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Abstract

Using F-theory/heterotic duality, we describe a framework for analyz-
ing non-geometric T 2-fibered heterotic compactifications to six- and four
dimensions. Our results suggest that among T 2-fibered heterotic string
vacua, the non-geometric compactifications are just as typical as the geo-
metric ones. We also construct four-dimensional solutions that have novel
type-IIB and M-theory dual descriptions. These duals are non-geometric
with three- and four-form fluxes not of (2, 1) or (2, 2) Hodge type, respec-
tively, and yet preserve at least N = 1 supersymmetry.
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1 Introduction

1.1 The basics of non-geometries

The space of four-dimensional string compactifications is potentially vast.
The degeneracy of these vacua comes about by the many choices of compact-
ification metric and associated fluxes. When the size of the compactification
space is large compared with the string scale, we can use supergravity to
study the resulting low-energy four-dimensional physics. However, we expect
generic stabilized vacua to involve string scale physics for which supergravity
is inadequate.

One way in which a compactification space can become quantum is if
the patching conditions involve symmetries present in string theory but not
supergravity. The simplest example of this type is F-theory where the back-
grounds involve seven-brane sources of type-IIB string theory [1]. Without
knowing that S-duality is a good symmetry of type-IIB string theory, those



1518 JOCK MCORIST ET AL.

Figure 1: A schematic of the desired fibration data where u denotes coor-
dinates on the base B. The loci of τ and ρ degenerations can be viewed as
supporting 5-branes.

backgrounds would make no sense as solutions of type-IIB supergravity. A
second example of quantum patching conditions are compactifications that
involve T-duality, aspects of which we will explore here. This second case
is an example of quantum geometry which arises in classical string theory,
much like mirror symmetry.

Closed string theory on T 2 has two basic moduli: the complex structure
parameter τ of T 2 and the Kähler modulus ρ, which determines the volume
V of T 2 and the B-field,

ρ = ρ1 + iρ2 = B + iV. (1.1)

To build an elliptic compactification, one usually fibers τ over a base space
allowing τ to undergo monodromies valued in SL(2,Z). These are large
diffeomorphisms of the torus. In string theory, however, τ and ρ share the
same symmetry group, appearing on equal footing and we should be able
to describe quantum compactifications where both τ and ρ vary over a base
space as depicted in figure 1. Since the action of SL(2,Z) on ρ includes
V → 1/V , these compactifications are typically inherently quantum. This
is the class of compactifications we wish to explore.

In the purely geometric case where a large volume limit is possible, we
can describe a torus fibration over a base B, depicted in figure 1, using a
local semi-flat approximation for the metric

ds2 = gijduiduj +
ρ2

τ2
|dw1 + τ(u)dw2|2. (1.2)
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The base metric is gij and the torus has coordinates (w1, w2). The complex
structure τ(u) varies over B while ρ is constant. This metric possesses
U(1)×U(1) isometries acting on the torus fibers. For compact spaces, the
semi-flat metric (1.2) is typically used as an approximation to a smooth Ricci
flat metric with no isometries, with the approximation becoming exact as
V → 0. It is the smooth metric which is used to define the world-sheet sigma
model, which flows to a conformal field theory defining the perturbative
string background. However, with both τ and ρ varying, the existence of a
smooth metric is no longer possible. Consequently, the condition analogous
to the existence of a smooth metric should be the existence of a conformal
field theory specified by τ, ρ, and B.

If we reduce ten-dimensional string theory on T 2 to eight-dimensions then
we can view the resulting theory as possessing two families of (p, q) 5-branes
in analogy with the (p, q) 7-branes of type-IIB string theory. One family is
associated with τ degenerations while the other is associated with ρ degen-
erations. From this perspective, compactifications on B, like the one in
figure 1, include 5-branes at the degeneration loci of τ and ρ. The standard
NS5-brane corresponds to a purely perturbative ρmonodromy. If the moduli
of the compactification can be tuned to make all the ρ monodromies pertur-
bative then the model is likely to admit an asymmetric orbifold description.
This is analogous to the orientifold limit of F-theory proposed by Sen [2].

The most desirable approach for studying stringy compactifications invol-
ving ingredients like T-duality is a world-sheet analysis where α′ effects can
be determined directly. In type-II string theory this kind of analysis can be
further complicated by the presence of Ramond-Ramond (RR) fields, branes
and orientifolds. These ingredients, needed for N = 1 compactifications with
stabilized moduli [3], are difficult to analyze beyond the large volume super-
gravity limit, although it may be possible to understand their role in the
Berkovits formalism [4]; see, for example [5].

In contrast, the heterotic string is a more desirable framework to use
for two key reasons. Firstly, solutions are specified purely by the Neveu–
Schwarz (NS) field content, which consists of the metric, torsion flux and
bundle data. This avoids many of the complications of RR fluxes and, in
principle, it is possible to construct world-sheet descriptions of heterotic
vacua within the RNS formalism. Secondly, no orientifolds are needed. The
Bianchi identity for the H3-flux of the heterotic string,

dH3 =
α′

4
(Tr (R ∧R)− Tr (F ∧ F )) , (1.3)

automatically includes a higher derivative curvature term that makes
compact solutions possible. This removes the typically difficult task of
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consistently patching orientifold actions together globally with T-dualities.
This makes it much easier to construct non-geometric heterotic solutions
than type-II or M-theory solutions. We will see how this simplifies the
description of non-geometric vacua in the heterotic string versus type-IIB
orientifolds in Sections 4 and 5.

One of the aims of this paper is to make use of heterotic — F-theory
duality to provide a purely geometric description of a large class of non-
geometric heterotic compactifications. The duality is typically stated as
follows: F-theory compactified on a K3-fibered Calabi–Yau (n+ 1)-fold,
which is also elliptically fibered with section is equivalent to the heterotic
string compactified on an elliptically fibered Calabi–Yau n-fold. Usually,
one takes a particular limit in the moduli space of elliptic K3 surfaces to
ensure that the heterotic solution is at large volume and well-described by
supergravity.

From the point of view of F-theory, there is nothing special about this
point in the moduli space, and one can ask what happens more generally.
In this paper, refining some work of Clingher and Doran [6], we extend the
heterotic — F-theory duality beyond the traditional limit, to all points in
the moduli space where the heterotic gauge group remains unbroken.

As we will see, the generic heterotic solution with a dual F-theory descrip-
tion may not have a large volume limit but may instead involve patching by
the T-duality group of the heterotic string on T 2. This provides a very nice
way of determining fibration data for non-geometric compactifications. In
fact, the F-theory fibration captures not only τ and ρ but also the Wilson
line data for the heterotic gauge bundle on T 2.1 So this approach should
lead to the construction and description of quantum bundles. Exact confor-
mal field theory descriptions of local heterotic models with abelian bundles
have been found in [7,8]. It would be very interesting to see if that approach
can be extended to accommodate non-geometric bundles.

It is important to stress that for compactifications with N = 1 supersym-
metry, the F-theory/heterotic duality is not generally a quantum equivalence
of string vacua. Rather, it is a means by which we can obtain classical data
to describe a heterotic compactification. In the geometric case (without H3-
flux), this data is an elliptic Calabi–Yau space over B and a holomorphic
bundle which provides the defining data for a heterotic sigma model. In the
non-geometric case, this data is replaced by a fibration of τ and ρ over B
and a quantum bundle. However, aside from special BPS couplings, most

1In geometric models where V can be made arbitrarily large, this Wilson line data
describes a flat (E8 × E8) � Z2 connection on T 2.
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space-time quantities such as Kähler potentials are going to be different in
each theory.

1.2 Beyond T 2 and other approaches

It is natural to expect this geometrization of quantum heterotic compactifi-
cations to extend beyond T 2 fibrations. Indeed, if most Calabi–Yau spaces
can be described as T 3-fibered spaces, as conjectured by Strominger–Yau–
Zaslow [9], then we should expect “generic” heterotic compactifications to
involve patching by the quantum symmetry group of the heterotic string
on T 3 whose moduli space involves several distinct components [10]. The
quantum patching conditions or monodromy data of the T 3-fibration should
then be captured by M-theory compactified on a (potentially singular) K3-
fibered manifold with G2 holonomy. This is important to understand if we
are to enumerate string vacua. Unfortunately, little is known about the con-
struction of compact G2 spaces let alone spaces admitting K3-fibrations
so we will restrict our attention to heterotic compactifications with T 2-
fibrations.

The final interesting case is a T 4-fibered heterotic compactification. In
this case, we expect the quantum heterotic compactification to admit a dual
description in terms of type-IIA on a K3-fibered space which also involves
quantum patching conditions (namely, mirror transforms of the K3 fiber).
In this case, both sides of the duality are generically quantum.

Some of the first attempts to construct quantum compactifications using
U-duality appear in [11]. The type-II examples considered were compacti-
fications to three dimensions or lower mainly because the solutions involved
the full U-duality group rather than subgroups like the T-duality group.
This work also pre-dates the discovery of flux vacua and the associated
more general metric ansätze like the non-Kähler solutions of [3]. These more
general metrics will be important in the examples we construct in Section 4.

More recently, a detailed discussion of non-geometric type-II solutions in
six dimensions appeared in [12]. The type-II construction involves fibering
T 2 × T 2 which gives a double elliptic fibration over a base. The torus factors
capture the τ and ρ monodromies. This doubled torus formalism has been
further discussed in [13] where backgrounds using T-duality in the patching
conditions have been termed “T-folds”. The doubled torus approach has
been extended to the heterotic string very recently in [14].

This doubled torus approach should be contrasted with the geometry of a
K3-fibration that we use here. In principle, one should be able to understand
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global properties like tadpole cancellation from the doubled torus formalism
but it looks less intuitive for the heterotic string. This is partly because the
definition of both sides of the Bianchi identity (1.3) are unclear, and partly
because the bundle plays an important role in solving the tadpole condi-
tion (1.3); that bundle data is naturally encoded in the K3 fibration. For
N = 1 compactifications, the tadpole conditions are really quite critical. For
type-II non-geometric backgrounds, there are similar issues which remain to
be understood [12].

The doubled torus approach might, however, be useful for constructing
world-sheet descriptions; see, for example [15]. For example, it might be pos-
sible to extend the beta function computation of the doubled torus sigma
model, developed in [16], to derive a complete version of the tadpole condi-
tion discussed in Section 3.4. That is a quite critical issue.

Our approach suggests a very different heterotic world-sheet description
obtained naturally by studying an M5-brane wrapped on the K3-fiber of the
dual geometry. Such an M5-brane sigma model can capture both torsional
and torsion-free geometries along the lines discussed in [17]. We plan to
explore this interesting wrapped brane configuration elsewhere. The last
approach that leads naturally to non-geometric backgrounds is T-dualizing
flux vacua. This approach was explored, for example, in [18]. For a review
of past work on non-geometric backgrounds, see [19].

1.3 Some open issues and an outline

Some of the basic outstanding questions for non-geometric compactifications
can be summarized as follows:

• What fibration data are needed to describe such compactifications?
• How do we construct and analyze world-sheet models, which involve

quantum patching conditions?
• What new phenomenology or low-energy physics is possible in this

wider class of compactifications?

We will set up a framework to answer the first two points. It would be
very interesting to extend this framework beyond T 2 heterotic fibrations to
T 3 fibrations. The third question is also extremely interesting. At least in
type-II models, it appears that new low-energy couplings do emerge from
non-geometric compactifications as described in [20]. It seems reasonable to
suspect that new phenomenology might emerge in heterotic compactifica-
tions as well.

Most of the heterotic backgrounds we will describe are not left–right
symmetric on the world-sheet. To describe a type-II compactification, we
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would like to know if an analog of the standard embedding exists with
varying ρ. It seems reasonable that such a generalization exists and will pro-
vide type-II solutions in a way quite different from the U-manifold
geometrization discussed in [11].

Lastly, there should be nice methods of taking these solutions and gener-
ating non-geometric heterotic solutions without F-theory dual descriptions.
For example, in the geometric setting, quotienting an ellipic Calabi–Yau
with section by a free action can result in a torus-fibered Calabi–Yau with-
out a section. The resulting space is still perfectly fine for the heterotic
string but no longer fits into the heterotic/F-theory duality framework.
We expect analogous constructions for these non-geometric models.

The outline for the paper is as follows: we first reconsider heterotic — F-
theory duality in Section 2, focusing on the case of unbroken heterotic gauge
group. Our analysis leads to a new construction of non-geometric heterotic
compactifications in Section 3. The solutions we describe will be primarily
phrased in terms of the heterotic string, although we later construct various
type-IIB and M-theory duals. The vacua are typically non-geometric in the
sense that they are locally geometric, satisfying the supergravity equations
of motion, but globally well defined only in string theory. In particular, the
complexified Kähler modulus will undergo non-trivial monodromies sourced
by assorted heterotic 5-branes. We construct some simple examples and
describe how to build general compactifications of this type.

In Section 4, we construct new non-geometric heterotic solutions with
more general torsion. Such spaces have metrics which are locally non-Kähler.
We do this by dualizing certain M-theory compactifications with flux which
played a prominent role in constructing the first torsional (geometric) back-
grounds [3]. The local supersymmetry constraints on the metrics and fluxes
for these kinds of backgrounds were explored in [21].

These heterotic solutions, in turn, also have dual type-IIB and M-theory
descriptions, obtained in Section 5, that exhibit novel characteristics.
These are the compact U-folds sought in [11] but of a quite different local
form. In particular, the space-time supersymmetry spinors have a more gen-
eral structure than is usually considered. This allows us to construct, for
example, four-dimensional type-IIB compactifications with three-form flux
that is not necessarily of (2, 1) Hodge type. We give an explicit example of
such a construction and describe its M-theory lift.

Note added: We should mention that the solutions found in Sections 4 and 5
were obtained quite some time ago. During the completion of the project,
several papers appeared with interesting related observations [14, 22–27].
It is also worth mentioning a very recent interesting conjecture that the



1524 JOCK MCORIST ET AL.

interpretation of black hole entropy might require the use of exotic branes
associated to non-geometric monodromies [28].

2 F-theory and the heterotic string revisited

2.1 SL(2, Z)-invariant scalar fields

Following our introductory comments, let us consider a physical theory
which contains a scalar field τ invariant under an SL(2,Z) action. It is
natural to try to construct compactifications of this theory which exploit
the SL(2,Z)-invariance of the scalar. The general framework for doing so
was laid out in [29] in the language of cosmic strings: the compactification
space should have a multi-valued function τ on it, defined away from cer-
tain defects of codimension two, which will undergo SL(2,Z) transformations
around loops encircling the defects. These defects are depicted in figure 1.

The general problem of specifying such a multi-valued function arose in
the work of Kodaira on elliptically fibered complex manifolds more than 45
years ago [30]. Any such elliptically fibered manifold gives rise to a multi-
valued function τ defined on the base of the family, away from the subset of
the base at which singular fibers are located. Conversely, given the multi-
valued function τ , one can construct in a natural way an elliptically fibered
manifold with fibers C/(Z⊕ Zτ) over this subset of the base, which has the
additional property that the family has a section (corresponding to 0 ∈ C).2

To close this circle of ideas, Kodaira showed that one can pass from an
arbitrary elliptically fibered manifold to its associated “Jacobian fibration”
(the one with the same τ function, and a section) in a natural way that
does not involve finding τ explicitly.3 Moreover, Kodaira gave a way to
characterize the set of all elliptically fibered manifolds with a fixed Jacobian
fibration when the base has complex dimension one. This was later extended
to bases of higher complex dimension by Nakayama [35,36].

As Kodaira explained, two pieces of data are needed to specify τ : the nat-
ural SL(2,Z)-invariant function j = j(τ) on the base (which Kodaira called
the “functional invariant”) and the precise SL(2,Z) action on τ , which can

2This result was obtained by Kodaira [30] when the base has complex dimension one,
and subsequently generalized by Kawai [31] to dimension two and by Ueno [32] to arbitrary
dimension.

3This is closely related to finding an equation in Weierstrass form, as described in an
algebraic context by Deligne [33], and explored in this geometric context by Nakayama [34].
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be equivalently thought of as the varying family of integer homology groups
H1(C/(Z⊕ Zτ),Z) over the base (which Kodaira called the “homological
invariant”).

Given an elliptically fibered manifold Z → S with a section, there is a
description of S as a Weierstrass model (cf. [33]). That is, there is a P

2-
bundle over S, and a birational map from Z to this P

2-bundle, whose image
has an (affine) equation of the form4

y2 = x3 + f(s)x+ g(s), (2.1)

where f(s) and and g(s) are sections of appropriate line bundles over S. To
be precise, there is a line bundle O(L) on S such that f(s) ∈ H0(O(4L)),
g(s) ∈ H0(O(6L)); we can regard x as a local section of O(2L) and y as a
local section of O(3L) with the P

2-bundle described as

P (O ⊕O(2L)⊕O(3L)) . (2.2)

The total space may be singular, since certain subvarieties may be blown
down in passing from the original elliptic fibration to the Weierstrass model.

The fibers of the Weierstrass model are singular5 at the zeroes of the
discriminant

Δ(s) = 4f(s)3 + 27g(s)2, (2.3)

and the functional invariant (the j-function) is given by the formula

j(s) = 1728
4f(s)3

4f(s)3 + 27g(s)2
. (2.4)

We will later make use of an equivalent formula for j(s)− 1728:

j(s)− 1728 = −1728
27g(s)2

4f(s)3 + 27g(s)2
. (2.5)

The homological invariant is determined by Kodaira’s famous table, repro-
duced as Table 1. In that table, along any divisor D within S one calculates
the orders of vanishing of f(s), g(s) and Δ(s) along D and learns about the

4When comparing with [33], one should bear in mind that we are working over the
complex numbers, so the exceptions to this form having to do with fields of characteristic
2 or 3 do not apply.

5Note that a singular point of a fiber is not necessarily a singular point of the total
space, but for every singular point of the total space, the fiber passing through that point
is singular.
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Table 1: Kodaira’s classification of singular fibers and monodromy.

ordD(f) ordD(g) ordD(Δ) singularity monodromy

I0 ≥0 ≥0 0 none
(

1 0
0 1

)

In, n ≥ 1 0 0 n An−1

(
1 n
0 1

)

II ≥1 1 2 none
(

1 1
−1 0

)

III 1 ≥2 3 A1

(
0 1
−1 0

)

IV ≥2 2 4 A2

(
0 1
−1 −1

)

I∗0 ≥2 ≥3 6 D4

(−1 0
0 −1

)

I∗n, n ≥ 1 2 3 n+ 6 Dn+4

(−1 n
0 −1

)

IV ∗ ≥3 4 8 E6

(−1 −1
1 0

)

III∗ 3 ≥5 9 E7

(
0 −1
1 0

)

II∗ ≥4 5 10 E8

(
0 −1
1 1

)

non-minimal ≥4 ≥6 ≥12 non-canonical –

singularity of the Weierstrass model over a general point of D, as well as the
conjugacy class of the monodromy transformation about a loop encircling
D. It is the latter which determines the homological invariant.

The last line of the table indicates a “non-minimal” Weierstrass equa-
tion: one whose singularities can be improved by making a birational trans-
formation

(x, y) �→ (
x/ψ(s)2, y/ψ(s)3

)
, (2.6)

(together with replacing O(L) by O(L+D)), where ψ(s) is a section of
O(D) vanishing along D. This birational transformation does not affect the
elliptic fibration away from the singular fibers in any way, and after a finite
number of such improvements, a “minimal” Weierstrass model is obtained
(i.e., one which fits into one of the earlier lines of the table). Because each
non-minimal Weierstrass equation can be reduced to a minimal one by this
process, it is customary to focus on the “minimal” case. We will comment
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below on an additional reason that non-minimal Weierstrass equations would
be unsuitable for the physical applications we have in mind.

Note that the Weierstrass equation is not uniquely specified by the τ
function: we are free to rescale

(x, y, f, g) �→ (
u(s)2x, u(s)3y, u(s)4f(s), u(s)6g(s)

)
, (2.7)

using a nowhere vanishing function u(s); this must be taken into account
when describing the parameters of this construction.6

Kodaira also gave a formula for the canonical bundle of the total space
of a minimal Weierstrass fibration when the base has complex dimension
one (subsequently extended by others to higher dimension under certain
hypotheses). The formula states that

O(12KZ) = π∗(O(12KS + Δ)), (2.8)

where π : Z → S is the Weierstrass fibration.

To summarize: the data of a locally defined SL(2,Z)-invariant scalar τ
on some manifold S can be given in terms of an elliptic fibration Z → S
with a section, and is effectively given by specifying a line bundle O(L) and
describing Z as the desingularization of a hypersurface Z in the P

2-bundle

P (O ⊕O(2L)⊕O(3L))→ S, (2.9)

defined by a Weierstrass equation

y2 = x3 + f(s)x+ g(s), (2.10)

which does not fall into the last line of table 1 for any divisor D on S.

2.2 F-theory

The F-theory construction is a familiar application of the discussion in the
previous section [1, 37, 38]. F-theory is a description of general type-IIB
string backgrounds in which the complexified string coupling τF of the the-
ory is allowed to be multi-valued and is defined away from defects of codi-
mension two.

6Note that allowing u(s) to be a section of a line bundle would provide no greater
generality, since a nowhere-vanishing section would trivialize the line bundle.
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Kodaira’s table allows a classification of the defects, using monodromy:
a stack of n D7-branes corresponds to Kodaira’s type In; a stack of n D7-
branes on top of an orientifold O7-plane corresponds to Kodaira’s type I∗n;
and various exotic 7-branes that are difficult to analyze from a perturbative
string perspective correspond to the remaining Kodaira types II, III, IV,
IV∗, III∗, II∗.

There are special cases of the F-theory construction in which the τ func-
tion is constant [39, 40]. Firstly, for any constant value of the F-theory
function τF we can choose data of the form

f(s) = ϕh(s)2, g(s) = γh(s)3, (2.11)

for some section h(s) of the line bundle O(2L), and constants ϕ and γ. In
this case,

j(s) = 1728 · 4ϕ3

4ϕ3 + 27γ2
= j(τF ), (2.12)

is the constant value. The singular fibers occur at the zeros of h(s), and are
all of Kodaira type I∗0 , which corresponds to SO(8) enhanced gauge symme-
try. (If the locus h(s) = 0 is reducible, there can be more than one SO(8)
component.) This construction is equivalent to one made with orientifold
planes and can be studied perturbatively (cf. [2,39]) by choosing τF near i∞.

Secondly, if we take f to be identically zero, then we end up with τF =
e2πi/3, while thirdly, if we take g to be identically zero, then we find τF = i.
Various Kodaira fibers and enhanced gauge symmetry groups are possible
in these cases. Since τF is fixed away from i∞ in these cases, a purely
perturbative analysis is not possible.

Our confidence in F-theory is bolstered by F-theory/M-theory duality:
after compactifying F-theory on an additional circle, one finds an equivalence
with M-theory compactified on the elliptically fibered manifold Z, or more
precisely, on the total space Z of the Weierstrass fibration.7 Thus, to get
a supersymmetric compactification of F-theory, we require Z to be Calabi–
Yau, which — thanks to equation (2.8) — happens when O(12KS + Δ) is
trivial. Since O(Δ) = O(12L), we should choose O(L) = O(−KS) (possi-
bly up to torsion) to ensure that Z is Calabi–Yau (with at most canonical
singularities).

7This total space may have singularities, as indicated in table 1, and such singularities
in an M-theory compactification give rise to non-abelian gauge symmetries of the com-
pactified theory [41–44]. A non-minimal Weierstrass fibration will have a singularity which
is non-canonical, that is, which does not preserve the holomorphic form of top degree on
the fibration, and for this reason, such fibrations are not generally allowed when studying
compactifications of M-theory or F-theory.
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In Section 3.1, we will construct some new non-geometric compactifications
of the heterotic strings, and will make use of a similar confidence-building
duality: the corresponding F-theory/heterotic duality. In Section 3.1, we
explain how those F-theory/heterotic dualities — in the absence of Wilson
lines — are much more geometric than had originally been realized. The key
insight about those dualities was found by Clingher and Doran [6], based in
part on some old work of the second author of this paper [45]; our discussion
is based on a refinement of these ideas.

First, though, we need to analyze F-theory models with certain large
gauge groups. In anticipation of the duality with the heterotic string (to be
reviewed in the next section), we construct F-theory models in dimension 8
and below with gauge groups G = (E8 × E8) � Z2 or G = Spin(32)/Z2. In
eight dimensions, this amounts to giving an elliptic fibration ZG → P

1 with
gauge symmetry group G.

The Weierstrass model for Z(E8×E8)×Z2
was essentially given in [38] (see

also [46]): there must be two fibers of Kodaira type II∗. By choosing an
appropriate coordinate σ on the base P

1, we can assume that these fibers
are located at σ = 0 and σ =∞; the equation then takes the form

Y 2 = X3 + aσ4X + bσ5 + cσ6 + dσ7, (2.13)

for some constants a, b, c and d. We review the argument for this in Appen-
dix A. Note that the discriminant of equation (2.13) is

Δ = σ10
(
4a3σ2 + 27

(
b+ cσ + dσ2

)2)
, (2.14)

since the (affine) degree of the discriminant in σ is 14, there is an implicit
zero of order 10 at σ =∞, the location of the second fiber of type II∗. To
prevent the zeros at σ = 0 and σ =∞ from having order greater than 10
(which would lead to a non-minimal Weierstrass model), we should assume
that neither b nor d is zero.

To obtain the Weierstrass model for ZSpin(32)/Z2
, we need a fiber of type

I∗12 and a Mordell–Weil group of Z2 (see [47, 48]). Note that by choosing
an appropriate coordinate s on the base, we can assume that the fiber of
type I∗12 is located at s =∞. In this case, rather than using the traditional
Weierstrass equation, we change coordinates so that the point of order 2 on
the elliptic curves (which corresponds to the Z2 factor in the Mordell–Weil
group) is at x = 0. Then, as we review in Appendix A, the equation takes
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the form
y2 = x3 + (p0s

3 + p1s
2 + p2s+ p3)x2 + εx, (2.15)

with discriminant
Δ = −ε2(p(s)2 − 4ε), (2.16)

where
p(s) = p0s

3 + p1s
2 + p2s+ p3. (2.17)

To ensure that the gauge group is precisely Spin(32)/Z2, we must assume
that neither ε nor p0 is zero.

Remarkably, these two elliptically fibered K3 surfaces Z(E8×E8)�Z2
and

ZSpin(32)/Z2
are birational to each other if the coefficients are identified prop-

erly; we will make use of these birational equivalences in our constructions
in the next section. If we start with the Weierstrass model Z(E8×E8)�Z2

given by equation (2.13) with d 
= 0, we can make a birational change to get
to another K3 surface: let X = x2s/d2, Y = x2y/d3, σ = x/d, and multiply
the equation by d6/x4, to obtain

y2 = x2s3 + ax2s+ bdx+ cx2 + x3. (2.18)

This has the form of equation (2.15) with

p(s) = s3 + as+ c and ε = bd. (2.19)

Conversely, if we start with the Weierstrass model ZSpin(32)/Z2
described

by equation (2.15) and assume p0 
= 0, setting x= σ, y= Y/p0σ
2, s= X̂/p0σ

2

and multiplying by p2
0σ

4 we find

Y 2 = p2
0σ

7 + X̂3 + p1σ
2X̂2 + p0p2σ

4X̂ + p2
0p3σ

6 + p2
0εσ

5. (2.20)

To put this into Weierstrass form we need one more change of variables,
completing the cube via X̂ = X − 1

3p1σ
2:

Y 2 = X3 +
(
p0p2 − 1

3p
2
1

)
σ4X + p2

0εσ
5 +

(
2
27p

3
1 − 1

3p0p1p2 + p2
0p3

)
σ6 + p2

0σ
7.

(2.21)
This has the form of equation (2.13) with

a = p0p2 − 1
3p

2
1,

b = p2
0ε,

c = 2
27p

3
1 − 1

3p0p1p2 + p2
0p3,

d = p2
0.

(2.22)
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Table 2: The transformation properties of the coefficients in (2.13).

aσ4 O(−4KS) = O (4Σ0 + 4Σ∞ + ϕ∗(−4KB))
bσ5 O(−6KS) = O (5Σ0 + 7Σ∞ + ϕ∗(−6KB + Λ(E8×E8)�Z2

)
)

cσ6 O(−6KS) = O (6Σ0 + 6Σ∞ + ϕ∗(−6KB))
dσ7 O(−6KS) = O (7Σ0 + 5Σ∞ + ϕ∗(−6KB − Λ(E8×E8)�Z2

)
)

The existence of these birational isomorphims between the Weierstrass
models Z(E8×E8)�Z2

and ZSpin(32)/Z2
implies that the corresponding non-

singular surfaces Z(E8×E8)�Z2
and ZSpin(32)/Z2

are isomorphic; however, the
isomorphism does not preserve the elliptic fibrations. Thus, if M-theory is
compactified on either of these non-singular surfaces, the resulting seven-
dimensional theory will have two distinct F-theory limits, corresponding to
these two different elliptic fibrations (with section) on the surface.

For both gauge groups G, we can extend the above construction to a
broader class of F-theory models by considering F-theory on a base S which
is a P

1-bundle over some space B. We can express S in the form P(O ⊕
O(ΛG)) for some line bundle O(ΛG) on B, with projection map ϕ : S → B,
and regard σ and s as sections of the appropriate O(ΛG). If Σ0 ⊂ S is
the divisor where σ = 0 in the first case (or s = 0 in the second case), and
Σ∞ ⊂ S is the divisor where σ =∞ in the first case (or s =∞ in the second
case), then O(Σ∞ − Σ0) = ϕ∗O(ΛG) and we can write

O(−KS) = O(Σ0 + Σ∞ + ϕ∗(−KB))

= O(2Σ0 + ϕ∗(−KB + ΛG)). (2.23)

This is the line bundle which we use to build an F-theory model whose
Weierstrass fibration Z is Calabi–Yau.

In the case G = (E8 × E8) � Z2, we get a Weierstrass equation of the
form equation (2.13). To determine how the various coefficients in that
equation transform, we illustrate in table 2 various forms of the appropriate
line bundles. It follows that a, b, c, d are sections of

O(−4KB), O(−6KB + Λ(E8×E8)�Z2
), O(−6KB),

O(−6KB − Λ(E8×E8)�Z2
), (2.24)

respectively.

Similarly, in the case of G = Spin(32)/Z2, we get a Weierstrass equation
of the form equation (2.15), whose coefficients are analyzed in table 3. It
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Table 3: The transformation properties of the coefficients in (2.15).

p0s
3 O(−2KS) = O (3Σ0 + Σ∞ + ϕ∗(−2KB − ΛSpin(32)/Z2

)
)

p1s
2 O(−2KS) = O (2Σ0 + 2Σ∞ + ϕ∗(−2KB))

p2s O(−2KS) = O (Σ0 + 3Σ∞ + ϕ∗(−2KB + ΛSpin(32)/Z2
)
)

p3 O(−2KS) = O (4Σ∞ + ϕ∗(−2KB + 2ΛSpin(32)/Z2
)
)

ε O(−4KS) = O (8Σ∞ + ϕ∗(−4KB + 4ΛSpin(32)/Z2
)
)

follows that (p0, p1, p2, p3, ε) are sections of

O(−2KB − ΛSpin(32)/Z2
), O(−2KB), O(−2KB + ΛSpin(32)/Z2

),

O(−2KB + 2ΛSpin(32)/Z2
), (2.25)

and O(−4KB + 4ΛSpin(32)/Z2
), respectively.

Notice that the birational equivalence between the two models also
extends to this higher-dimensional context, once we identify the line bundles
correctly. Starting from G = (E8 × E8) � Z2 using an arbitrary line bundle
O(Λ(E8×E8)�Z2

), we get a dual model with line bundle

O(ΛSpin 32/Z2
) = O(−2KB), (2.26)

compatible with equation (2.19). Conversely, starting from G = Spin 32/Z2

and an arbitrary line bundle O(ΛSpin 32/Z2
), we get a dual model with line

bundle

O(Λ(E8×E8)�Z2
) = O(−2KB + 2ΛSpin 32/Z2

), (2.27)

compatible with equation (2.22).

2.3 F-theory/heterotic dualities

The duality between F-theory and the heterotic string in dimension 8, orig-
inally proposed by Vafa [1], takes the following form when the heterotic
gauge group is unbroken: for heterotic gauge group G, there is a family of
elliptically fibered K3 surfaces (XG)z (with section) parameterized by,

z ∈ SO(2, 2; Z)\SO(2, 2)/SO(2)× SO(2), (2.28)

and a family of heterotic string vacua (YG)z with gauge group G, such that
F-theory on (XG)z is dual to the heterotic string vacuum (YG)z.
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The data needed to specify the heterotic vacuum (YG)z consists of a flat
metric and a B-field on a two-torus.8 There is a unique complex structure
compatible with any given metric, so this data can be expressed as an elliptic
curve E (i.e., a two-torus equipped with complex structure), as well as a
Kähler class and B-field on E. These latter two can be combined into the
complex number ρ, defined in (1.1), which naturally lives in the upper half-
plane and is invariant under the SL(2,Z) action. Similarly, the complex
structure on E can be represented by a complex number τ in the upper
half-plane, modulo SL(2,Z). The duality between F-theory and the heterotic
string suggests that for each F-theory vacuum with gauge group G, τ and ρ
should be expressible as functions of the coefficients of (2.13) or (2.15).

One should note that much of the discussion in the literature, including
the analysis in [37,38], is limited to a particular limit, in which (a3/bd)→∞
and (c2/bd)→∞ while (c2/a3) remains finite.9 As we will explain shortly,
from the heterotic point of view this is equivalent to taking the large volume
limit ρ→ i∞, where the heterotic supergravity description is good. From
the point of view of F-theory there is nothing special about this limit. One
could consider generic values of (a3/bd) and (c2/bd) in C, in which case the
heterotic torus T 2 has some finite size and complex structure. As we will
see, the fibered version of this case corresponds to non-geometric heterotic
compactifications.

In fact, the explicit correspondence between F-theory and heterotic para-
meters in 8 dimensions was calculated in the case of G = (E8 × E8) � Z2 in
the early days of F-theory [50, 51]. In the notation of the present paper,10

8Since G is unbroken, all Wilson line expectation values must vanish.
9Of course, there are instances where two different limits of this kind are taken in order

to study a duality. This was done for example in [37] which studied the duality of [49].
10To compare the two, one must make the substitution

X = b7/6d−5/6X̃, Y = b7/4d−7/4Ỹ , σ = b1/2d−1/2σ̃, (2.29)

in equation (2.13) and multiply by d5/2b−7/2 to obtain

Ỹ 2 = X̃3 + ab−1/3d−1/3σ̃4X̃ + σ̃5 + cb−1/2d−1/2σ̃6 + σ̃7. (2.30)
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the authors of [50, 51] found:11

j(τ)j(ρ) = −17282 a3

27bd
, (2.31)

(j(τ)− 1728) (j(ρ)− 1728) = 17282 c
2

4bd
. (2.32)

which implies that

c2

a3
= −

(
1− 1728

j(τ)

)(
1− 1728

j(ρ)

)
; (2.33)

the large volume heterotic limit j(ρ)→∞ thus corresponds to (a3/bd)→∞
and (c2/bd)→∞ while (c2/a3) remains finite.

Analogous formulas were found much more recently [6] for the case G =
Spin 32/Z2. Our goal in this subsection is to refine these formulae in both
cases, and to give a much more geometric explanation of them.

As stressed in Section 2.1, the heterotic elliptic curve E naturally encodes
the information provided by the modular function τ . Similarly, since ρ is also
an SL(2,Z) modular function, we can encode the information it provides in
a second elliptic curve F . In dimension 8 this is not so crucial, but when we
go to lower dimension, and want to use τ and ρ as fields which can vary in
the compactification to lower dimension (exploiting the SL(2,Z) symmetry),
this is an important step.

As Clingher and Doran [6] showed, the geometric connection between
the heterotic and F-theory sides of this story is provided (in the absence
of Wilson lines) by the notion of a Shioda–Inose structure for K3 surfaces.
Following [45], we say that a K3 surface Z has a Shioda–Inose structure if
there is an automorphism ι : Z → Z of order two, preserving the holomor-
phic 2-form, and a complex torus A of complex dimension 2, such that Z/ι
is birationally isomorphic to the Kummer surface A/(−1). This definition
was motivated by work of Shioda and Inose who considered such structures
in special cases [53, 54].

The main theorem of [45] (combined with some known facts about the
Néron–Severi group of a complex torus [55,56]) implies that the K3 surfaces
ZG constructed in section 2.2 have Shioda–Inose structures with the complex
torus taking the form E × F for two elliptic curves E and F . This is the

11These same formulas were independently discovered in the mathematics literature in
a slightly different context [52].
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geometric form of F-theory/heterotic duality: the elliptic curves E and F
associated to ZG provide the data for the heterotic vacuum.

Clingher and Doran [6] have constructed the Shioda–Inose structure for
ZSpin 32/Z2

in a very explicit manner, and we refine their result in Appen-
dix B. The result is stated in the opposite direction from the discussion
above: starting with Weierstrass equations

v2 = u3 + λ2u+ λ3 and w2 = z3 + μ2z + μ3, (2.34)

defining two elliptic curves E and F , respectively, the equation for the asso-
ciated F-theory (Weierstrass) elliptic fibration ZSpin 32/Z2

is given by

y2 = x3 + (s3 − 3λ2μ2s− 27
2 λ3μ3)x2 + 1

16(4λ3
2 + 27λ2

3)(4μ
3
2 + 27μ2

3)x.

(2.35)

In fact, letting ιSpin 32/Z2
be the automorphism of ZSpin 32/Z2

defined by
translation by the point of order 2 in the Mordell–Weil group, the quotient
ZSpin 32/Z2

/ιSpin 32/Z2
is birationally isomorphic to the Kummer surface (E ×

F )/(−1). (See Appendix B for the details of this.)

From this, and the birational equivalence we found between ZSpin 32/Z2

and Z(E8×E8)�Z2
, we can find a model for the G = (E8 × E8) � Z2 case as

well. This time, we need to choose two factorizations

1
4
(4λ3

2 + 27λ2
3) = b(λ)d(λ),

1
4
(4μ3

2 + 27μ2
3) = b(μ)d(μ),

(2.36)

and then the equation of Z(E8×E8)�Z2
takes the form

Y 2 = X3 − 3λ2μ2σ
4X + b(λ)b(μ)σ5 − 27

2
λ3μ3σ

6 + d(λ)d(μ)σ7. (2.37)

In this case, the Shioda–Inose structure is induced by the automorphism
ι(E8×E8)�Z2

which acts on the base of the elliptic fibration to exchange the
two fibers of type II∗, and acts on the fiber by multiplication by −1; it can
be written as

ι(E8×E8)�Z2
: (X,Y, σ) �→

(
b2X

d2σ4
,
−b3Y
d3σ6

,
b

dσ

)
, (2.38)

where b= b(λ)b(μ) and d= d(λ)d(μ). Once again, the quotient Z(E8×E8)�Z2
/

ι(E8×E8)�Z2
is birationally isomorphic to the Kummer surface (E × F )/(−1).
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Let us verify that equations (2.31) and (2.32) are satisfied for this elliptic
fibration. Since bd = b(λ)d(λ)b(μ)d(μ) we have

−17282 a3

27bd
= −17282 (−3λ2μ2)3

27
16(4λ3

2 + 27λ2
3)(4μ

3
2 + 27μ2

3)

= 17282 (4λ3
2)(4μ

3
2)

(4λ3
2 + 27λ2

3)(4μ
3
2 + 27μ2

3)
= j(τ)j(ρ), (2.39)

using equation (2.4), and

17282 c
2

4bd
= 17282 (−27

2 λ3μ3)2
4
16(4λ3

2 + 27λ2
3)(4μ

3
2 + 27μ2

3)

= (−1728)2
(27λ2

3)(27μ2
3)

(4λ3
2 + 27λ2

3)(4μ
3
2 + 27μ2

3)
= (j(τ)− 1728)(j(ρ)− 1728), (2.40)

using equation (2.5), verifying the formulas derived in [50].

3 Non-geometric heterotic models

3.1 Constructing non-geometric heterotic models

In this section, we wish to use the duality we have analyzed to construct
F-theory duals to various heterotic models. We begin with an elliptically
fibered space E → B, and consider the heterotic string on this space with
unbroken gauge group. Maintaining unbroken gauge group requires two
things: all Wilson lines must be trivial, and all instantons must be point-
like.12 The complex structure on the total space E determines complex
structures on the elliptic fibers, but the complexified Kähler class on the
fiber is left undetermined.

For simplicity, we assume that the elliptic fibration E → B has a section,
but in principle our construction can be made without that requirement.
Under this assumption, E can be described by an equation

v2 = u3 + λ2u+ λ3, (3.1)

where λ2 and λ3 are sections of appropriate line bundles O(4Lτ ) and O(6Lτ )
on B. Note that to completely specify the geometry, we must also specify

12There is also the possibility of “hidden obstructors” which do not break the gauge
group [48], but we do not consider those here.
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the locations of the point-like instantons on the space E ; we will return to
this point later.

To build a (possibly) non-geometric model, we wish to allow the com-
plexified Kähler parameter to be a non-constant function ρ on the base B.
Strictly speaking, there will be some defect locus Δρ at points of which either
ρ is multiple-valued or ρ approaches infinity, so that ρ is only well-defined on
B −Δρ. Moreover, there is an SL(2,Z) ambiguity of ρ, so even on B −Δρ,
ρ is only locally well-defined.

Hellerman et al. [12] took a “stringy cosmic string” point of view [29] in
specifying the function ρ, but here we do something much closer in spirit to
the construction of F -theory: we specify ρ via an auxiliary elliptic fibration
πρ : F → B, so that the periods of the elliptic curve π−1(b) are Z⊕ Zρ(b).
Just as in F -theory, in order to specify ρ in this way, we can assume that
πρ : F → B has a section. Thus, F will have a Weierstrass equation:

w2 = z3 + μ2z + μ3, (3.2)

where μ2 and μ3 are sections of appropriate line bundles O(4Lρ) and O(6Lρ)
on the base B.

Because our construction does not necessarily have a large radius limit
where supergravity techniques can be employed, we will derive certain rest-
rictions on the families E and F indirectly via duality with F -theory. The
restrictions to which we refer are the analogues of the restriction that the
total space of E be Calabi–Yau if ρ is constant. In the Spin 32/Z2 case, the
F -theory dual is given by equation (2.35), where now the coefficients p0, . . . ,
p3, s are considered as sections of appropriate line bundles. Comparing line
bundles, we see that

O = O(−2KB − ΛSpin 32/Z2
),

O(4Lτ + 4Lρ) = O(−2KB + ΛSpin 32/Z2
),

O(6Lτ + 6Lρ) = O(−2KB + 2ΛSpin 32/Z2
),

O(12Lτ + 12Lρ) = O(−4KB + 4ΛSpin 32/Z2
),

(3.3)

where the first relation comes from the fact that p0 is non-vanishing. Thus,
O(ΛSpin 32/Z2

) = O(−2KB) and O(Lτ + Lρ) = O(−KB) (up to torsion).

It follows that for a given base B, we will be able to construct a non-
geometric compactification for the Spin 32/Z2 heterotic string out of any two
elliptic fibrations πτ : E → B and πρ : F → B, provided that the associated
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line bundles O(Lτ ) and O(Lρ) satisfy

O(Lτ + Lρ) = O(−KB), (3.4)

up to torsion.

We can also find an F-theory dual in the case of the (E8 × E8) � Z2

heterotic string. For this, we need to specify a factorization of ε into bd,
where b and d are sections of appropriate line bundles. Since ε is itself a
product, this is accomplished by two factorizations:

1
4(4λ3

2 + 27λ2
3) = b(λ)d(λ),

1
4(4μ3

2 + 27μ2
3) = b(μ)d(μ).

(3.5)

In other words (considering the vanishing loci), the discriminant locus Δτ

of the first fibration is decomposed into two divisors Δ′
τ = {b(λ) = 0} and

Δ′′
τ = {d(λ) = 0}, and similarly for Δρ. It follows that b(λ), d(λ), b(μ), d(μ)

are sections of
O(Δ′

τ ),O(Δ′′
τ ),O(Δ′

ρ),O(Δ′′
ρ), (3.6)

respectively. We can write the equation for the F-theory dual in the form13

Y 2 = X3 − 3λ2μ2σ
4X + b(λ)b(μ)σ5 − 27

2 λ3μ3σ
6 + d(λ)d(μ)σ7. (3.9)

Again, we can determine line bundles from coefficients:

O(4Lτ + 4Lρ) = O(−4KB),

O(Δ′
τ + Δ′

ρ) = O(−6KB + Λ(E8×E8)�Z2
),

O(6Lτ + 6Lρ) = O(−6KB),

O(Δ′′
τ + Δ′′

ρ) = O(−6KB − Λ(E8×E8)�Z2
).

(3.10)

Note that

O(Δ′′
τ + Δ′′

ρ) = O(12Lτ −Δ′
τ + 12Lρ −Δ′

ρ) = O(−12KB −Δ′
τ −Δ′

ρ),
(3.11)

so the second and fourth equations above are equivalent.

13Here we are using the fact that

Y 2 = X3 + aσ4X + bσ5 + cσ6 + dσ7 (3.7)

is birational to
y2 = x3 + (s3 + as + c)x2 + bdx. (3.8)
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It follows that (up to torsion):

O(Lτ + Lρ) = O(−KB),

O(Δ′
τ + Δ′

ρ) = O(−6KB + Λ(E8×E8)�Z2
).

(3.12)

Thus, for a given base B, we will be able to construct a non-geometric com-
pactification for the (E8 × E8) � Z2 heterotic string out of any two elliptic
fibrations πτ : E → B and πρ : F → B, together with decompositions of their
discriminant divisors

Δτ = Δ′
τ + Δ′′

τ and Δρ = Δ′
ρ + Δ′′

ρ, (3.13)

provided that the associated line bundles O(Lτ ) and O(Lρ) satisfy

O(Lτ + Lρ) = O(−KB), (3.14)

up to torsion.

3.2 Compactifications to six dimensions

In six dimensions, it is possible to choose B = T 2 with O(ΛSpin 32/Z2
), O(Lτ )

and O(Lρ) all being torsion line bundles. This leads to the familiar compact-
ification on T 2 × T 2, or orbifolds thereof, and is not a case we will analyze
in detail. In particular, both τ and ρ are constant in this case, and the
heterotic model is geometric.

The other possibility in six dimensions is B = P
1, and there are then three

cases (bearing in mind that the Picard group has no torsion in this case),
stemming from the formula O(Lτ + Lρ) = O(−KB), together with the fact
that O(4Lτ ), O(6Lτ ), O(4Lρ), and O(6Lρ) all have sections:

1. O(Lτ ) has degree 2 which implies that O(Lρ) is trivial and hence that
ρ is constant. This is a geometric model in which E is an elliptically
fibered K3 surface.

2. O(Lτ ) and O(Lρ) each have degree one. This implies that both E and
F are rational elliptic surfaces.14 Both τ and ρ are non-constant;
these are the Hellerman–McGreevy–Williams models.

3. O(Lτ ) is trivial, and O(Lρ) has degree 2. In this case, τ is constant
but ρ varies; this is (fiberwise) mirror symmetric to case (1).

14These are sometimes called “dP9 surfaces.”
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In case (1), we recover the familiar geometric compactifications and their
known F-theory duals. There is one additional feature of these models
which we now spell out in detail: in order for the heterotic gauge group to
remain unbroken, all instantons must be point-like, and as such, each must
be located at a particular point on the heterotic side. As our basic con-
struction shows, the complex structure of the F-theory model is determined
by the ρ and τ data on the heterotic side, and appears to be independent
of the location of the small instantons. However, each complex structure
modulus on the F-theory side is part of a hypermultiplet which includes an
additional complex scalar, and it is those scalars which dictate the locations
of the small instantons. In a typical vacuum, the expectation values of those
scalars vanish, so one would expect there to be a preferred location for small
instantons.

In the Spin 32/Z2 case, the physics of small instantons was described by
Witten [57]; Aspinwall [48] used this analysis to identify the corresponding
features of F-theory: small Spin 32/Z2 instantons correspond to zeros of the
coefficient ε in the basic equation (2.15). Aspinwall also gave an explanation
of the zeros of p0 in (2.15): they correspond to “hidden obstructors” [58]
which occur at singular points of the heterotic K3 surface. As already
mentioned, we do not consider hidden obstructors in our analysis and in
fact we have set p0 = 1.

Since we have
ε = 1

16(4λ3
2 + 27λ2

3)(4μ
3
2 + 27μ2

3), (3.15)

and since 4μ3
2 + 27μ2

3 is constant in case (1), we see that the zeros of ε corre-
spond to the singular fibers of the elliptic fibration E → B (whose total space
is the heterotic K3 surface). It is natural to suppose that the small instan-
tons must be located along those singular fibers; in fact, the most natural
place to locate these small instantons is at the singular points of the singular
fibers. Similar remarks apply to case (3), using F → B instead of E → B.

For the non-geometric compactifications, the zeros of ε correspond to
places where either the fiber of E → B is singular, or the fiber of F → B is
singular. The geometric part of this compactification is captured by E → B,
whose total space is the heterotic rational elliptic surface: the bundle on
this surface should have 12 small instantons, so we can again locate them at
the singular points of fibers of E → B. The additional zeros of ε correspond
to singular fibers of F → B and don’t have a straightforward geometric
interpretation.

A similar analysis applies when the gauge group is (E8 × E8) � Z2. This
time, the small instantons involve tensionless strings [59,60], and in case (1)
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we must choose how to distribute 24 small instantons between the two E8

factors. In the F-theory interpretation [37], the zeros of the coefficients b
and d in the basic equation (2.13) correspond to the small instantons in the
two different E8 factors. In our construction, the factorizations (3.5) show
that the zeros of b and d, together, correspond to the singular fibers of the
two elliptic fibrations E → B and F → B. Thus, in case (1) the 24 singular
fibers of E → B get divided into two groups, corresponding to the two E8

factors. As in the Spin 32/Z2 case, we propose that the small instantons
should be located at the singular points of those singular fibers. Case (3) is
similar, with the roles of E → B and F → B reversed.

In case (2), the singular fibers of E → B get divided into two groups,
according to (3.5), and the singular fibers of F → B likewise get divided.
The total space of E → B is the rational elliptic surface upon which we
are compactifying the heterotic string, and we locate 12 small instantons
at the singular fibers of E → B, divided into two groups as in (3.5). The
additional zeros, corresponding to singular fibers of F → B, again do not
have a straightforward geometric interpretation.

One interesting thing to note is that no new F-theory models were required
in six dimensions to provide duals for non-geometric compactifications: all
of the duals to non-geometric compactifications are in the same class of
F-theory models as the duals to geometric compactifications, although pre-
sumably the dualities are occurring at different locations in the hyper-
multiplet moduli space. In four dimensions, some of the semi-classical
moduli are lifted by fluxes [3], so there may indeed be different F-theory
models for geometric and non-geometric compactifications in that
dimension.

3.3 Compactifications to four dimensions: an example

The general procedure described in Section 3.1 can also be used to construct
examples in dimension four, which on the F-theory side will involve K3-
fibered Calabi–Yau four-folds. These are much less constrained than was
the corresponding set of K3-fibered Calabi–Yau 3-folds which we used in
the previous section, so rather than attempting a general classification we
will settle for examples. Our examples are easily generalizable to arbitrary
K3-fibered Calabi–Yau four-fold and our results are characteristic of the
general construction.

The class of examples we are interested in are Calabi–Yau four-folds,M4,
with a P

2 base which admit a K3-fibration. Schematically:
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K3 ��M4

��

P̃
2

with T 2 �� K3

��
P

1

The elliptic curve is represented as a hypersurface in P
2 via the vanishing

of the Weierstrass equation (2.10). Let [x, y, z] denote the homogeneous
coordinates for this P

2, [t1, t2, t3] the homogeneous coordinates for the base
B = P̃

2, [s1, s2] the coordinates for the P
1. We construct a variety S which

is fibered over B = P̃
2 with fiber P

1, and a variety P(O ⊕O(2L)⊕O(3L))
which is fibered over S with fiber P

2. The varieties P
1 and P

2 are fibered
over the base P̃

2. We do this by lifting the torus action used to construct the
base to act on the fiber: the coordinates [x, y, z] and [s1, s2] become sections
of certain line bundles. Using λ and μ to denote the C

∗ actions of the base
P̃

2 and P
1 respectively we consider

[t1, t2, t3] ∼ λ[t1, t2, t3],

[s1, s2] ∼ [λA1μs1, λ
A2μs2],

[x, y, z] ∼ [λB1μC1x, λB2μC2y, z], (3.16)

with Ai, Bi, and Ci some real positive constants to be determined. Note
we have made a basis choice such that the torus action on z is trivial. We
require that (3.16) acts consistently on the Weierstrass polynomial (written
here in the homogeneous coordinates of P

2):

P = −y2z + x3 + z2xf(s, t) + z3g(s, t), (3.17)

and require that the variety defined by P = 0 have trivial canonical class;
these conditions determine Bi, Ci in terms of Ai. Picking A1 = n,A2 = 0, it
is convenient to write the exponents of the three C

∗ torus actions defining
P̃

2,P1,P2 as a matrix:
⎛
⎜⎜⎝
t1 t2 t3 s1 s2 x y z
1 1 1 n 0 2(3 + n) 3(3 + n) 0
0 0 0 1 1 4 6 0
0 0 0 0 0 1 1 1

⎞
⎟⎟⎠ . (3.18)

This is precisely the charge matrix of a linear sigma model describing a
toric variety [61]. Also f(s, t) has charge 4(3 + n) and 8 under the first two
C
∗ actions, while g(s, t) has charge 6(3 + n) and 12. This gives a class of

four-folds with a twist labeled by the integer n. We focus on F-theory duals
of compactifications of the (E8 × E8) � Z2 heterotic string with unbroken
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(E8 × E8) � Z2; then the twist parameter n corresponds to choosing the line
bundle O(Λ(E8×E8)�Z2

) to be O
P̃2(n). In order to get unbroken (E8 × E8) �

Z2, we need to restrict to n ≤ 3.

Unbroken (E8 × E8) � Z2 implies that the Weierstrass equation takes the
special form (2.13) with the coefficients interpreted as sections of appropriate
bundles. In our case, this implies that

f(s, t) = a(t)s41s
4
2

and
g(s, t) = b(t)s51s

7
2 + c(t)s61s

6
2 + d(t)s71s

5
2,

where a(t), b(t), c(t) and d(t) are homogeneous of degrees 12, 18 + n, 18,
and 18− n, respectively.15

To find F-theory duals for geometric or non-geometric heterotic com-
pactifications, following equation (3.14) we must choose line bundles O(Lτ )
and O(Lρ) of degrees d and 3− d (since O(−KB) has degree 3), as well as
a decomposition of the divisor Δτ (of degree 12d) into two components
Δ′

τ + Δ′′
τ of degrees k and 12d− k, and a decomposition of the divisor

Δρ (of degree 36− 12d) into two components Δ′
ρ + Δ′′

ρ of degrees 
 and
36− 12d− 
, such that k + 
 = 18 + n.

The choice of O(Lτ ) and O(Lρ) presents no particular problem for any
value of d ∈ {0, 1, 2, 3}, so there are a variety of geometric and non-geometric
heterotic compactifications with F-theory duals of this kind. In fact, there
are equal numbers of geometric and non-geometric models (treating the
constant τ models as geometric, even though strictly speaking they are the
mirrors of geometric models), so neither type of heterotic compactification
is favored. That is, not only are non-geometric models possible, they are
just as typical as geometric models.

Note that the choice of decompositions Δτ = Δ′
τ + Δ′′

τ and Δρ = Δ′
ρ +

Δ′′
ρ, which affects the distribution of instantons (and their non-geometric

counterparts) between the two E8 factors of the gauge group, is trickier:
the Weierstrass equations describing the bundles E and F must be care-
fully tuned to guarantee such a decomposition. This does not, however,
affect our discussion of typicality for geometric versus non-geometric het-
erotic compactifications.

15Note that any model in dimension four with unbroken (E8 × E8) � Z2 has confusing
aspects, such as an infinite tower of light solitonic states, if b(t) = 0 intersects d(t) = 0 [62];
such an intersection is unavoidable for our choice B = P

2.
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The description of moduli spaces which follows from the above analysis is
a semi-classical one, and in general we expect a number of moduli to be lifted
by fluxes [3]. As a consequence, we should expect that the F-theory duals of
geometric and non-geometric compactifications live on different (quantum)
moduli spaces in dimension four. It would be interesting to have a concrete
example of this phenomenon.

3.4 Tadpoles and the Bianchi identity

One of the beautiful features of this class of heterotic models is that there
is no need for extra ingredients like orientifold planes to construct compact
models. Instead, the Bianchi identity for H3-flux,

dH3 =
α′

4
(Tr (R ∧R)− Tr (F ∧ F )) , (3.19)

includes a higher derivative correction that in the presence of curvature
induces a five-brane charge thereby allowing one to construct compact
solutions. In the geometric setting, the five-brane charge tadpole must
be satisfied by a combination of wrapped NS5-branes and finite-size gauge
instantons.

We would like to understand this tadpole in the more general non-geo-
metric setting. This is a subtle question for reasons that we will outline and
is really best answered from a world-sheet approach.

Let us first think adiabatically from the perspective of a physicist who has
reduced on the torus fiber and observes physics purely on the base B. From
the perspective of such an observer, there are two scalar fields τ and ρ with
monodromies around divisors of B. If Wilson line moduli were included,
they would give additional scalars with the entire collection acted on by the
full heterotic T 2 duality group. For simplicity, we will continue to restrict
to unbroken maximal gauge symmetry.

Firstly, our usual intuition is that the total ρ monodromy measured
around any divisor in B must be trivial for a compact solution. Said dif-
ferently: the total NS5-brane charge must vanish. It is worth pointing out
that this is not required in the heterotic string since the deficit can be made
up by the gravitational contribution to the charge.

Secondly, there are really several distinct cases to this adiabatic tadpole
analysis depending on whether H3 has support along the torus fiber. If H3

has one or two legs along the fiber then the left-hand side of (3.19) becomes
intrinsically non-geometric, and would be sourced by some non-geometric
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analog of a Pontryagin class. That is, the standard expression Tr (R ∧R) is
not invariant under the SL(2,Z) action on ρ and so is not well defined. To
understand these components of the tadpole requires a world-sheet analysis.
While this case does not seem to occur for models with F-theory duals, it
would be very interesting to determine whether a non-trivial dH3 could be
sourced this way since it would provide a new kind of non-Kähler solution
which locally satisfies the quite restrictive supersymmetry constraints, while
solving the Bianchi identity (3.19) via T -duality.

The only component of dH3 for which we might be able to use our adi-
abatic picture is when dH3 is supported completely on B, which requires a
compactification to four dimensions or lower. This is the charge for NS5-
branes which wrap the torus fiber. We note that ρ monodromies can never
create NS5-branes which wrap the fiber. Those branes are always transverse
to the torus fiber. So at least for this component, we might hope to treat τ
and ρ in a similar fashion.

Let us try a direct attempt to understand this component of the charge
tadpole. As a warm up case, let us take a geometric heterotic compacti-
fication on an elliptic space M→ B. What we would like to do is express
the Chern classes ofM in terms of those of B together with the data defining
the elliptic fibration. We can follow an approach used in [63–65]. For this
geometric model we can present M in Weierstrass form as before. Let W
be a P

2 bundle over B with homogeneous coordinates [u, v, w] which are
sections of

O(1)⊗O(2Lτ ), O(1)⊗O(3Lτ ), O(1), (3.20)

respectively. The line bundle O(1) is the degree one bundle over the P
2

fiber. To describe M, we consider

s = −wv2 + u3 + λ2uw
2 + λ3w

3 = 0, (3.21)

where λ2 and λ3 are sections of the line bundles O(4Lτ ) and O(6Lτ ), respec-
tively while s is a section of O(3)⊗O(6Lτ ). In this purely geometric model,
we set

O(Lτ ) = O(−KB), (3.22)

to ensure thatM is Calabi–Yau.

Let us set α = c1(O(1)). The cohomology ring ofW is then generated over
the cohomology ring of B by the addition of α together with the relation,

α(α+ 2c1(B))(α+ 3c1(B)) = 0. (3.23)

This relation states that (u, v, w) are not permitted to have any common
zeroes. This relation holds in the cohomology ring of W . To restrict toM,
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we want to impose s = 0 but s is itself a section of a bundle with first Chern
class 3(α+ 2c1(B)). Any class on M that can be extended to W can be
integrated overM by multiplying by 3(α+ 2c1(B)).

Now we are ready to compute the Chern classes of M in terms of those
of B. Let CB denote the total Chern class of B. The total Chern class CW

of W is

CW = CB · (1 + α)(1 + α+ 2c1(B))(1 + α+ 3c1(B)). (3.24)

To get the Chern class of M, we use adjunction:

CM = CW · 1
1 + 3(α+ 2c1(B))

. (3.25)

To compute the 5-brane tadpole (3.19), we are really interested in p1(M) so
we want to extract c1(M) and c2(M) from (3.25). It is easy to check that
in this case, c1(M) = 0 as we expect. On expanding, we find

c2(M) = c2(B) + 4αc1(B) + 11c1(B)2. (3.26)

How might this computation generalize to include ρ monodromies? It is
important to note that the choice of connection used to compute Tr (R ∧
R) is quite central. The connection required by duality is the torsional
connection

Ω+ = ω +
1
2
H3, (3.27)

where ω is the spin connection; see [21,66] for a discussion about the role of
the connection in constructing geometric torsional solutions.

At the level of cohomology classes, the choice of connection does not mat-
ter — at least for geometric backgrounds. For non-geometric backgrounds,
the torsional connection will certainly depend on ρ, and this dependence
might now involve non-trivial topology induced from ρ monodromies. In a
patch where ρ and τ are single-valued, the metric itself depends on ρ2 via
the combination ρ2/τ2 in (1.2) while a dependence on ρ1 emerges from H3 in
the connection. From these arguments, it seems clear that ρ will contribute
to the gravitational source for the tadpole although the precise form of the
contribution is unknown. To proceed, let us treat τ and ρ symmetrically
as an ansatz. This is somewhat suggested both by duality with F-theory
and by a mirror transform on the fiber which exchanges ρ and τ but leaves
wrapped NS5-branes invariant.

So rather than a single P
2 bundle over B, let us consider a P

2 × P
2 bundle

over B. We will take a cubic surface in each P
2 with one encoding the τ
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variation and the other encoding the ρ variation, very much in the spirit of
the doubled torus formalism. Let β = c1(O(1)) for the second P

2. We will
impose our earlier constraint (3.14) that

O(Lτ + Lρ) = O(−KB)

and the relations

α(α+ 2c1(Lτ ))(α+ 3c1(Lτ )) = 0,

β(β + 2c1(Lρ))(β + 3c1(Lρ)) = 0, (3.28)

where we have abbreviated c1(O(L)) by c1(L) to reduce notational clutter.
Because there is really only one physical torus fiber, it only really makes
sense to integrate out the fibers and discuss the anomaly on the base. Given
this aim, we can simplify the relations (3.28) to

α(α+ 3c1(Lτ )) = 0,

β(β + 3c1(Lρ)) = 0. (3.29)

Now the analogue of (3.25) becomes

CM = CB · (1 + α)(1 + α+ 2c1(Lτ ))(1 + α+ 3c1(Lτ ))

× (1 + β)(1 + β + 2c1(Lρ))(1 + β + 3c1(Lρ))
[1 + 3(α+ 2c1(Lτ ))][1 + 3(β + 2c1(Lρ))]

. (3.30)

First, it is easy to check that c1(M) = 0 simply because of (3.14) and the
linearity of the computation of c1. This is completely natural. The more
interesting structure is c2 which is non-linear. We now find

c2(M) = c2(B) + 11c1(B)2 − 95c1(Lτ )c1(Lρ)− 9αβ

− 36(βc1(Lτ ) + αc1(Lρ)) + 4(αc1(Lτ ) + βc1(Lρ)). (3.31)

The first three terms of (3.31) can be directly compared with (3.26) since
they are fully supported on the base. The interesting addition is the qua-
dratic term−95c1(Lτ )c1(Lρ) which is only present in the non-geometric case.
While this computation suggests this coupling is present, it would be very
interesting to understand whether this is true directly from a world-sheet
computation.

It would also be nice to compare the NS5-brane anomaly to the D3-brane
anomaly of F-theory [63], as was done in [64] for a class of dual pairs.
The quantity to be determined in F-theory, namely the D3-brane charge,
is unambiguous though the singularities of the F-theory four-fold, reflecting
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the unbroken maximal gauge symmetry, make that computation potentially
subtle. What is far less clear is what that number should be compared
with in the heterotic string. In the geometric setting, U-duality related
NS5-branes wrapping the elliptic fiber to D3-branes rather directly but that
chain is certainly modified by the presence of ρ monodromies.

For models admitting an F-theory dual, an M5-brane wrapped on the
K3-fiber of the F-theory geometry does naturally provide a realization of
the world-sheet of the non-geometric heterotic string. This is similar to the
proposal in [17] for studying sigma-models of (geometric) heterotic torsional
backgrounds. We will not explore these interesting directions here, leaving
them to future work.

4 Heterotic solutions with torsion

In the previous sections, we constructed non-geometric heterotic solutions
by solving the Bianchi identity with point-like instantons — the only way
the H3 flux appeared was via ρ monodromies. Yet the most physically inter-
esting heterotic backgrounds involve more general torsion, or H3 flux, since
they contain fewer moduli than conventional Calabi–Yau compactifications.
From an F-theory perspective, the simplification we used in the preceding
discussion is equivalent to setting any bulk filling G4-flux to zero and look-
ing for heterotic duals of the F-theory geometry. In this section, we wish to
analyze the role of the bulk filling G4-flux, and its various dual descriptions.
Some notation and general relations of use in the following sections can be
found in Appendix C.

Torsional solutions were first described by [67] in the context of supergrav-
ity, and the known compact examples are based on the solutions constructed
in [3]. These geometries are constructed by dualizing M-theory compactified
on four-folds,16 M4, with bulk filling G4, resulting in a four-dimensional
heterotic compactification on a complex but non-Kähler geometric space
with non-trivial H3. The solution of the Bianchi identity (1.3) is guaranteed
by satisfying the tadpole condition in M-theory

nM2 = −
∫
M4

X8 − 1
2

∫
M4

G4 ∧G4, (4.1)

16In contrast to the prior discussion, the four-folds discussed in the next two sections
are not necessarily Calabi–Yau. Hence, we will denote them by M4 and not Z.
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Figure 2: Schematic of the duality chain that we use to generate non-
geometric heterotic solutions with flux.

where nM2 is the number of space-time filling M2-branes. The integral of
X8 is given by the Euler character of the four-foldM4:

−
∫
M4

X8 = χ/24.

In the language of Section 3, those models involved τ monodromies but con-
stant ρ. Using a duality chain shown in figure 2, we will show the presence
of torsional flux gives us an additional way to generate non-geometric solu-
tions. Dualizing flux to get “non-geometric fluxes” has been explored in
past work like [18,68].

These torsional non-geometric heterotic solutions, in turn, have novel
type-IIB and M-theory duals, which we construct in Section 5. This basi-
cally completes a duality chain which starts with M-theory on a conformally
Calabi–Yau four-fold and generates new compact solutions via U-duality.

We will not work in generality; rather we will focus on a simple example
that will illustrate most of the germane features. The main simplification we
use is an orbifold metric for aK3 surface. The advantage of this replacement
is that the the orbifolded theory inherits part of the U-duality group of
the covering toroidal compactification. Otherwise, we would need to worry
about patching with mirror transforms of a K3 surface rather than the
U-duality group of a torus.

M-theory on a Calabi–Yau four-fold M4

Let us briefly review the main differences between the M-theory compacti-
fications discussed in Section 3 and compactifications with bulk filling G4-
flux. As described in [69], with flux the metric becomes warped so that the
four-fold is now conformally Calabi–Yau,

ds2 = e−φημνdx
μdxν + e

1
2
φg̃MNdx

MdxN , (4.2)

where g̃MN is the metric on the four-fold. The flux must be a primitive
(2, 2)-form:

Gabcd = Gabcd̄ = 0, gcd̄Gab̄cd̄ = 0. (4.3)
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There is also a space-time filling flux:

Gμνρa = ∂ae−3φ/2. (4.4)

The warp factor obeys a Poisson equation

�e3φ/2 = �8

{
4π2X8 − 1

2
G4 ∧G4

}
− 4π2

n∑
i=1

δ8(x− xi), (4.5)

where the Laplacian and Hodge dual are taken with respect the unwarped
internal metric gMN , and we have allowed for the possibility of space-time
filling M2-branes localized at points, xi, in the four-fold.

There is an obstruction to solving the Poisson equation (4.5) unless the
charge cancelation condition (4.1) is satisfied; the presence of the higher
derivative coupling, X8, is crucial for the existence of a solution. In our
subsequent discussion, we will frequently arrive at expressions that depend
on higher derivative terms which, although vanishing at the level of super-
gravity, are essential for the existence of the solution.

These M-theory solutions have three-dimensional heterotic duals when
M4 admits a K3 fibration, and four-dimensional duals when that K3 fibra-
tion admits a compatible elliptic fibration. The duality chain sketched in
figure 2 involves T -duality so we need a starting four-fold metric with suit-
able (approximate) isometries.

We could start with a semi-flat metric (1.2) for an elliptic four-fold. How-
ever, to make our life simpler and still illustrate the pertinent features of
our solutions, we will further restrict to a particularly nice four-fold; namely,
K3× K̃3, where both K3 spaces admit elliptic fibrations. Further, we will
take K̃3 to be an orbifold space K̃3 = T 4/Z2. On shrinking the elliptic fiber
of K̃3, we will arrive at the orientifold limit of an F-theory compactification
on K3× T 2

(−1)FL Ω Z2
.

Let us take a square complex structure on T 4, and choose the complex
coordinates (w, v) to have canonical periodicity. The orbifold Z2 acts by
sending

(w, v)→ (−w,−v). (4.6)

We can choose v to coordinatize the elliptic fiber and w the base. The
four-form flux takes the form:

G4 = α ∧ dw ∧ dv̄ + β ∧ dw̄ ∧ dv̄ + c.c., (4.7)
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where α ∈ H1,1(K3,Z), β ∈ H2,0(K3,Z) are primitive classes with respect
to the Kähler form of K3. If β = 0 then this compactification preserves
eight supersymmetries, otherwise it preserves four supersymmetries.

4.1 Type-IIB and Type-I torsional solutions

As a first step to constructing the new heterotic solutions, we take the
F-theory limit by shrinking the elliptic fiber with coordinate v. This gives a
type-IIB compactification on K3× T 2

(−1)FL Ω Z2
with D7-branes and possibly

D3-branes, depending on whether nM2 is non-zero. The metric for this
background is given by,

ds2 = e−3φ/4ημνdx
μdxν + e3φ/4gmndx

mdxn + e3φ/4|dw1 + idw2|2, (4.8)

where dw = dw1 + idw2 is along the T 2 while the indices m,n = 1, . . . , 4
parametrize the directions along the K3 surface, and gmn is the Ricci-flat
K3 metric. The M-theory four-form flux lifts to type-IIB three-form fluxes
given by

H3 = (α+ β) ∧ dw + c.c., F3 = i(β − α) ∧ dw + c.c.,

and a five-form flux that fills space-time

F5 = dC4 +H3 ∧ C2, where dC4 = ε4 ∧ d e−3φ/2. (4.9)

We will often find it convenient to write

F3 = Fw1dw1 + Fw2dw2 = Fwdw + Fw̄dw̄, (4.10)

and similarly for H3. Writing α = α1 + iα2 and β = β1 + iβ2 we find

H3 = 2(α1 + β1) ∧ dw1 + 2(β2 − α2) ∧ dw2,

F3 = 2(α2 + β2) ∧ dw1 + 2(α1 − β1) ∧ dw2,
(4.11)

The fluxes satisfy a constraint (corresponding to imaginary self-duality of
G3) given by

F3 = �6(e−ΦBH3), (4.12)

where �6 is with respect to the unwarped metric. The type-IIB dilaton ΦB

is determined by the complex structure of the elliptic fiber with coordinate
v. We set gs = eΦB . If β = 0 then Hw1 = gsFw2 , and Hw2 = −gsFw1 .
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By T -dualizing along the w1, w2 coordinates, we arrive at a geomet-
ric type-I configuration with flux. This type-I solution consists of a six-
dimensional manifold that is torus fibered with metric

ds2 = e−3φ/4ημνdx
μdxν + e3φ/4gmndx

mdxn + e−3φ/4|dw +AH |2. (4.13)

The one-form AH = Bw1 + iBw2 is constructed out of a trivialization of the
type-IIB field strength H3. The trivialization is chosen such that the Bwi

are independent of the T 2 elliptic fiber in the K3 surface. This is a gauge
choice which is convenient for the next step in the duality chain.

The only non-zero RR flux is

F ′
3 = Fw1 ∧ dw2 − Fw2 ∧ dw1 + (Fw1 ∧Bw2 − Fw2 ∧Bw1) + �K3de3φ/2,

(4.14)

where in the last line we used (F5)w1w2 = − �K3 de3φ/2. Note that dF ′
3 = 0

at the level of supergravity, and F ′
1 = F ′

5 = 0 consistent with the type-I
field content. These are the solutions of [3]; a similar chain starting with
an elliptic Calabi–Yau three-fold in the semi-flat approximation gives more
general metrics described in [21]. Fortunately, we can extract the physics
we wish to see starting from this clean example.

4.2 New heterotic solutions with torsion

We follow the duality sequence illustrated in figure 2. Start with the type-I
solution in Section 4.1 and S-dualize to the heterotic string. Then apply
two T -dualities along the fiber of the K3 factor to generate the new non-
geometric heterotic solution. This is the extra ingredient and the remaining
unexplored duality direction in the possible dual realizations of F-theory on
K3× K̃3.

If we choose an orbifold metric T 4/Z2 for this K3 factor, we can write
down explicit expressions for the metric and fluxes. Again, we could take a
more general semi-flat metric but this should suffice.

So let us take a K3 surface realized as a Kummer surface T 4/Z2; further
choose T 4 = T 2 × T 2. Let z1 = x1 + iy1 be coordinates for the T 2 fiber of
the K3 surface, and let z2 = x2 + iy2 be coordinates of the T 2/Z2 base.
For simplicity, we choose square tori with canonical periodicities so that
dzi = dxi + idyi with i = 1, 2 is a basis of holomorphic one forms.
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We will construct an N = 2 solution, whose existence post-duality is more
trust-worthy, by choosing β = 0 and α to be the following (1, 1)-form:

α = Adz1 ∧ dz̄2. (4.15)

The constant A is real. With this choice, the fluxes can be trivialized as
follows (in real coordinates):

Bw1 = 2A(x2dx1 + y2dy1), Bw2 = 2A(y2dx1 − x2dy1),

Cw1 = 2A(x2dy1 − y2dx1), Cw2 = 2A(x2dx1 + y2dy1). (4.16)

We pick this trivialization to ensure that there are isometries along the
(x1, y1) directions. We can T -dualize along these directions to give a new
heterotic solution (we denote the new field components by hats):

d̂s2 = ημνdx
μdxν + e3φ/2[�2(dx2

1 + dy2
1) + (dx2

2 + dy2
2)] + (dw1 +�Bw1)2

+ (dw2 +�Bw2)2, (4.17)

where � is given by

� = (e3φ/2 + 4|A|2(x2
2 + y2

2))
−1. (4.18)

Note that at the level of supergravity, the solution to the warp factor equa-
tion (4.5) with this choice of fluxes is given by

e3φ/2 = 1− 4A2(x2
2 + y2

2) + Ø(α′) (4.19)

implying � = 1 + Ø(α′2). The remaining terms arise from higher derivative
corrections to the warp factor equation (4.5) needed to ensure a solution
exists. The B-field is given by

Bw1 = −2A�(x2dx
1 + y2dy

1), Bw2 = −2A�(y2dx
1 − x2dy

1), (4.20)

and the heterotic dilaton is given by

eΦh = e3φ/4�. (4.21)

This solution is non-geometric in the following sense. Locally, the solu-
tion has a well-defined supergravity description and the above-field content
solves the supersymmetry conditions and equations of motion (we show this
explicitly in the type-IIB and M-theory duals below). On the other hand,
the background is only globally well-defined when we include the SO(4, 4,Z)
transformations of the T 4 fiber. This is to be contrasted with the mechanism
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for generating non-geometries described in Section 3. Since K̃3 is trivially
fibered overK3, that approach would give a geometric heterotic background.

It would be very interesting to explore compactifications in which this
kind of torsion H3-flux and the ρ monodromies of Section 3 are combined.

5 Type-IIB and M-theory non-geometric duals

5.1 G-structures and local geometry

In this final section, we will describe the dual type-IIB and M-theory descrip-
tions of the heterotic solutions derived in the previous section (see figure 3).
These solutions are novel, having an interesting local and global geometry.
We will characterize the local geometry in terms of G-structures, developed
in [70, 71], in which the spinors classify the local geometry in terms of the
fluxes; see, for example, [72, 73] for reviews.

In compactifications without flux to four dimensions, supersymmetry
requires the existence of a covariantly constant spinor on the internal six-
dimensional manifold. This implies the holonomy group is reduced to SU(3),
which is a defining characteristic of a Calabi–Yau manifold. The supersym-
metry spinors can be used to form spinor bilinears which correspond to forms
on the internal space. Two forms play a distinguished role:

J2 = −2iη†γMNη dx
MdxN , Ω3 = −2iηTγMNP ηdx

MdxNdxP . (5.1)

Since the spinor is covariantly constant, these forms are closed. It is not
hard to show that J corresponds to the Kähler form and Ω the holomorphic
three-form. The supersymmetry spinor therefore allows us to define forms
which characterize the geometry of the internal space.

Figure 3: The duality chain used to generate the heterotic solutions in the
previous section as well as their type-IIB and M-theory dual descriptions.
The bold face indicates new solutions discussed in this paper.
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How does this change when we include fluxes in the compactification?
The first thing to observe is the fluxes enrich (and complicate) the supersym-
metry variations, allowing more general backgrounds than just Calabi–Yau
spaces. Secondly, the gravitino variation implies that the supersymmetry
spinor is no longer covariantly constant with respect to the Levi–Civita
connection, but is covariantly constant with respect to a connection that
involves the flux. Schematically,

∇Mη = 0 −→ (∇+ flux)Mη = 0. (5.2)

Although the manifold no longer has reduced holonomy, it still has a reduced
structure group G ⊂ SU(4), and the deviation from special holonomy can
be measured using instrinsic torsion. In particular, dJ and dΩ are no-longer
zero, and are sourced by the fluxes. To be more specific, we will consider
a general N = 1 type-II compactification. There are two supersymmetry
spinors, which can be written (in string frame):

ε1 = ζ− ⊗ η1
+ + c.c.,

ε2 = ζ− ⊗ η2
+ + c.c., (5.3)

where ζ± are d = 4 Weyl spinors and ηi± are internal Weyl spinors, with the
sign denoting chirality. In this notation, complex conjugation corresponds
to a flip in chirality. In order to preserve N = 1 supersymmetry, the two
spinors η1 and η2 need to be related. The type of relation characterizes
the internal geometry in terms of the structure group of the manifold. In
particular there are three obvious cases:

1. η1 ∝ η2 everywhere. The structure group is at most SU(3) ⊂ SU(4).
This class of solutions typically come from large volume compactifica-
tions discussed in [3, 74], and are conformally Calabi–Yau.

2. η1 ⊥ η2 everywhere. The structure group of the internal manifold is
reduced from SU(3) to SU(2) and this imposes strict topological con-
ditions on the internal manifold; for example, χ = 0. The geometry is
labeled “static SU(2).”

3. η1 and η2 interpolate between cases (1) and (2) at different points
on the internal space: there may be points where they are parallel
and other points where they are orthogonal. This is clearly the most
general type of solution and is called “local SU(2).”

In our case the geometry will have local SU(2) structure, with a structure
group that includes the quantum O(4, 4,Z) T-duality group.17 The novelty

17See Appendix E for a brief overview of the necessary SU(2) G-structure analysis.
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arises in the kinds of flux one can write down without breaking supersym-
metry. Our example is one that admits (0, 3) and (3, 0) G3-flux along with
non-trivial F1 and F5 fluxes.18

Although we derive the solution in the orbifold limit, the background
has moduli which give rise to a family of type-IIB solutions. Our type-IIB
solution can also be lifted to M-theory where the resulting flux is no longer
necessarily (2, 2). This is in contrast to the solutions typically studied which
are based on [69]. Our new solutions are therefore examples of the more
general structures possible when a more general spinor ansätze is used in
solving the supergravity equations of motion. We relegated some of the
details required to demonstrate that the solutions preserve supersymmetry
and obey the equations of motion to Appendix E.

5.2 A non-geometric type-IIB solution

Our starting point is again the type-I solution described in Section 4.1 with
the choice of fluxes given by (4.16). Our parameterization of the flux and
metric imply there are isometries along the (x1, y1) directions of T 4/Z2,
so we can T -dualize these directions using the Buscher rules to construct
a dual type-IIB solution. For convenience, these rules are summarized in
Appendix D.

The D9/O9 system of type-I becomes D7/O7-branes localized in the fiber
of T 4/Z2. Denoting the T -dualized fields by G̃, B̃, Φ̃ and C̃n we find the
NS–NS background:

d̃s2 = e−3φ/4ημνdx
μdxν + e3φ/4 {� [dwdw̄ + dz1dz̄1] + dz2dz̄2} (5.4)

eΦ̃IIB = �, (5.5)

B̃2 = −A�z̄2dz1 ∧ dw + c.c., (5.6)

where dzi = dxi + idyi, dw = dw1 + idw2 and� is given in (4.18). Metrically
the internal spaceM3 is a T 4 fibration over a T 2 base. We will explain below
how to make sense of this globally. The RR field content is

F̃1 = − �P1 d�−1 = Ø(α′2), (5.7)

18It is usually the case that the presence of (0, 3) or (3, 0) fluxes in compact string
solutions breaks supersymmetry. That is true for models with a large volume limit. Here
we relax that constraint.
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F̃3 = −iAdw ∧ dz1 ∧ dz̄2 + c.c.+ Ø(α′2),

F̃5 = −A2�[�P1d(|z2|2) ∧ dz1 ∧ dz̄1 ∧ dw ∧ dw̄] + hodge dual + Ø(α′2),
(5.8)

where �T 2 denotes taking the Hodge dual with respect to the unwarped
metric on the P

1 base. In the last line, we have taken the ten-dimensional
Hodge dual (so that F̃5 is self-dual). Note that dF5 = H3 ∧ F3, which is a
good consistency check. The spinors dualize as follows

ε̃L = e−3φ/16ζ− ⊗ η+ + c.c.,

ε̃R = e−3φ/16ζ− ⊗ [cη+ + dχ+] + c.c., (5.9)

where η+ and χ+ are two orthogonal spinors defined on the unwarped inter-
nal space. The coefficients are given by:

c = �
(
4A2|z2|2 − e3φ/2

)
d = 4z2�A e3φ/4. (5.10)

This is a compact type-IIB vacuum with local SU(2) structure: at generic
points on the internal space, the spinors ε̃L and ε̃R are neither orthogonal
nor parallel, even at the level of supergravity.

The solution is non-geometric in a fashion similar to the heterotic solu-
tion we described in Section 4.2. In this case, the internal space M3 looks
like a T 4 fibration over a T 2/Z2 base. By including group elements from
the O(4, 4,Z) T -duality group (which can be thought of as coming from
compactifying type-IIB on the T 4 fiber), we find the metric is globally well
defined.

The internal space is therefore a fibration (after including the non-
geometric twists), with 7-branes localized in the T 4 fiber. Although we
deduced the presence of the 7-branes via T -duality, the action of the non-
geometric twists on the open string sector is quite complex. As alluded to in
the introduction, this is one of the complications one must face when ana-
lyzing non-geometric compactifications in type-II string theory; M-theory
and the heterotic string do not have such issues.

We have checked that the background given above locally satisfies the
type-IIB supersymmetry constraints. The details are rather involved, and a
summary is given in Appendix E.
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As a further test, this solution can be lifted to M-theory (see the following
section) and the equations of motion checked. Explicitly these are given by

RMN − 1
2GMNR = 1

12

(
GMPQRG

PQR
N − 1

8GMNGPQRSG
PQRS

)
. (5.11)

The fluxes must also satisfy the Bianchi identity,

d ∗G4 + 1
2G4 ∧G4 = Ø(
4p). (5.12)

After performing the lift to M-theory, one can see explicitly that our solution
satisfies Einstein’s equations.

It is interesting to note that the typical supersymmetry constraints used
in the literature for studying type-IIB flux compactifications are that the
G3-flux must be imaginary self-dual, primitive and (2, 1) with respect to
the complex structure [3]. Fluxes that do not obey these constraints are
typically thought to break supersymmetry. We have constructed here a
counter-example to this lore: a solution with G3-flux that is not (2, 1),
consistent with a non-holomorphic dilaton. Such solutions were first pointed
out in [75] and here we have constructed an example. There are many ways
to generalize this construction like starting with both α and β fluxes which
would give N = 1 models.

5.3 Lift to M-theory

We now lift the type-IIB solution to M-theory in the usual way. This is useful
because we avoid the difficulties in defining orientifold projections in non-
geometric type-IIB. So assume M3 is the base of a torus-fibered four-fold
M̃4, with the complex structure of the torus determined by the type-IIB
string coupling. This is depicted in figure 4. The three-fold M3, whose
fibration structure is illustrated in figure 5, is itself T 4-fibered (including
non-geometric twists). Therefore the M-theory solution itself only makes
sense using the appropriate U-duality group. Using the standard relation
between type-IIB and M-theory, we can read off the M-theory metric:

ds211 = e−φημνdx
μdxν + eφ/2(�dwdw̄ +�dz1dz̄1 + dz2dz̄2) + eφ/2dvdv̄.

(5.13)

The coordinate v parameterizes the torus fiber, and we absorb the volume
into v ∼ v + 2πR ∼ v + 2πRτ . The complex structure of the torus is given
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Figure 4: Fibration structure of the M̃4 solution.

Figure 5: Fibration structure of the type-IIBM3 solution.

by the axio-dilaton of type-IIB,

τ = C̃0 + i(e3φ/2 + 4A2|z2|2), (5.14)

where dC̃0 = F̃1 in (5.7).

There is also the M-theory three-form AMNP , which has internal legs
given by the type-IIB two-forms. Explicitly, the three form has one leg
along the fiber and one along the base. It is determined in terms of type-IIB
fluxes,

Bμν ←→ Aμνv1 , (5.15)

Cμν ←→ Aμνv2 , (5.16)

with AMNP = 0, otherwise. There is also the type-IIB five-form field strength
with four legs in space-time specified by (5.8). This lifts to a space-time
filling four-form field strength G012a, where G = dA.

Let us examine the global behavior. Under the periodicities z2 ∼ z2 +
2π ∼ z2 + 2πτ the metric and complex structure are defined only up to U-
duality transformations. We have arrived at solution of M-theory that is
locally geometric, but globally non-geometric, requiring patching by
U-duality. This is a U-fold as originally sought in [11] but of a quite different
local form.

A short note on dualizing the spinor. It is possible to show that the
type-IIB spinor lifts to a Majorana spinor in M-theory of the form,

ε = e−5φ/4ψ ⊗ (ξ1 + ξ2). (5.17)
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Here ξ1 and ξ2 are d = 8 Majorana spinors, which have chiral components:

ξi = ξ+i + ξ−i , (5.18)

with ξ±i Majorana–Weyl spinors. Because of the zeroes in c and d defined
in (E.10), these chiral components will also have zeroes. This is a back-
ground of the type discussed by Tsimpis [76], in which we preserve N = 2 in
d = 3. This more general spinor ansatz is the reason one can have more gen-
eral flux configurations (i.e., not necessarily (2, 2) fluxes) without breaking
supersymmetry.

Appendix A Weierstrass models for maximal
gauge symmetry

In this appendix, we summarize the derivation of equations (2.13) and (2.15),
following [38,46–48]. To derive equation (2.13), we use Weierstrass form: in
order to get fibers of type II∗ at both σ = 0 and σ =∞, Kodaira’s table
implies that the coefficient of X must have zeros of order 4 at both 0 and
∞. Since this coefficient has degree 8, it therefore takes the form aσ4 in
affine coordinates. Similarly, the coefficient of X0 must have zeros of order
5 at both 0 and ∞, with overall degree 12; thus, it must take the form
bσ5 + cσ6 + dσ7.

To derive equation (2.15), we start by imposing a Z2 subgroup of the
Mordell–Weil group. (We do this because the desired gauge group ZSpin32/Z2

has fundamental group Z2, which implies that the torsion part of the
Mordell–Weil group should be Z2 [77].) Having a Z2 subgroup of the
Mordell–Weil group means that there should be a point of order 2 on
the elliptic curve, and by a translation in the (x, y) plane we can move
this point to (0, 0). For (0, 0) to be a point of order two, we need the tan-
gent line of the elliptic curve at this point to be vertical; this implies that
the equation takes the form

y2 = x3 + p4(s)x2 + ε8(s)x, (A.1)

where p4(s) and ε8(s) are polynomials of degree 4 and 8, respectively. Using
the substitution x = x̄− p4(s)/3, we can restore this to Weierstrass form:

y2 = x̄3 +
(
ε8(s)− 1

3p4(s)2
)
x̄+ p4(s)

(
2
27p4(s)2 − 1

3ε8(s)
)
, (A.2)
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which allows us to compute the discriminant:

Δ = 4
(
ε8(s)− 1

3p4(s)2
)3 + 27p4(s)2

(
2
27p4(s)2 − 1

3ε8(s)
)2

= ε8(s)2
(
4ε8(s)− p4(s)2

)
. (A.3)

To get a fiber of type I∗12 at s =∞, f , g, and Δ must have zeros of
order 2, 3, and 18 (respectively) at s =∞. Thus, with respect to the affine
coordinate s, we must have

deg
(
ε8(s)− 1

3p4(s)2
)

= 8− 2 = 6,

deg
(
p4(s)

(
2
27p4(s)2 − 1

3ε8(s)
))

= 12− 3 = 9
(A.4)

and

deg Δ = deg ε8(s)2
(
4ε8(s)− p4(s)2

)
= 24− 18 = 6. (A.5)

From this data, we argue as follows. First, if deg p4(s) = 4, then there
must be cancellation between leading terms of p4(s)2 and ε8(s)2 to get lower
degree for both ε8(s)− 1

3p4(s)2 and 2
27p4(s)2 − 1

3ε8(s). But since those linear
combinations are not proportional to each other, it is not possible to acheive
both cancellations. Thus, deg p4(s) ≤ 3. To get the correct reductions in
degree, it is easy to see that also deg ε8(s) ≤ 6. But now if deg p4(s) < 3,
the second combination would have its degree reduced below 9. Thus
deg p4(s) = 3. In equation (2.15) and also in Appendix B, we refer to this
cubic polynomial as p(s) = p0s

3 + p1s
2 + p2s+ p3.

It then follows that deg(4ε8(s)− p4(s)2) = 6, and so to achieve the correct
order of vanishing of the discriminant, the degree of ε8(s) must be ≤ 0, i.e.,
ε8(s) must be constant. In equation (2.15) and also in Appendix B, we
simply refer to this constant as ε.

Appendix B An explicit Shioda–Inose structure

In this appendix, we describe the explicit Shioda–Inose structure found by
Clingher and Doran [6], and make it more precise. Our first step is to make
explicit the involution on the K3 surface ZSpin32/Z2

, and to compute the
quotient by that involution.

The involution on ZSpin32/Z2
is induced by translation by the point of

order 2. To work this out geometrically, we start with an arbitrary point
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(x0, y0) on the elliptic curve and connect it by a line to (0, 0); this line has
equation y = (y0/x0)x. Substituting in, we find

(y2
0/x

2
0)x

2 = x3 + p(s)x2 + εx (B.1)

or

0 = x3 +
(
p(s)− y2

0/x
2
0

)
x2 + εx

= x(x2 +
(
p(s)− y2

0/x
2
0

)
x+ ε)

= x(x− x0)(x− ε/x0), (B.2)

since
−x0 − ε/x0 = p(s)x− y2

0/x
2
0. (B.3)

The third point of intersection with the line is therefore

(ε/x0, εy0/x
2
0). (B.4)

The translation by (0, 0) yields the point with the same x-value, but the
negative of the y-value; that is, our automorphism is:

(x, y) �→ (ε/x,−εy/x2). (B.5)

The quotient can be described by introducing invariants

ξ = x+
ε

x
,

η = y − εy

x2

(B.6)

and observe that our equation can be written y2 = x3 + p(s)x2 + εx = x2

(ξ + p(s)). Then

η2 = y2
(
1− εy

x2

)2

= x2(ξ + p(s))
(
1− εy

x2

)2

= (ξ + p(s))
(
x− εy

x

)2

= (ξ + p(s))(ξ2 − 4ε). (B.7)

This is the equation of the quotiented surface. Its discriminant is

−16ε(p(s)2 − 4ε)2, (B.8)
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which has roots at s =∞ and at the roots of p(s)± 2
√
ε (the latter are all

double roots).

Clingher and Doran [6] start with the Kummer surface of the product
E × F , where E is the double cover of CP

1 with branch points {0, 1, α,∞}
and F is the double cover of CP

1 with branch points {0, 1, β,∞}. Clingher
and Doran use the analysis of Oguiso [78] to locate the elliptic fibration on
the Kummer surface Km(E × F ) which corresponds to unbroken Spin 32/Z2,
and find that the singular fibers of type I2 of that fibration are located at 6
specific values of the parameter t of the fibration, divided into two groups
of three [6, equation (59)]:

{
1,

1
α
,
1
β
,

1
αβ

,
αβ + 1
αβ

,
α+ β

αβ

}
=
{

1,
1
αβ

,
α+ β

αβ

}
∪
{

1
α
,
1
β
,
αβ + 1
αβ

}
.

(B.9)

By rescaling the parameter t to s = (αβ)t, we can scale all of these singular
values by αβ, giving the values

{αβ, β, α, 1, αβ + 1, α+ β} = {αβ, 1, α+ β} ∪ {β, α, αβ + 1} . (B.10)

The monic polynomials that vanish on these two sets

D1(s) = (s− αβ)(s− 1)(s− α− β),

D2(s) = (s− β)(s− α)(s− αβ − 1),
(B.11)

then have the remarkable property that their difference

D1(s)−D2(s) = αβ(α− 1)(β − 1) (B.12)

is a constant and, in particular, is independent of s. Thus, for some monic
polynomial q(s), the polynomials Dj(s) can be written as q(s)± 1

2αβ(α−
1)(β − 1).

Since the only singular fibers of the elliptic fibration away from s =∞
are the I2 fibers which are located at the roots of Dj(s), and at each of
which the discriminant has a double zero, the discriminant must be (up to
a multiplicative constant):

D1(s)2D2(s)2 = (q(s) + 1
2C)2(q(s)− 1

2C)2 = (q(s)2 − 1
4C

2)2, (B.13)

where C = αβ(α− 1)(β − 1). This is precisely the form which we derived
in equation (B.8), if we identify C2/4 with 4ε and q(s) with p(s).



1564 JOCK MCORIST ET AL.

In other words, in our quotient ZSpin(32)/Z2
/ιSpin(32)/Z2

, the roots of p(s)±
2
√
ε are the two sets

{αβ, 1, α+ β} and {β, α, αβ + 1} . (B.14)

It is then easy to derive the formulas:

p(s) = s3 − (α+ 1)(β + 1)s2 + ((α+ β)(1 + αβ) + αβ)s

− 1
2αβ(α+ 1)(β + 1) (B.15)

ε = 1
16α

2β2(α− 1)2(β − 1)2, (B.16)

since
αβ(1 + αβ) + αβ(α+ β)

2
=
αβ(α+ 1)(β + 1)

2
(B.17)

and
αβ(1 + αβ)− αβ(α+ β)

2
=
αβ(α− 1)(β − 1)

2
. (B.18)

We now wish to generalize this relation to a pair of elliptic curves for
which the equations have been given but not the set of branch points. To
this end, let

v2 = (u− α1)(u− α2)(u− α3) = u3 + λ1u
2 + λ2u+ λ3 (B.19)

and

w2 = (z − β1)(z − β2)(z − β3) = z3 + μ1z
2 + μ2z + μ3. (B.20)

define E and F . We claim that in this case, the two triples of roots of
p(s)± 2

√
ε will be given by

{α1β1 + α2β2 + α3β3, α2β1 + α3β2 + α1β3, α3β1 + α1β2 + α2β3} (B.21)

and

{α1β1 + α3β2 + α2β3, α2β1 + α1β2 + α3β3, α3β1 + α2β2 + α1β3}. (B.22)

To verify that these are the same roots as before, we can set α1 = β1 =
0, α2 = β2 = 1, α3 = α, and β3 = β; then these two triples reduce to the
previous case. Since the pair of triples is invariant under the action of the
symmetric group on either set of roots, the sets are the same.
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Now, however, the polynomials p(s)± 2
√
ε can be determined by a com-

putation with the elementary symmetric functions (λ’s and μ’s) of the roots
(α’s and β’s). The result is:

p1 = −λ1μ1,

p2 = λ2
1μ2 + λ2μ

2
1 − 3λ2μ2,

p3 = −λ3
1μ3 − λ3μ

3
1 − 1

2λ1λ2μ1μ2 + 9
2λ1λ2μ3 + 9

2λ3μ1μ2 − 27
2 λ3μ3,

ε = 1
16discu(u3+λ1u

2+λ2u+λ3)discz(z3+μ1z
2+μ2z+μ3).

(B.23)

By completing the cube (in u, in z, and in s), we can set λ1 = μ1 = p1 = 0,
leaving

p2 = −3λ2μ2,

p3 = −27
2 λ3μ3,

ε = 1
16(4λ3

2 + 27λ2
3)(4μ

3
2 + 27μ2

3).

(B.24)

Appendix C Some notation and useful relations

In this appendix, we summarize some notation and relations of use in the
construction of the explicit solutions of Sections 4 and 5.

We take coordinates (x1, y1, x2, y2) for K3, while for K̃3 we use (w1, w2,
v1, v2). Both surfaces are assumed to be elliptically fibered. We use Roman
indices to denote the following: m,n = x1, . . . , y2 the coordinates for the
total space K3; p, q = x2, y2 the P

1 base of the K3; i, j = x1, y1 the elliptic
fiber of K3. The indices a, b are tangent space indices for the internal space.
We also use the complex combinations dzα = dxα + idyα, for α = 1, 2 and
dw = dw1 + idw2.

The function � appears often:

� = 1
e3φ/2+|Bw1 |2+|Bw2 |2 . (C.1)

where |Bwi |2 = (Bwix1)2 + (Bwiy1)2 and � always satisfies � = 1 +O(α′2).

The relation between complex and real components for vectors and one-
forms are summarized by:

Cw = 1
2(Cw1 − iCw2), Cw1 = Cw + Cw̄, Cw2 = i(Cw − Cw̄). (C.2)
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Hodge duality on an m-dimensional manifold is defined as

�Fp =

√
G

p!(m− p)!ε
ν1...νp
μp+1...μmFν1...νpdx

μp+1 ∧ . . . ∧ dxμm . (C.3)

When taking Hodge dual it is useful to differentiate between warped and
unwarped metrics. In particular, ε will be with respect to the warped metric,
while ε is unwarped. The Hodge dual squares to

� � Fp = (−1)p(m−p)Fp, for a Riemannian space,

� � Fp = (−1)p(m−p)+1Fp, for a Lorentzian space. (C.4)

The adjoint differential operator is defined as

d† = (−1)(p+1)m+1 � d�, for a Riemannian space,

d† = (−1)(p+1)m � d�, for a Lorentzian space, (C.5)

while the Laplacian � = dd† + d†d.

The RR field strengths are defined by Fn+1 = dCn +H3 ∧ Cn−3, obeying

�10Fn = (−1)�n/2�F10−n.

Appendix D The T -duality rules

In this appendix, we summarize the Buscher rules which are extensively used
in constructing the new metrics.

D.1 Metric and fluxes

The Buscher rules determine the value of the metric and B-field. They are
given by [79],

G̃99 = G−1
99 ,

G̃i9 = G−1
99 Bi9,

B̃i9 = G−1
99 Gi9,
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G̃ij = Gij −G−1
99 (G9iG9j −B9iB9j),

B̃ij = Bij −G−1
99 (G9iB9j −B9iG9j),

2φ̃ = 2φ− lnG99, (D.1)

where i = 0, . . . , 8 and X9 is the isometry direction along which we T -
dualize. The dilaton becomes

eΦ′
= eΦ

(
det G̃
detG

)1/4

. (D.2)

The RR fluxes dualize as follows [79,80]:

C̃
(n)
μ...να9 = C(n−1)

μ...να − (n− 1)G−1
99 C

(n−1)
[μ...ν|9|Gα]9,

C̃
(n)
μ...ναβ = C

(n+1)
μ...ναβ9 + nC

(n−1)
[μ...ναBβ]9 + n(n− 1)G−1

99 C
(n−1)
[μ...ν|9|Bα|9|Gβ]9, (D.3)

where C denotes the original fluxes and C̃ the T -dualized fluxes. Here
μ, ν, α . . . 
= 9.

D.2 Spinors under T -duality

The spinors dualize according to the rules written down by Hassan [81]. For
T -duality of the supergravity spinors ε1,2 this is a simple generalization of
the flat space T -duality rules:

εL → εL,

εR → β9εR. (D.4)

In flat space, the space-time indices coincide with tangent space indices and
β9 = ΓΓ9 as usual. In a curved background, one simply generalizes β9:

β9 =
√
G−1

99 ΓΓ9, (D.5)

where GMN the original metric, with M,N space-time indices. The gamma
matrices satisfy {ΓM ,ΓN} = 2GMN , {Γ,ΓM} = 0 and Γ2 = 1. Further, Γ9 =
G9MΓM , or in terms of Lorentz frame indices a, b, . . ., we have Γ9 = e9aΓa,
where GMN = eaMηabe

b
N and eMa = GMNe

N
a . The normalization is deter-

mined by β2 = eiπFR .
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The vielbein transforms under T -duality as follows

ẽMa = QM
N e

N
a (D.6)

where

QM
N =

(
Gxx (G+B)xa

0 1

)
. (D.7)

The left-moving vielbein is invariant, while the right-moving Vielbein trans-
forms in the following way

eMa → QM
N eNa . (D.8)

Appendix E Type-IIB supergravity with SU(2) structure

In this section, the constraints supersymmetry imposes on the fluxes and
geometry are reviewed for a general SU(2) structure spinor ansatz. Such an
analysis was first performed in [75], and we review that work here because
the solutions derived in Section 4 are examples of this type.

The spinor basis used in [75] is inconvenient for our purposes, and so we
will rederive the pertinent results in a more convenient basis and notation.

E.1 Type-IIB supersymmetry

In this paper we are interested in d = 4 compactifications preserving N = 1
supersymmetry in space-time. The most general metric with Minkowski
space-time takes the form

ds2 = e−3φ/4ημνdx
μdxν + e3φ/4gabdy

adyb,

where the internal metric gab will in general have SU(2) structure. We
formulate the type-IIB supergravity variations in Einstein frame where the
SL(2,R)/U(1) symmetry of type-IIB supergravity is manifest. In Section
E.3, we will switch to string frame which is convenient for performing string
dualities.
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The only non-trivial variations are those of the dilatino and gravitino:

δλ =
i
κ

Γ̃MPMε
∗ − i

4
G̃ε, (E.1)

δΨM =
1
κ
D̃Mε+

i
480

Γ̃M1...M5
FM1...M5Γ̃Mε− 1

16
Γ̃M G̃ε

∗ − 1
8
G̃Γ̃Mε

∗.
(E.2)

The supersymmetry spinor ε is a complex d = 10 Weyl spinor, and the tilde
denotes gamma matrices that are defined with respect to the warped metric.
The field content of type-IIB consists of a three-form G3, axio-dilaton τ

and self-dual five-form F5. Here G̃ = 1
6GMNP Γ̃MNP . The derivative of the

dilaton and U(1) connection are given by

PM = f2∂MB, QM = f2Im (B∂MB
∗), with

B =
1 + iτ
1− iτ

, f−2 = 1−BB∗, τ = C0 + ie−Φ. (E.3)

To preserve d = 4 Poincare invariance, we require all fields to depend only on
internal coordinates, G3 to have only internal legs, and F5 to be space-time
filling viz.

F5 = (1 + �)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dh, (E.4)

with � the d = 10 Hodge dual and h = h(y) an arbitrary scalar defined on
the internal manifold. The relation to the usual string frame quantities
F3, H3 is given by

κG3 = ieiθF
s
3 − τHs

3

τ
1/2
2

, with eiθ =
(

1 + iτ∗

1− iτ

)1/2

. (E.5)

The five-form is rescaled

4κF5 = F s
5 , (E.6)

where s denotes string frame quantities. Newton’s constant is given by
2κ2 = (2π)7g2α′2. The metric and spinor are also rescaled

GMN = e−Φ/2Gs
MN , ε = e−Φ/8(ε1 + iε2). (E.7)
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E.2 SU(2) structure

Let us now turn to the spinor analysis of the type-IIB supersymmetry vari-
ations. The most general spinor ansatz preserving N = 1 space-time super-
symmetry is given in (5.3), which in Einstein frame, takes the form

ε = ζ− ⊗ η1
+ + ζ+ ⊗ η2

−, (E.8)

where ζ± are the d = 4 space-time supersymmetry spinors, while η1,2
± are

complex d = 6 Weyl spinors, with ± denoting chirality. The presence of
SU(2) structure implies that there are two orthogonal well-defined spinors
η+ and χ+. For a supersymmetric solution preserving local SU(2) structure,
we can expand η1,2 as

η1
+ = aη+ + bχ+, (E.9)

η2
+ = cη+ + dχ+. (E.10)

In SU(2) structure manifolds the spinors η+ and χ+ are used to form
spinor bilinears. These bilinears give a unique characterization of the geom-
etry. The spinors η± and χ± can be normalized so that η†±η± = χ†

±χ± = 1.
They are related by

χ+ = 1
2wmγ

mη−, (E.11)

where {γm, γn} = 2gmn refer to the unwarped metric. We can now form the
spinor bilinears:

wm = ηT
+γmχ+, Jmn = −iηT

−γmnη+,

Kmn = ηT
+γmnχ−, Ωnpq = −ηT

+γnpqη+. (E.12)

These bilinears encode information about the local geometry. By taking
their exterior derivative one gets expressions for the intrinsic torsion mod-
ules. The intrinsic torsion allows one to read off various metric properties –
for example, whether the metric is complex, Kähler, Calabi–Yau, etc. Note
that we have defined the forms (E.12) with respect to the unwarped metric.
Further, we have chosen a complex structure J defined by η+ and corre-
sponding (3, 0)-form Ω. With SU(2) structure this is not the only choice:
there is in fact, a U(1) of choices of complex structure given by

J = −iβT
−γmnβ+,
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where

β+ = η+ cosφ+ χ+ sinφ.

The choice of φ will not affect whether the solution is supersymmetric or
not, but does affect its interpretation. For example, the integrability of the
complex structure depends on the choice of φ [75].

With respect to the choice complex structure in (E.12) above, the one-
form w is holomorphic, as is the two-form K with K = J2 + iJ3. Further,

J = J1 +
i
2
w ∧ w̄, Ω = K ∧ w.

E.3 Solving type-IIB supergravity with SU(2) structure

We will now rewrite the type-IIB supersymmetry conditions (E.1) and (E.2)
in terms of the forms wm, Jmn, and Kmn defined in the previous section
following [75]. As a first step we decompose the fluxes into SU(2) forms.

Dilaton:

Pm = p1wm + p2w̄m + Πm, (E.13)

where Πm is a real one-form with w�Π = 0.

Three-form flux :

We decompose a general three-form flux in terms of the complex structure
given above,

G3 = g(3,0)K ∧ w + g(2,1)K ∧ w̄ + g̃(2,1)J
1 ∧ w + J1 ∧ V 1

+ w ∧ w̄ ∧ V 2 + w ∧ T 1 + w̄ ∧ T 2 + g(1,2)K̄ ∧ w
+ g̃(1,2)J

1 ∧ w̄ + g(0,3)K̄ ∧ w̄. (E.14)

This is the most general expansion of G3 in terms of SU(2) modules. Here
V i and T i are one-forms and two-forms, respectively, orthogonal to K and
w:

V i�w = 0, T i�w = 0.

The components g(2,1) and g(1,2) are primitive while g(2,1) and g(1,2) are non-
primitive. Further, combining V 1 and V 2, the primitive and non-primitive
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components can be made explicit viz.

J1 ∧ V1 + w ∧ w̄ ∧ V2 = 1
2

(
J1 − i

2
w ∧ w̄

)
∧ (V1 + 2iV2) + 1

2J ∧ (V1 − 2iV2).

(E.15)
The imaginary self-dual (ISD) limit corresponds to

g30 = g12 = g̃21 = 0, T 2 = 0,

(1 + iJ)(V 1 + 2iV 2) = (1− iJ)(V 1 − 2iV 2) = 0. (E.16)

Five-form flux and the warp factor:

Lastly, we may similarly expand the warp factor:

∂n(log e3φ/2) = σwn + σ̄w̄n + Σn,

(∂nh) = θwn + θ̄w̄n +Hn.

E.4 The supersymmetry variations

Dilatino:

First, we use the metric ansatz (E.1) together with the spinor ansatz (E.8)
and plug it into the dilatino variation (E.1) giving:

e−3φ/8 i
κ

(γ5 ⊗ γnPn) [ζ− ⊗ (a∗η+ + b∗χ+) + ζ+ ⊗ (c∗η− + d∗χ−]

= e−9φ/8 1
24

(γ5 ⊗ γnpq) [ζ+ ⊗ (aη− + bχ−) + ζ− ⊗ (cη+ + dχ+)]Gnpq.

The gamma matrices γa and γμ are defined with respect to the unwarped
metric, which results in the warp factor appearing. Because ζ+ and ζ−
are independent, the variations proportional to these spinors must vanish.
This gives

γnPn(a∗η+ + b∗χ+)− e−3φ/4κ

24
γnpqGnpq(cη+ + dχ+) = 0,

e−3φ/4κ

24
γnpqGnpq(aη− + bχ−)− γnPn(c∗η− + d∗χ−) = 0.

A complete basis is specified by η± and γnη±. We contract with these to
rewrite the dilatino variation in terms of SU(2) invariants. This gives the
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equations

2e3φ/4p1d
∗ = −κ [2ag(3,0) − ibg̃(2,1)

]
, (E.17)

2e3φ/4p2b
∗ = −κ (2c g(0,3) + id g̃(1,2)

)
, (E.18)

2a∗cg(0,3) = −i(b∗c+ a∗d)g̃(1,2) − 2b∗dg(2,1), (E.19)

2ac∗g(3,0) = g̃(2,1)i(ad
∗ + bc∗)− 2bd∗g(1,2). (E.20)

From contracting with γkη±, we find

(g + iJ)knΠnc
∗ +KknΠnd

∗

= −i
κe−3φ/4

4

[
(g − iJ)kn(V1 − 2iV2)na− bKkn(V 1 + 2iV 2)n

]
, (E.21)

(g + iJ)knΠna
∗ + K̄knΠnb

∗

= i
κe−3φ/4

4

[
c(g + iJ)kn(V 1 − 2iV 2)n − dK̄kn(V 1 + 2iV 2)n

]
. (E.22)

The terms V 1 + 2iV 2 and V 1 − 2iV 2 are part of the primitive and non-
primitive components of the flux, respectively. These terms source the
remaining part of the dilaton Πn and the spinor via a, b, c and d.

Equation (E.17) shows that the appearance of (3, 0) and non-primitive
(2, 1) flux source the holomorphic part of the dilaton, while (E.18) shows
the analogous statement for the (0, 3) and (1, 2) components of G3. The
second pair of equations, (E.19) and (E.20), show that the appearance of
(0, 3) flux is related to the primitive and non-primitive (2, 1)-components of
G3, and vice versa for the (3, 0) component.

Thus, as noted in [75], we see that with SU(2) structure, the three-form
flux no longer need be (2, 1) and primitive. Indeed, the non-primitive and
(3, 0) parts result in a non-holomorphic dilaton. We see both of these fea-
tures explicitly in our examples. Further, if we restrict to ISD fluxes, we are
left with a strict relation between the warp factor and the five-form flux.
Indeed, these equations determine a relation between specific components
of the three-form flux and the five-form flux which sources the warp factor.

Gravitino:

First consider the space-time component M = μ of (E.2). We rewrite
the gamma matrices in terms of the unwarped metric, and use the fact the
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∂με = 0 to find

δΨμ = − 1
4κ

[
γμ ⊗ γn∂n log e3φ/2

]
ε+ e3φ/2 [γμ ⊗ γn∂nh] ε

+
e−3φ/2

48
[γμ ⊗ γnpqGnpq] ε∗ = 0.

We substitute the SU(2) spinor ansatz. For the dilatino variation, the space-
time component decouples giving two independent equations proportional
to ζ+ and ζ−:

[
− 1

4κ
γn∂n log e3φ/2 + e3φ/4γn∂nh

]
(aη− + bχ−)

+
e−3φ/2

48
γnpqGnpq(c∗η− + d∗χ−) = 0,[

− 1
4κ
γn∂n log e3φ/2 + e3φ/4γn∂nh

]
(cη+ + dχ+)

− e−3φ/2

48
γnpqGnpq(a∗η+ + b∗χ+) = 0.

We now contract with a complete basis of spinors, as above, to give con-
straints on the warp factor and the fluxes. As in the case of the dilaton, we
may expand in terms of SU(2) invariants

∂n(log e3φ/2) = σwn + σ̄w̄n + Σn,

(∂nh) = θwn + θ̄w̄n +Hn.

We now get a series of equations

(σ − 4κθ e3φ/4)a = κ e−3φ/2(ig̃(2,1)c
∗ − 2g(1,2)d

∗), (E.23)

(σ̄ + 4κθ̄ e3φ/4)d = −κ e−3φ/2
(
2a∗g(0,3) − ib∗g̃(1,2)

)
, (E.24)

and

(g − iJ)kn(Σn − 4κ e3φ/4Hn)a+Kkn(Σn − 4κ e3φ/4Hn)b

= −i
κ

2
e−3φ/2

[
(g − iJ)kn(V 1 − 2iV 2)nc

∗ −Kkn(V 1 + 2iV 2)nd
∗
]
,

(E.25)

(g + iJ)kn(Σn + 4κ e3φ/4Hn)c+ K̄kn(Σn + 4κ e3φ/4Hn)d

= i
κ

2
e−3φ/2

[
(g + iJ)kn(V 1 − 2iV 2)na

∗ − K̄kn(V 1 + 2iV 2)nb
∗
]
. (E.26)
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If we restrict to ISD fluxes, we are left with a strict relation between the
warp factor and the five-form flux. This is to be expected from the type-B
SUSY analysis.

In the specific examples we construct, this is not the case since the flux
is not ISD. Indeed, these equations determine a relation between specific
components of the three-form flux, and the five-form flux which source the
warp factor.

We now solve the internal component of the gravitino with M = m in
(E.2). This is the most involved calculation, and will give a general equation
determining the coefficients a, b, c and d in terms of the fluxes. Following
the reasoning above, we find two independent equations from ζ+ and ζ−:

∇m(aη−) +∇m(bχ−) +
(

1
8
(γn

m − δn
m)∂n log e3φ/2 − i

2
Qm

)
(aη− + bχ−)

= −e3φ/2κ

2
γnγm∂nh(aη− + bχ−) +

e−3φ/4κ

96

(
γnpq

m + 9γ[npδq]
m

)
×Gnpq(c∗η− + d∗χ−),

∇m(cη+) +∇m(dχ+) +
(

1
8
(γn

m − δn
m)∂n log e3φ/2 − i

2
Qm

)
(cη+ + dχ+)

=
e3φ/2κ

2
γnγm∂nh(cη+ + dχ+) +

e−3φ/4κ

96

(
γnpq

m + 9γ[npδq]
m

)
×Gnpq(a∗η+ + b∗χ+),

which give two independent equations for ∇mη− and ∇mχ−. Rewriting
these equations gives

∇mη− =
1
Δ

(d∗∂ma− b∂mc
∗)η− +

1
Δ

(d∗∂mb− b∂md
∗)χ−

+
1
8
(γn

m − δn
m)∂n log e3φ/2η− − i

2
Qmη−

− e3φ/2κ

2Δ
γnγm∂nh [(ad∗ + bc∗)η− + 2bd∗χ−]

+
e−3φ/4κ

96Δ

(
γnpq

m + 9γ[npδq]
m

)
[(Gnpqc

∗d∗ + Ḡnpqab)η−

+ (Gnpqd
∗ 2 + Ḡnpqb

2)χ−],

and

∇mχ− =
1
Δ

(c∗∂ma− a∂mc
∗)η− +

1
Δ

(c∗∂mb− a∂md
∗)χ−

− 1
8
(γn

m − δn
m)∂n log e3φ/2χ− +

i

2
Qmχ−



1576 JOCK MCORIST ET AL.

+
e3φ/2κ

2Δ
γnγm∂nh [2ac∗η− + (bc∗ + ad∗)χ−]

− e−3φ/4κ

96Δ

(
γnpq

m + 9γ[npδq]
m

)
[(Gnpqc

∗ 2 − Ḡnpqa
2)η−

+ (Gnpqc
∗d∗ − Ḡnpqab)χ−],

where Δ = ad∗ − bc∗ is non-singular for SU(2) structure. Degenerate points
are where the structure becomes SU(3). We now use d(ηT

+η−) = 0,
d(χT

+χ−) = 0 and d(χT
+η−) = 0 to give a series of equations determining

a, b, c and d.

1. Using d(ηT
+η−) = 0 gives

d∗∂ma− b∂mc
∗

Δκ
+
d∂ma

∗ − b∗∂mc

Δ∗κ

= −1
8
∂m log e3φ/2 − e3φ/2

2
(δn

m − iJn
m)∂nh

ad∗ + bc∗

Δ
− e3φ/2Kn

mHn

(
bd∗

Δ

)

+
e−3φ/4

4Δ
wm

[
4g12(d∗)2 − ic∗d∗g̃21 − iab g̃∗12 + 4b2g∗21

]

+
e−3φ/4

4Δ∗ wm

[
4g∗03(d)

2 + 2icdg̃∗12 + 2ia∗b∗ g̃21 + 4(b∗)2g30
]

+
e−3φ/4

16Δ
[
(Jn

m − 3iδn
m)(V 1 + 2iV 2)nc

∗d∗ + iKn
m(3V 1 − 2iV 2)n(d∗)2

]

+
e−3φ/4

16Δ
[
(Jn

m − 3iδn
m)(V 1 + 2iV 2)nab+ iKn

m(3V 1 − 2iV 2)nb
2
]
+ c.c.

(E.27)

2. Now we use d(χT
+χ−) = 0. This gives

c∗∂mb− a∂md
∗

Δκ
+
c∂mb

∗ − a∗∂md

Δ∗κ

= −1
8
∂m log e3φ/2 +

e3φ/2

2Δ
[(bc∗ + ad∗)[(δn

m + iJn
m)∂nh− 2(wmθ̄ − w̄mθ)]]

− ac∗e3φ/2

Δ
K̄n

mHn +
e−3φ/4

16Δ
{−(c∗)2K̄n

m(2V 2 + 3iV 1)n

}

+
e−3φ/4

16Δ
{
a2Kn

m(2V 2 + 3iV 1)n − (Jn
m + 3iδn

m)(V 1 + 2iV 2)n(c∗d∗)
}

+
e−3φ/4

16Δ
{
(ab)(Jn

m + 3iδn
m)(V 1 − 2iV 2)n + 12V 2

n (ab− c∗d∗)}
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+
e−3φ/4

4Δ
w
[
2g30(c∗)2 − 2g∗03a

2 − 2ig̃21c∗d∗ + 2ig̃∗12ab
]

+
e−3φ/4

4Δ∗ w
[
2g∗21c

2 − 2g12(a∗)2 + ig̃∗12(cd)− ig̃21(ab)∗
]
+ c.c. (E.28)

3. Finally, we obtain a complex equation using d(χT
+η−) = 0. Using the

above contractions, we get

b∂md
∗ − d∗∂mb

Δ
+
a∗∂mc− c∂ma

∗

Δ∗ = −1
8
(K + K̄)n

mΣn

+
e3φ/2κ

2

[
Kn

mHn
ad∗ + bc∗

Δ
− K̄n

mHn
b∗c+ a∗d

Δ∗

]

− e3φ/2κ

[(
bd∗

Δ
+
a∗c
Δ∗

)
(δn

m + iJn
m)∂nh+

2bd∗

Δ
w[mw̄n]∂

nh

]

+
e−3φ/4κ

16

[
iK̄n

m(3V 1 − 2iV 2)n

(
c∗d∗ + ab

Δ

)
+ iK̄n

m(3V 1 + 2iV 2)n

×
(
cd− a∗b∗

Δ∗

)
+ (Jn

m + 3iδn
m)(V 1 − 2iV 2)n

(
(d∗)2

Δ
+

(a∗)2

Δ∗

)

+ (Jn
m + 3iδn

m)(V 1 + 2iV 2)n

(
b2

Δ
− (c∗)2

Δ∗

)]
. (E.29)

As opposed to the previous two real equations, (E.27) and (E.28),
this is a complex equation. We therefore find four independent real
equations determining the coefficients a, b, c and d.

These results can be used to check that the type-IIB supersymmetry vari-
ations vanish for our explicit examples. As an additional check, we used
Mathematica to check that the equations of motion are satisfied.
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