed, this is how
bound states of D0 branes are expected to be matched between the field
theory solutions and the gravity dual [13]. Even though the configurations
are abelian in field theory, they are non-abelian in the string dual.

6 Aspects of non-abelian orbifolds

In this section, we shall only sketch the results for other abelian and non-
abelian orbifolds that can be obtained by following a similar path to the
example we have analyzed in detail.

Again, we can begin by analyzing the moduli space of the orbifolded
theory by a group Γ. This is most easily done by studying the method
of images, and basically, we get that the moduli space of branes in the
bulk should correspond to N particles moving on C

4/Zκr × Γ. One of the
purposes of this section is to determine what the correct value of r should
be. For the Zn case studied above, we saw that r = n = |Zn|. We will show
that this generalizes to the order of the group.

To understand this, let us examine again the case Γ = D̂k acting on
one SU(2) of the SO(4) 	 SU(2) × SU(2)-R charge that commutes with the
choice of N = 2 superspace.
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Figure 5: Splitting of the quiver diagram when the missing arrows are turned
of to zero vev: the gray areas indicate contraction of nodes where the arrows
that are turned on are connected. The curved arrows should be contracted
similarly. The missing arrows would reconstruct a standard quotient for an
ADE quiver.

Such a Γ ⊂ SU(2) would act only on the B fields, lets say, but not on
the A fields. Again, the best way to describe the set of configurations is
with the crossed product algebra. This is not identical to the quiver alge-
bra any longer. Instead, they are Morita-equivalent. This means that the
representation theory is the same, and it is parametrized by the same data.
The crossed product algebra is the one that captures the method of images
precisely.

This means that a brane in the bulk is again parametrized by four numbers
a1,2, b1,2, with identifications on the a1,2 coordinates by Γ. The simplest
singularities occur when a = 0. These are fixed points under Γ. Branes
fractionate at those locus. In the quiver diagram of figure 2 we turn off the
crossed arrows, and we get a splitting of the diagram as follows in the figure 5.

We should notice that again, the quiver splits into subquivers. Fractional
branes and twisted sector states should be associated to these splittings.
One of the interesting things that follows from the Douglas and Moore con-
struction is that fractional branes do not all have the same tension by the
method of images. The tension of a brane associated to representation Ri

is proportional to Ri [29] ( see also [52]). How does this get realized in the
present context?

Again, flux on the subquivers should be related to fractional brane charge.
Remember that for the vevs to be spherically symmetric, the flux should be



1770 DAVID BERENSTEIN AND MAURICIO ROMO

matched between nodes connected by arrows. This gives us freedom to have
different fluxes on different subquivers thereby recovering fractional brane
charges.

There is a new ingredient however. The level of the Chern–Simons fields
on the nodes is proportional to the dimension of the representation Ri, times
the basic level of the original ABJM model κ. This means that when we
match the minimal brane charge, associated to a node, the R charge carried
by the configuration is proportional to dim(Ri) (this is how the level of the
Chern–Simons affects the equations of motion of the gauge fields and related
it to the charge of the matter fields).

In equations

κdim(Ri)m = −m1 −m2 (6.1)

Notice that in this equation m1,m2 are positive integers (this follows
from chirality): there are no chiral ring operators with m = 0,m > 0. This
would seem to imply that we can not have the opposite magnetic flux (corre-
sponding to branes rather than anti-branes), because we only have positive
contributions from matter to the charge. What we find instead is that states
with opposite magnetic flux are necessarily anti-chiral (they require the b to
have the opposite time dependence).

Thus, the R-charge of these fractional branes is dim(Ri)κ/2 and the D0
brane charge is −dim(Ri)/|Γ|. By contrast, the R charge of a D0-brane
in the bulk is the sum of these R-charges with multiplicity and positive
magnetic flux, giving us a tension of a D0-brane equal to

TD0 =
∑ dim(Ri)2κ

2
=

|Γ|κ
2
. (6.2)

The equality of the sum of dimension squared of representations and the
order of the group is a straightforward fact of discrete groups. It follows
from the character of the identity of the regular representation. So from the
fractional branes we constructed, it is simplest to build an anti-D0 brane
with positive R-charge.

Given that the tension of this D0-brane dual object is exactly |Γ| times
larger than κ shows that the circle fiber of the Hopf fibration is divided by
a further factor of |Γ| than that one provided by the κ factor of the ABJM
theory. This means that these orbifold constructions should correspond to
membrane theories on

C
4/Zκ|Γ| × Γ. (6.3)
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This follows in the general case from solving the equations of motion
with uniform flux on all the nodes for the regular representation: the flux
quantization condition counts the number of a minus b fields at each node,
but their normalization at each node differs (the fields are multiplied by
Clebsch–Gordon coefficients after all). Also, the global normalization of the
a, b coordinates by the method of images is proportional to |Γ|, the number
of copies of a brane. These factors conspire to give us the above result in
the general case.

Notice that there are other singularities of the group action in the type
IIA picture (as would correspond to fixed points of subgroups of Γ on CP

3).
These occur when the pair (a1, a2) that can be used to describe a CP

2 is at
a fixed point of a subgroup of Γ (they get multiplied by a common phase).
At these singularities one can do a gauge transformation that keeps the pair
fixed. This is a fixed point if b = 0, as then the transformed configurations
is equivalent to itself by a gauge transformation. These can be a Z2n singu-
larity. It is easy to understand how the D̂k quivers arise from orbifolding an
A2n−1 quiver [35] (see also [53] for more related information about solving
the equations for the matrix model realization of ADE quivers and related
group theory constructions).

At these singularities, the A fields can have vevs, but not the B fields.
The quiver splits differently, depending which a is allowed to have a vev. A
new ingredient is that the field a can connect pairs of nodes with different
level. The effective U(1) × U(1) theory on a pair of nodes can not solve the
equations of motion of the gauge fields.

There are new collections of fluxes that seem to work. These are given
in the D̂k case by branes with a U(1) × U(1) × U(1) theory, as shown in
figure 6. The charge that the magnetic flux carries in the node with higher
Chern–Simons level is canceled by the charge carried by the excitations of
the fields represented by the arrows. The charge is split evenly between the
other two nodes. This is natural from the point of view of taking a fractional
brane from a Z2n singularity and projecting it onto a bound state of branes
in a Dn quiver that is obtained by folding the diagram (as in [35,53]).

We find this way that all the expected fractional branes at the singu-
larity then have the same R-charge. This is a straightforward computa-
tion. We find also that for all fractional branes a similar condition is satis-
fied to the Martelli–Sparks [19] condition to get a four-dimensional moduli
space.

∑

i∈f.b.

Miki = 0. (6.4)
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Figure 6: Connected nodes that can give rise to fractional branes at the Zn

fixed point singularities.

Here ki = ±κdim(Ri), and we sum over the indices that correspond to a
fractional brane. The Mi are the ranks of the corresponding gauge group.
This condition is a consistency condition for being able to saturate the total
charge carried by the fluxes with the matter fields.

We should also remember that in M -theory compactifications on a circle,
the fractional charge carried by a fractional brane can usually be modified
by changing the Wilson lines of the enhanced gauge symmetry group at
the ADE singularity [54, 55]. In matrix quantum mechanical models, this
is done by changing the effective gauge coupling constants [53]. Here we
find that the corresponding way of changing the tension of the fractional
branes is by changing the levels of the different Chern–Simons coefficients.
To insure that the fractional brane survives, we need to keep constraints
like those in (6.4) for the corresponding brane. Notice that now, since the
circle bundle of the Hopf fibration over the base is twisted, we find that we
are only allowed to have discrete values for these fractional brane tensions
(these are related to the quantization of the Chern–Simons terms). These
tensions need to be related to fluxes, rather than Wilson lines, because
the bundle over the base that the branes see is different. The fractional
branes need to have a twisted connection on the fiber to have different
quantization conditions on a bundle than the D0-brane charges would pro-
vide. This is how the field theory tells us that the Chern–Simons terms
are generated by fluxes [56]. Also, the consistency requirement that the
charges are cancelled can be reformulated in the geometry side by the usual
statement that the total flux on the worldvolume of the brane should can-
cel [57, 58].
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7 Conclusion

We have seen in this paper how the computation of the spectrum of magnetic
monopole operators is useful in finding the topology of the moduli space of
vacua of three-dimensional field theory. In particular, we have seen a very
direct connection between these objects and points in the moduli space of
vacua. This can be seen by solving classical equations of motion of a super-
conformal field theory on a cylinder, where we impose the equations that
define BPS states at the classical level. These involve a slight improvement of
the equations that describe the classical moduli space, because gauge theory
fluxes are quantized already at the classical level. It is indeed these quanti-
zation conditions that produce the different topologies when we change the
level of the field theory.

The natural setup for these investigations was described in terms of matrix
equations, with a natural action by complex conjugation. These systems
of equations find their natural home in the realm of representation theory
of associative algebras. In the particular case we study, the theory of C∗
algebras is appropriate. This is just the name for algebras that have a
natural conjugation that needs to be compatible with the representation.
For the case of group actions, we found that the crossed product setups
(essentially a very careful treatment of the method of images) where easier
to analyze than just looking at the quiver algebra directly.

Of particular interest, we found that the detailed description of these
configurations can be mapped directly to D-brane probes of the dual geom-
etry, including brane fractionation at the singularities. With these tools,
we were able to argue that the tension of fractional branes at nonabelian
orbifold singularities follows the same pattern than as expected from string
theory considerations. We saw that this seems to require a nontrivial flux
for the potentials that couple to fractional branes, and that these tensions
are directly correlated with the Chern–Simons levels of the different nodes
of the quiver diagram representing the theory.

It is natural to then ask what happens when we change the values of
these fluxes and in particular how the moduli space is modified, as well
as the patterns of brane fractionation. We have also not analyzed the
setup in cases with discrete torsion. This is currently being investigated
in [59].

There are many other theories that are interesting to analyze and that do
not arise from orbifolds of the basic ABJM theory. It would be interesting
to see how these techniques can be applied in those cases, especially in
situations where the fields of the theory do not have canonical dimensions.
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We believe that there is still a lot of information to be obtained from
studying BPS questions in three-dimensional theories. However, we should
not forget that the detailed study of the dynamics of these theories should
produce additional information about the dynamics of M -theory and the
locality of the theory in 11 dimensions. This is still mysterious from this
setups.
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