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Abstract

We study the connections between link invariants, the chromatic poly-
nomial, geometric representations of models of statistical mechanics, and
their common underlying algebraic structure. We establish a relation
between several algebras and their associated combinatorial and topo-
logical quantities. In particular, we define the chromatic algebra, whose
Markov trace is the chromatic polynomial xg of an associated graph,
and we give applications of this new algebraic approach to the combina-
torial properties of the chromatic polynomial. In statistical mechanics,
this algebra occurs in the low-temperature expansion of the Q-state Potts
model. We establish a relationship between the chromatic algebra and
the SO(3) Birman—-Murakami-Wenzl algebra, which is an algebra-level
analogue of the correspondence between the SO(3) Kauffman polynomial
and the chromatic polynomial.
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1 Introduction

The connections between algebras, statistical mechanics, link invariants,
and topological quantum field theories have long been exploited to great
effect. The simplest and best-understood example of such involves the
Temperley—Lieb algebra, the Potts model, the Jones polynomial, and SU(2)
Chern—Simons gauge theory. The study of these connections originated with
Temperley and Lieb’s work on the Potts model in statistical mechanics [29)].
They showed how to write the transfer matrix of several two-dimensional
lattice models, including the )-state Potts model, in terms of the generators
of an algebra which bears their name. Writing the transfer matrix in terms
of the generators of the TL algebra is very useful for statistical mechanics
because a number of physical quantities of the system follow purely from the
properties of this algebra, not its presentation. For example, this rewriting
yields the result that when Q) < 4, the self-dual point of the Potts model is
critical, whereas for ) > 4 it is not.

Recently such connections found an important new application in con-
densed matter physics, in the study of topological states of matter, cf [14,
12,7,24]. In this paper we present a number of results at the intersection
of combinatorics, quantum topology, and statistical mechanics which have
applications both in mathematics, specifically to the properties of the chro-
matic polynomial of planar graphs and its relation to link invariants, and in
physics (in the study of the Potts model and of quantum loop models). We
explain how the chromatic algebra provides a natural setting for studying
algebraic-combinatorial properties of the chromatic polynomial.

In particular, the chromatic algebra discussed in this paper underlies the
quantum loop models discussed in [8] and further developed in [12, 7] (closely
related models were introduced in [24]). Quantum loop models provide
lattice spin systems whose low-energy excitations in the continuum limit are
described by a topological quantum field theory [14]. In both classical and
quantum cases, algebraic relations such as the level-rank duality described
in [10] allow one to map seemingly different loop models onto each other.
This turns out to be quite useful in locating critical points in loop models
[9], a matter of great importance for finding quantum loop models which
describe topological order. In fact, our results can be directly applied to
topological quantum field theory. We show that the chromatic algebra is
associated with the SO(3) BMW algebra, implying that correlators in the
SO(3) topological quantum field theory can be expressed in terms of the
chromatic polynomial.

Our results can usefully be applied to both classical loop models as
well. Expressing classical loop models algebraically as described in this
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paper allows one to relate loop models to other sorts of statistical-mechanical
models, such as models where the degrees of freedom are spins or
heights. In fact, the simplest application of our results is to the same
Potts model! The representation of the TL algebra in terms of completely
packed loops described in Section 2 is not the only geometric represen-
tation of the Potts model; another is generally known as the “low-
temperature” expansion. We will explain how the chromatic algebra
naturally describes the degrees of freedom in this low-temperature
expansion.

The utility of the Temperley—Lieb algebra and its generalizations extends
beyond statistical mechanics to the study of invariants of knots and links
and of topological quantum field theories. A graphical presentation of
the TL algebra underlies the computation of the Jones polynomial [19].
Each knot or link may be represented as the closure of a braid, giving rise
to an element of this algebra, and evaluating the Jones polynomial for a
link corresponds (up to a normalization) to taking the Markov trace of
this element. Subsequently, Witten showed how the Jones polynomial is
also related to computations in a three-dimensional topological field theory,
Chern—Simons theory [37] (see [36] for an exposition geared toward math-
ematicians). Such computations in Chern—Simons theory are equivalently
described in two-dimensional conformal field theory. This sequence of rela-
tions thus comes full circle, because these conformal field theories describe
the scaling limits of two-dimensional statistical-mechanical models at their
critical points.

The purpose of this paper is twofold. One goal is to show how these con-
nections between link invariants, algebras, and statistical mechanics allow
us to relate seemingly different algebras and their evaluations. Many gener-
alizations of the Temperley—Lieb algebra and the Jones polynomial are now
known, and Chern—Simons theories for other representations of SU(2) and
for other groups are understood. Our main focus is on the SO(3) Birman-—
Murakami-Wenzl algebras [4,26], the corresponding specialization of the
Kauffman polynomial, and the SO(3) TQFTs. We will explain how results
concerning them relate to geometric models of statistical mechanics like the
Potts model.

Another purpose of this paper is to describe the chromatic algebra (intro-
duced for different reasons in [25]), where the trace of an element is given
by the chromatic polynomial of an associated planar graph. We establish a
relationship between the chromatic, SO(3) BMW, and Temperley—Lieb alge-
bras and their traces. The chromatic algebra has a trace pairing defined in
terms of the chromatic polynomial, and we show that for () > 4 this pairing
defines a positive-definite Hermitian product.
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A nice byproduct of our analysis is that identities for the chromatic
polynomial can be extended and derived in a more transparent fashion by
utilizing the chromatic algebra. We give an algebraic proof of Tutte’s golden
identity for the chromatic polynomial in a companion publication [10]. This
striking non-linear identity plays a very interesting role in describing quan-
tum loop models of “Fibonacci anyons,” where it implies that these loop
models should yield topological quantum field theories in the continuum
limit [24,8,12,14]. In our companion paper we also use the Jones—Wenzl
projectors in the chromatic algebra to derive linear identities for the chro-
matic polynomial.

Several authors have considered similar algebraic constructions, for exam-
ple Jones [18] in the context of planar algebras, Kuperberg [22] in the rank
2 case, Martin and Woodcock [25] for deformations of Schur algebras, Koo
and Saleur in the setting of integrable lattice models (cf [21]) and Walker
[36,35] in the TQFT setting. Our approach and results are different: we
derive new relations between the chromatic and the BMW and TL algebras,
and we give applications to the structure of the chromatic polynomial of
planar graphs.

In Section 2, we review the Temperley—Lieb algebra, the Jones polyno-
mial, and the Potts and completely packed models of statistical mechanics.
In Section 3, we introduce the chromatic algebra, and show how its evalua-
tion gives the chromatic polynomial of the graph dual to the loop configu-
ration. In Section 3.1 we discuss how this algebra may be used to construct
the (doubled) SO(3) topological quantum field theory. Section 4 establishes
a presentation of the chromatic algebra in terms of trivalent graphs. We
relate the chromatic algebra to the SO(3) BMW algebra in Sections 5, 6,
and as a consequence show that their evaluations are equal. A physical rea-
son for this equivalence has been described in depth in [11,8], and will be
reviewed in Section 5. The properties of the trace product on the chromatic
algebra are considered in Section 7. The paper is concluded by a list of open
questions in Section 8.

2 The Temperley—Lieb algebra, the Jones polynomial, and
statistical mechanics

The Temperley-Lieb (TL) algebra in degree n, TL,, is an algebra over C[d|
generated by 1,e1,...,e,—1 with the relations

1
2 . .
e; =ei, ejejr1e; = ﬁei, eie; = eje; for |1 — j| > 1. (2.1)
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Figure 1: Generators of TLs.
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Define TL = U, TL,. The indeterminate d may be set to equal a specific
complex number, and when necessary, we will include the parameter d in
the notation, TLZ.

A presentation of the TL algebra of broad interest is the “loop” or
“d-isotopic” representation, where the relations of the algebra have a sim-
ple geometric interpretation. The loop representation of TL, acts on a
collection of n strands as illustrated for TL3 in figure 1. In this setting, an
element of TL, is a formal linear combination of one-dimensional
submanifolds in a rectangle R. Each submanifold meets both the top and
the bottom of the rectangle in exactly n points. The multiplication then
corresponds to vertical stacking of rectangles. These strands are forbid-
den to cross, but we do allow adjacent strands to join, as displayed in
the figure. One can intuitively think of these as the world lines of parti-
cles moving in one dimension; the joining of adjacent strands corresponds
to pair annihilation and recreation. The generators e; of the TL algebra
in this representation annihilate and recreate the ¢th and i+ 1st
particles.

A nice feature of this representation is that requiring that the e; satisfy
the TL algebra imposes “d-isotopy”, cf [14]. Namely, a circle (simple closed
curve) can be removed by multiplying the corresponding element in TL by
d. All isotopic pictures (which can be deformed continuously into each other
without lines crossing and while keeping the points on the boundary fixed)
are considered equivalent.

Various presentations of the TL algebra can be used to define lattice
statistical-mechanical models. When the e; are represented by matrices, the
degrees of freedom are usually referred to as spins or heights. For example,
in the @Q-state Potts model, the degrees of freedom are “spin” variables
o; taking integer values 1...(Q at each site of some lattice. The e; here
are represented by tensor products of ) x Q matrices, with d = 1/Q. The
transfer matrix of the @J-state Potts model, with n the number of sites on
a zig-zag line, can be written entirely in terms of these generators. At
the isotropic self-dual point for n even, this transfer matrix for the square
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lattice is [1]

n/2 n/2
T = H(l-i—egj) H(l-i—egj_l) (2.2)
i1 j=1

The partition function for an n x m system with periodic boundary condi-
tions in the m direction is then Z = tr T™.

A closely related way of defining a statistical mechanical model is via a
pictorial presentation. For this presentation of the TL algebra, this results
in the completely packed loop model. This model is defined on any graph
with four edges per vertex. Each edge of the graph is covered by a loop,
and at each vertex the loops avoid each other in the two possible ways.
By using the pictures in figure 1, each configuration then corresponds to a
single word in the TL algebra (i.e., some product of the e;). The transfer
matrix on the square lattice at the self-dual point remains (2.2); each factor
(1+ e;) describes the two choices for the loops’ behavior at a single vertex.
Expanding the product in 7™ into individual words corresponds to writing
the partition function as a sum over loop configurations. The Boltzmann
weight of each configuration in the completely packed loop model is the
“evaluation” or the “Markov trace” of the corresponding element. This
is a linear map of the algebra to the complex numbers, namely, the trace
trg: TLY — C is defined on the additive generators (rectangular pictures)
by connecting the top and bottom endpoints by disjoint arcs in the com-
plement of the rectangle R in the plane. The result is a disjoint collection
of circles in the plane, which are then evaluated by taking d#c'®ls. This
completely packed loop model is still often referred to as the Potts model in
its “Fortuin-Kasteleyn” or “cluster” representation [13]. Note however that
although the Potts model is originally defined with @ = d? an integer, in
this representation of the TL algebra this constraint is no longer required.

Utilizing this pictorial representation and the Markov trace allows one to
relate the Jones polynomial of knot theory to the TL algebra [19]. Namely,
the Jones polynomial can then be computed by projecting a knot or a link
onto the plane, where in non-trivial cases the projection will include over-
crossings and undercrossings. These are described by another geometric
realization of TL,. Here the elements are framed tangles in D? x [0, 1]
which meet the top and the bottom of the cylinder in n specified points,
modulo the isotopy, and the skein relations

X = A+ A< and LUQ = (A2 - A7?) L. (2.3)
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We call this the skein-theoretic version, TLiLkein, while the planar one dis-
cussed above is TLElanar. The planar approach is more suitable for applica-
tions to 2D lattice models, while skein theory provides a more well-known
route to the construction of topological quantum field theories. However,
it is easy to see that if we set d = —A%2 — A=2, one has the isomorphisms
TL, = TLflke”1 ~ TLglanar, and we use the superscript only to indicate a
specific geometric context.

Up to overall factors of A, the Jones polynomial for a given collection
of links is the Markov trace of the corresponding element of the algebra.
Precisely, the trace tryy: T Lskein _ C is defined on the generators (framed
tangles) by connecting the top and bottom endpoints by standard arcs in
the complement of D? x [0, 1] in 3-space, sweeping from top to bottom, and
computing the Kauffman bracket [19]. (The Kauffman bracket (L) of a
link L in S3 is defined by the skein relations (2.3).) It follows from these
definitions that the two traces on TL,, are equal up to the change of basis,
in other words the diagram

TLglanar g; TLikein

ltrd J{tro

C——C (2.4)

commutes. The isomorphism above is given by viewing the generators of
TLPT 55 elements in TLS®™ by including the rectangle R as a vertical
slice of the cylinder D? x [0,1]. The inverse map TLSkeln —, TTplanar jg
defined by resolving any tangle, using the skein relation (2.3), into a linear
combination of embedded planar pictures.

The relation of the foregoing to topological field theory is well known: the
Jones polynomial of a collection of links correspond to a correlation function
of Wilson loops in SU(2) Chern—Simons gauge theory [37, 36]. These Wilson
loops transform in the spin-1/2 representation of the SU(2) algebra. Since
the spin 1/2 representation of SU(2) is the simplest non-trivial representa-
tion of the simplest non-abelian Lie algebra, it is natural to expect that the
previous results have a myriad of generalizations.

3 The chromatic algebra

The purpose of this section is to define the “chromatic algebra.” It is studied
in further detail in Section 4, and in Sections 5, 6 the chromatic algebra is
related to the SO(3) BMW algebra.
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The chromatic polynomial xr(Q) of a graph I, for @ € Z, is the number
of colorings of the vertices of I' with the colors 1, . .., ) where no two adjacent
vertices have the same color. To study xp(Q) for non-integer values of @,
it is often convenient to utilize the contraction—deletion relation (cf. [2]).
Given any edge e of I' which is not a loop,

xr(Q) = XF\e(Q) - XF/e(Q) (3.1)

where I'\e is the graph obtained from I' by deleting e, and I'/e is obtained
from I' by contracting e. (If I' contains a loop then xr =0.) A useful
consequence of the contraction—deletion relation is that

(@ = Y. (-)flgh (3.2)

ScC{edges of I'}

where k(S) is the number of connected components of the graph which has
the same vertices as I' and whose edge set is given by S. Either of these two
equations, together with the value on the graph consisting of a single vertex
and no edges: x(-) = @ determines the chromatic polynomial, and may be
used to define it for any (not necessarily integer) value of Q.

In Section 2 we described how the completely packed loop model is related
to (and can be defined using) the Temperley—Lieb algebra. To motivate what
follows, it is useful to describe the analogous lattice statistical-mechanical
model here. Remarkably, this model is also closely related to the Potts
model, just like the completely packed loops. Instead of the FK/cluster
expansion, the geometric degrees of freedom of interest here arise in the
low-temperature expansion.

Each configuration of the Potts model is given by specifying the value
o;=1...Q of a spin at each vertex of some graph L (which in physics
applications is typically a lattice, but need not be). The Boltzmann weight
of each configuration is then e ¢, where £ is inverse temperature, and the
energy is

E==J) o0 (3.3)
<ij>

for nearest-neighbor sites labeled by ¢ and j. J is a coupling, so that when
J > 0 the model is ferromagnetic, and when J < 0 it is antiferromagnetic.
The partition function is then defined as

Z= > * (3.4)
{O'i:L“')Q}

where the sum is over all configurations.
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To understand the low-temperature expansion, it is useful to first describe
the zero-temperature antiferromagnetic limit, where 8 — oo and J < 0. The
only configurations which contribute to the sum for Z in (3.4) in this limit
are those in which adjacent spins have different values. Z then simply counts
the number of such configurations, because each has the same weight 1. Thus
when J < 0,

lim Z = x1(Q).
B—o0
Thus the chromatic polynomial arises very naturally in statistical mechanics.

The low-temperature expansion is an expansion of Z in powers of ef7. It
is useful intuitively to describe this in terms of domain walls on the dual
graph L. Given G € G, the vertices of its dual graph G correspond to the
complementary regions R~ G, and two vertices are joined by an edge in G
if and only if the corresponding regions share an edge, as shown in figure 2.

With each configuration of spins, one associates a subgraph N of L by the
following rule: when the spins on two sites differ, then the edge separating
them belongs to IV. If the spins are the same, the corresponding edge is not
part of N. The graph N is a domain-wall configuration, separating domains
of like spins from each other. By construction, a domain-wall configuration
N consists of a graph with no ends (no 1-valent vertices) except possibly
at the outside of L. For this reason we call such graphs “nets”. In the
zero-temperature limit, all spin configurations contributing to the sum in Z
are associated to a single net N = L.

The idea of the low-temperature expansion is to first find the domain-
wall configuration N associated to a given spin configuration. Typically,
many spin configurations are associated to the same N. By construction,
the number of these is precisely the chromatic polynomial x 5(Q). Each of

these has the same Boltzmann weight eﬁJ(E(E)*E(N)), where FE(G) is the
number of edges in the graph G. E(N) can be thought of as the “length”

Figure 2: An element G of Gy and its dual graph G (drawn dashed).
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of the domain walls. The partition function is then

7 — BIEL) Z e*WE(N)xN(Q) (3.5)
N

where the sum is over all subgraphs N of L. (Here we can ignore the
restriction that N have no 1-valent vertices because x(Q) = 0 for any graph
G with 1-valent vertices.) This shows that the Q)-state Potts model has a
very natural description as a sum over geometric objects, nets. Note also
that this allows the model defined for any Q.

In Section 2, we explained how the partition function of the completely
packed loop model is defined as a sum over geometric objects, with each
configuration associated with an element of the Temperley—Lieb algebra. It
is thus natural to define an algebra whose elements correspond to nets, and
whose Markov trace gives the chromatic polynomial. We therefore define
the chromatic algebra in the same fashion as the TL defined in Section 2.
Consider the set G,, of the isotopy classes of planar graphs G embedded in
the rectangle R with n endpoints at the top and n endpoints at the bottom
of the rectangle. The intersection of G with the boundary of R consists
precisely of these 2n points. In the Potts model, a graph G is comprised
of the domain walls separating regions of like spins from each other. It
is convenient to divide the set of edges of G into outer edges, i.e., those
edges that have an endpoint on the boundary of R, and inner edges, whose
vertices are in the interior of R. (Note that the graphs G are not necessarily
connected.) It is convenient to allow G to have connected components which
are simple closed curves (which are not strictly speaking “graphs” since they
do not contain a vertex.)

Notation 3.1. While discussing the chromatic algebra, we will interchange-
ably use two variables, Q and q. Set Q = q+ 2+ ¢~ ' = (¢*/? + ¢1/?)2.

The defining contraction—deletion rule (3.1) may be viewed as a linear
relation between the graphs G, G/e and G\e, so in this context it is natural
to consider the vector space defined by graphs, rather than just the set of
graphs. Thus let F,, denote the free algebra over C[Q] with free additive
generators given by the elements of G,,. As usual, the multiplication is given
by vertical stacking, and we set F = U, F,.

The local relations among the elements of G,,, analogous to contraction—
deletion rule for the chromatic polynomial, are given in figures 3 and 4. Note
that these relations only apply to inner edges which do not connect to the
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G Gle — _ G\e
( / q
\

|

Figure 3: Relation (1) in the chromatic algebra.

top and the bottom of the rectangle. They are

(1) If e is an inner edge of a graph G which is not a loop, then
G = G/e — G\e, figure 3.

(2) If G contains an inner edge e which is a loop, then G = (Q — 1) G\e,
figure 4. (In particular, this relation applies if e is a simple closed
curve not connected to the rest of the graph.)

(3) If G contains a 1-valent vertex (in the interior of the rectangle) then
G =0, figure 4.

Definition 3.1. The chromatic algebra in degree n, C,, is an algebra over
C[Q] which is defined as the quotient of the free algebra F,, by the ideal I,,
generated by the relations (1), (2), (3). Set C = U,Cy,.

The ideal I,, in the definition above is generated by linear combinations of
graphs in JF,, which are identical outside a disk embedded in the rectangle,
and which differ according to one of the relations (1)—(3) in the disk.

Remark 3.1. Recall that e is a bridge if it is an internal edge which, if
removed, disconnects G (considering all points on the boundary of R to be
connected). The relation (3) above can be replaced by

(3'): If G has a bridge e then G = 0.

Note that this means the dual graph G contains a loop.

We will now collect some elementary consequences of the relations which
hold in C: (1) and (3) imply that a 2-valent vertex may be deleted, and
the two adjacent edges merged, figure 5 (the dual graph, discussed in more

() (o

Figure 4: Relations (2), (3) in the chromatic algebra.
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Figure 6: An example of relations in Cs.

detail below, is drawn dashed.) (1) and (3) also imply that if a graph G
contains an isolated vertex v, then G = G\v. (Note that deleting an isolated
vertex does not change the dual graph.) Figure 6 gives more examples of
relations which hold in Cy. It is important to note that the relations (1)-(3)
are consistent with the relations for the chromatic polynomial of the dual
graph, see the following proposition.

Proposition 3.1. The chromatic polynomial gives rise to a well-defined
linear map x: C, — C[Q]. This map is defined on the additive generators
G as the chromatic polynomial of the dual graph, xg, and it is extended to
Cn by linearity.

To prove this proposition, one needs to check that the relations (1)—(3)
hold when one considers the chromatic polynomial of the dual graph. Specif-

ically, in case (1) consider the edge é of G, dual to e, figure 7. Then G/e =
G\é, and G\e = G/é. (In the case when one of the vertices of e is trivalent,

as in figure 7, G /é differs from é\\e by the addition of an edge parallel to

é1, figure 7. Because of the equality in figure 5, xa e = Xane still holds in
this case.) Therefore the relation (1) translates to x5 = Xé\e ~ Xaye the

defining contraction—deletion relation for the chromatic polynomial.

Gle

Figure 7: Relation (1) and the dual graphs.
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To check (2), note that if G contains a loop which is trivial in the plane
(i.e., the region D bounded by it is disjoint from the graph), the dual graph
G contains a 1-valent vertex (corresponding to the region D.) The effect of
deleting such a vertex and the adjacent edge on the chromatic polynomial
X (Q) is multiplication by (@ —1). The general case when the region D
bounded by the loop contains other vertices or edges of G follows by applying
(1) and (3) to the part of the graph inside D, and then inductively applying

the case of (2) considered above to the trivial inner-most loops of G.

The relation (3) holds since in this case the dual graph has a loop, there-
fore its chromatic polynomial vanishes.

Definition 3.2. The trace, try: C — C is defined on the additive gen-
erators (graphs G in the rectangle R) by connecting the top and bottom
endpoints of G by disjoint arcs in complement of R the plane (denote the
result by G) and evaluating the chromatic polynomial of the dual graph:

(@) = Q7 x5 (Q). (3.6)

Proposition 3.1 shows that the trace is well defined. The factor Q! is a
convenient normalization which makes the relation with the BMW algebra
easier to state (see Sections 5, 6); with this normalization, try(-) = 1. The
Hermitian product on C,, is defined analogously to the Temperley—Lieb case:
{a,b) = tr(ab), where the involution b is defined by conjugating the complex
coefficients, and on an additive generator b (a graph in R) it is defined as
the reflection in a horizontal line, see figure 8.

Remark 3.2. The chromatic polynomial xg and the Potts-model parti-
tion (3.5) function are specializations of the more general Tutte polynomial
Ta(X,Y), cf [2]. The Tutte polynomial satisfies the well-known duality
Ta(X,Y) =Tg(Y, X), where G is a planar graph and G is its dual. There-
fore, rather than defining the trace of the chromatic algebra as the chromatic
polynomial of the dual graph G , one could define the trace as the correspond-
ing relevant specialization of the Tutte polynomial (sometimes known as the
flow polynomial) of the graph G itself.

Remark 3.3. One could generalize the definition of C and consider the
“Tutte algebra” whose trace is given by the Tutte polynomial. We restrict
our discussion to the special case of the chromatic polynomial since it cor-
responds to our main object of interest, the SO(3) BMW algebra, see Sec-
tions 5, 6. Another reason for this is that the chromatic algebra gives rise
to the (2 + 1)-dimensional SO(3) TQFT (see Section 3.1), and this seems
to be the only specialization of the Tutte polynomial which yields a finite
dimensional unitary TQFT.
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\J

(N

{a,b) = Tr(ab) =

Figure 8: The inner product in C3: Tr(ab) equals the evaluation of G, or

equivalently Q;l times the chromatic polynomial of the dual graph G. In
this example, G is the theta graph, and

(a,0) = Q71 (QQ - 1)(Q - 2)) = (@ - 1)(Q ~2).
3.1 From algebras to TQFTs

There is a well-understood route for representing (2 4+ 1)-dimensional topo-
logical quantum field theories in terms of “pictures” on surfaces modulo local
relations, see [36,15]. This is described in depth in the case of (doubled)
SU(2) theories in [14]. Here we briefly sketch the analogous construction of
the doubled [31] SO(3) TQFTs (developed in [27,30].) In fact, the problem
of finding a description of these TQFTSs in terms of (two-dimensional) pic-
tures and relations was a starting point for our introduction of the chromatic
algebra in this paper. The description of TQFTs in such terms is important
for applications in physics, specifically to lattice models exhibiting topolog-
ical order [14,24].

Given a compact surface 3, consider the (infinite-dimensional) complex
vector space V1 consisting of formal linear combinations of the isotopy classes
of graphs embedded in ¥. If ¥ has a non-empty boundary, one fixes a
boundary condition — a finite number of points in the boundary 9%, and
the graphs in 3 should meet the boundary in these specified points. Consider
the quotient V2Q of V1 by the local relations (1)—(3) defining the chromatic
algebra as in Definition 3.1. Equivalently, one may start with the space of
trivalent graphs, modulo the relations in figure 9, see Theorem 4.1 in the
next section. The chromatic algebra C? (more precisely, its generalization,
the chromatic category, see Section 4 in [10]) is a local version of VQQ, ie., it
corresponds to X = disk.
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2000 (@

Figure 9: Trivalent presentation of the chromatic algebra.

The vector space VZQ is still infinite-dimensional. However, at the special
values of @ known as Beraha numbers, Q) = B,, = 2 + 2cos(27/n), there
are additional local linear relations such that the quotient, VnE, is finite
dimensional. These additional local relations are generators of the trace
radical of the chromatic algebra, i.e., elements a of CB» such that (a,b) =
Tr(ab) = 0 for all b € CP». The trace pairing descends to a positive-definite
Hermitian product on the quotient of P by the trace radical (see Corollary
7.1), which gives rise to a positive-definite Hermitian product on VnE7 see
[36]. (The trace radical is analyzed in [10], where we show that it contains
the pull-back of the Jones Wenzl-projector from the Temperley—Lieb algebra,
and give applications of this fact to the structure of the chromatic polynomial
of planar graphs.)

These finite-dimensional vector spaces, Vnz, are the doubled SO(3)
TQFTs, and the unitary structure on these TQFT's is induced by the trace
pairing on the chromatic algebra as indicated above. The structure of the
simplest non-trivial TQFT which arises from this construction, correspond-
ing to Q = Bs = ¢ + 1, and which is known as the “doubled Fibonacci the-
ory”, is considered in [12]. In this paper we analyze some of the algebraic
structure underlying these TQFTs for other levels n.

4 A trivalent presentation of the chromatic algebra

In this section we define an algebra using trivalent graphs modulo certain
simple relations consistent with the contraction—deletion rule, and prove that
it is isomorphic to the chromatic algebra. This result should be compared
with Section 5 which shows that, in contrast, a presentation of this algebra
in terms of four-valent graphs is rather involved. As part of the proof, in
this section we find an additive basis of the chromatic algebra C,, in terms of
planar partitions, and we establish an algebra analogue of the “state sum”
formula (3.2) for the chromatic polynomial. Both the chromatic algebra and
its trivalent presentation established here are used in our companion paper
[10] to prove and generalize Tutte’s identities for the chromatic polynomial.
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Definition 4.1. Analogously to Definition 3.1, consider the free algebra
FTr over C[Q] whose elements are formal linear combinations of the isotopy
classes of trivalent graphs in a rectangle R. The intersection of each such
graph with the boundary of R consists of precisely 2n points: n points at
the top and the bottom each. Let 7, denote the quotient of F7T, by the
ideal generated by the local relations shown in figure 9.

Remark 4.1. Note that the vertices of the graphs in the definition above in
the interior of R are trivalent, in particular they do not have ends (1-valent
vertices) other than those on the boundary of R. It is convenient to allow
2-valent vertices as well, so there may be loops disjoint from the rest of the
graph.

The relations in 7, shown in figure 9, have a rather natural interpretation
in the context of TQFTs discussed in Section 3.1. The second relation says
that the vector space associated to the disk with a single boundary label
is trivial. The first relation implies that the vector space associated to the
disk with four boundary labels is 3-dimensional.

Theorem 4.1. The map ®: T, —> C,, induced by the inclusion of the triva-
lent graphs in the set of all graphs, is an algebra isomorphism.

First observe that ® is well-defined. Indeed, the first relation in figure 9
is a consequence of the contraction—deletion rule (1) in the definition of
Cn, see figure 6. The relation on the right in figure 9 is a consequence of
relations (2), (3) defining C,,. Moreover, ® is a surjective map: using the
contraction-deletion rule (1), any graph G € G,, may be expressed as a linear
combination of trivalent graphs. This establishes

dime(7;,) > dime(Cy). (4.1)

We start the proof of the converse inequality by presenting an algebra ana-
logue of the expansion (3.2) of the chromatic polynomial. This expansion
is then used for describing a linearly independent set of additive generators
of Cp,.

Following the terminology introduced in Section 3, given a graph G in
the rectangle R, G € G,,, we consider its set of inner edges, the edges of G
whose endpoints are not on the boundary of R. Consider the set B, of all
graphs in G,, without inner edges, as in figure 10. (Note that the elements
of B, are in 1-1 correspondence with the planar partitions of the set of 2n
boundary vertices such that each block of the partition contains at least two
vertices.)

Lemma 4.1. The elements of B, form an additive basis of the chromatic
algebra C,.
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AN/

Figure 10: An example of a graph in Bg.

Proof. Consider the vector space V,, over C spanned by B,. Define linear
maps ¢: V,, — C, and ¢: C, — V,,. Here ¢ is induced by the inclu-
sion B,, = {isotopy classes of graphs without inner edges in the rectangle
R} C {isotopy classes of all graphs in R} = G, while 9 is defined using an
expansion similar to the expansion (3.2) for the chromatic polynomial: for
G € Gy, set

»(G) = > (—1)FAOISIQnSpg, (4.2)

SC{inner edges of G}

where E(G) is the number of edges of the graph G and n(S) is the nullity
of the graph G ¢ which is obtained by keeping all vertices and outer edges
of G and adding just those inner edges which are in S. (Here the nullity is
the number of independent cycles, i.e., the rank rk(H1(Ggs,Z)) of the first
homology group of Gg.) In the formula above bg is the unique element of
B,, which gives rise to the same partition of the 2n boundary points as Gg,
in other words bg is obtained from Gg by contracting each of its inner edges.

The proof that 1 is well-defined is analogous to the proof that the expan-
sion (3.2) of the chromatic polynomial satisfies the contraction—deletion rule.
Specifically, consider the relations (1)—(3) defining the chromatic algebra
(Definition 3.1). For (1), suppose e is an inner edge which is not a loop.
The sum (4.2) splits as the sum over the sets S’ which contain the edge
e and the sets S” which do not. The sets S’ are in 1-1 correspondence
with the sets of edges of G/e; the correspondence is given by contracting e.
Under this correspondence, the nullity is preserved, and each term in the
sum over the sets S’ is equal to the corresponding term in the sum for the
graph G/e. Similarly, the sets S” are in 1-1 correspondence with the sets
of edges of G \ e, and the corresponding terms in the two sums differ in
their sign. Therefore ¥(G) = ¢(G/e) — (G \ e), proving the invariance of
1 under the relation (1).

To establish the invariance under (2), let e be a loop in G. Again, (4.2)
splits as the sum over the sets S’ which contain e and the sets S” which do
not. Both S’ and S” are in 1-1 correspondence with the subsets of inner
edges of G \ e. Each term from S’ with e has an extra factor of ) because
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n(S") = n(G \ e) + 1, while each term from S” has an extra factor of (—1).
Combining these, one gets 1(G) = (Q — 1)1)(G \ e). The invariance under
(3) is proved analogously: if G contains a 1-valent vertex, let e be its adjacent
edge. Dividing the subsets into S’ and S” as above, one checks that the
corresponding terms cancel in pairs. This shows that 1 is well-defined.

It follows from the contraction—deletion rule (1) that any graph may be
expressed as a linear combination of graphs without inner edges (elements
of By,). Therefore the dimension of C,, is less than or equal to the car-
dinality of |B,|. On the other hand, the composition V,, — C,, — V}, is
an isomorphism (for b € B,,, ¥(¢(b)) = +b), proving the opposite inequality
|By| = dim(V;,) < dim(C,,). Therefore dim(V;,) = dim(C,,) and B,, is a basis
of C,,. This completes the proof of Lemma 4.1. O

Remark 4.2. The seeming difference between the expansions (3.2) and (4.2)
is due to the definition of the chromatic algebra: its trace is the chromatic
polynomial of the dual graph. The expansion (4.2) is directly analogous to
the expansion for the flow polynomial, see Remark 3.2. Indeed, the quantities
k(S) and n(S) in the two expansions correspond to each other under the
duality between G and G.

With this result at hand, we will now proceed with the Proof of Theo-
rem 4.1. For each element I' of B, pick a trivalent graph Tt such that
Hy(Tr) = 0 (1t is a disjoint union of trees) and the contraction of all inner
edges of Tt gives I'. Let T'B,, denote the set of such trivalent graphs {Tp,T" €
B, }; by construction T'B,, is in a bijective correspondence with B,,. It is
useful for the following argument to note that the combinatorial F-mowe,
exchanging the first and third trivalent graphs in figure 9 and applied at
various inner edges of trivalent graphs, acts transitively on the set of all
possible choices of the graphs 1t, for a given I'.

We claim that any element of 7, is a linear combination of elements of
TB,,. Indeed, given T € 7T, using the relations in figure 9 defining 7, T is
seen to be a linear combination of elements T; € 7,, where each T; does not
have cycles: Hi(T;) = 0. Now contracting all inner edges of each T; gives
rise to an element I'; € B,. As noted above, for each 7 there is a sequence
of F-moves taking T; to the corresponding Tt, € T'B,,. Applying the linear
relation on the left in figure 9 each time the F-move is needed shows that
T; = Tr,+terms with fewer trivalent vertices. Now an inductive argument,
where the induction is on the number of trivalent vertices, proves the claim
that any element of 7, is a linear combination of elements of T'B,,. Using
Lemma 4.2, this shows that

dimc 7, < |TBy,| = |By| = dimcC,,.
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Combined with the inequality 4.1, this completes the proof of
Theorem 4.1.

5 The chromatic algebra and the SO(3) BMW algebra

In this section we find a homomorphism from the SO(3) BMW algebra to the
chromatic algebra, showing that the defining relations for BMW (3) reduce to
the contraction—deletion rule for planar graphs. Since the SO(3) Kauffman
polynomial arises from the Markov trace of the SO(3) BMW algebra, this
enables us to relate this link invariant to the chromatic polynomial, and so
provide geometric intuition into the planar description of the algebra.

To give some intuition into why these two algebras are related, it is useful
to recall some results for the integrable field theory describing the scaling
limit of the Q-state Potts model near the critical point. A oft-useful descrip-
tion of an integrable two-dimensional classical field theory is in terms of
the quasiparticles and their scattering matrices in the corresponding one-
dimensional quantum field theory. For this Potts field theory, the scattering
matrices are invariant under the quantum-group algebra U, (SO(3)) when the
quasiparticles transform in the spin-1 representation [28]. This implies that
the scattering matrices can be written in terms of the generators of the SO(3)
BMW algebra. However, intuitive arguments suggest that the world lines of
the quasiparticles should behave as domain walls separating regions of like
spins [6]. These two very different pictures were reconciled in [11]. There
it was shown how the generators of the SO(3) BMW algebra subalgebra
were those of the chromatic algebra containing only 4-valent vertices. This
correspondence was exploited in [8] to study quantum loop models. Here we
use this motivation to give an elegant combinatorial-geometric description
of BMW(3).

We start with a review of the background material on the SO(V) Birman-—
Murakami—Wenzl algebra; see [4,26] for more details. Here we present the
SO(N) BMW algebra in skein form. A strand can be thought of as corre-
sponding to the fundamental (dimension N) representation of Uy(SO(N)).
The braiding generators (the over /under crossings) are displayed in figure 11.
As opposed to T'L, the skein relations do not allow one to reduce all braids
to non-crossing curves. Instead, BMW(N),, is the algebra of framed tangles
on n strands in D? x [0, 1] modulo isotopy and the SO(N) Kauffman skein
relations in figure 12. By a tangle we mean a collection of curves (some of
them perhaps closed) embedded in D? x [0, 1], with precisely 2n endpoints,
n in D? x {0} and D? x {1} each, at the prescribed marked points in the
disk. The tangles are framed, i.e., they are given with a trivialization of their
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Figure 11: Braiding generators of BMW (N )s.

NN\ = (g_ ot (||7U) _ N N\ N
\X—(qq) AN = Q) = |
Figure 12: The SO(N) Kauffman relations.

normal bundle. (This is necessary since the last two relations in figure 12 are
not invariant under the first Reidemeister move.) As with T'L, the multipli-
cation is given by vertical stacking. Like above, BMW(N) = U,BMW (N),,.

We now turn to a presentation of this algebra: the generators of
BMW(N),, include the Temperley—Lieb generators 1,e1,...,e,_1 as above,
and additionally the braiding generators B;, B;” Li=1,....,n—1, figure 11.
(This follows by considering the height Morse function.) In the algebraic
context, the relations in BMW,, are the Temperley—Lieb relations (2.1) and
in addition

Bie; =q¢" Nei, Bief B =¢* W YUB;, B —B'=(¢—q¢ 1)1 —e).
(5.1)

We will usually work with the geometric counterparts of these relations:
isotopy (expressed as Reidemeister moves for framed tangles), and the skein
relations in figure 12.

Sending the generators of TL, to the corresponding generators e; of
BMW(N),, defines a map of algebras, and the skein relations require that
deleting a circle has the effect of multiplying the element of BMW (N) by
N-1 _ ~(N-1)

dy=1+1

— (5.2)

This gives for example d3 = ¢+ 1+ ¢ ! and dy = (¢ + ¢~ 1)%

The trace, trg: BMW(N),, — C, is defined similarly to the TL case. It
is defined on the generators (framed tangles) by connecting the top and bot-
tom endpoints by standard arcs in the complement of D? x [0, 1] in 3-space,
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sweeping from top to bottom, and computing the SO(/N) Kauffman poly-
nomial (given by the skein relations above) of the resulting link. Below we
will discuss this trace in detail.

As with the Temperley—Lieb algebra, it is convenient to distinguish the
skein-theoretic and planar presentations of this algebra, BMW (N )Skein and
BMW (N)Planar - In the planar version the additive generators are linear
combinations of curves with crossings, or in other words 4-valent graphs, in
a rectangle. In terms of generators, the elements B, B~! € BMWI" are
replaced with X € BMW (N)Planar " defined by [20]

() =q00) = )+ ' (X) =09 = () +a(X). (5:3)

BMW (NV)Planar js defined as linear combinations of 4-valent graphs in a
rectangle modulo local relations which are the pull-back of (5.1) (or equiva-
lently of the Kauffman skein relations and the isotopy of tangles) via (5.3).
Equation (5.3) yields an isomorphism between the planar and skein presen-
tations. We will discuss the relations in BMWPBa in more detail below.

The translation of the BMW relations (5.1) (geometrically seen as the
skein relations and the isotopy of tangles) to the planar setting formally
follows from the isomorphism (5.3). However, the geometric meaning of the
planar description is not immediately apparent. The results of this paper
provide such a meaning for BMW/(3). For the rest of the paper, we will omit
the label and denote this algebra by BMW.

One easily checks that there is a map of algebras TL,, — C,,, where the
relation between the Temperley—Lieb and chromatic parameters is given by
d=Q—1=q+1+¢ ' This map is induced by the inclusion {curves} C
{graphs} in a rectangle R. The defining relations for TL,, (d-isotopy) hold
in C,, due to the relation (2) in Definition 3.1 of the chromatic algebra. The
following statement shows that this map extends to BMW,,.

Theorem 5.1. The formulas
() =00 =) +¢7(X), Y=g 00 = (X) +a(X) (5.4)

define a homomorphism of algebras i: BMWSke™ — ¢, over Clq].

Remark 5.1. It follows from Theorem 6.1 below that the homomorphism
1 preserves the traces of these algebras, see Corollary 6.1.

Remark 5.2. Abusing the notation, we will keep the same symbol for the
map i: BMWP#& __ ¢ This homomorphism is induced by the inclusion
{4-valent graphs} C {all graphs}. Recall that the relations in BMWPanar are
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Figure 13: An example of a graph in C3 which is not in the image of i.

the pullback of (5.1) under the identification (5.3), and the content of the
theorem above is that these relations are a consequence of the contraction—
deletion rule.

Remark 5.3. The homomorphism ¢ is not surjective (one may check that
for example, the graph in figure 13 is not equivalent in C3 to a linear combi-
nation of 4-valent graphs); however, it seems reasonable to conjecture that
it is injective, in other words that BMW,, is a subalgebra of the chromatic
algebra C,, generated by 4-valent graphs. Note that the chromatic algebra
C,, has quite elegant presentations in terms of the contraction—deletion rule
(Definition 3.1), and in terms of trivalent graphs (Definition 4.1). In con-
trast, the corresponding presentation in terms of 4-valent graphs is rather
involved: the relations are the pullback of (5.1) under the identification
(5.3). See also a related discussion in Section 8.3.

Proof of Theorem 5.1. One needs to show that the map ¢ is well-defined.
The first defining relation of the BMW algebra (figure 12)

() =) =(a— g H[E) — (X)]

follows directly from equations (5.4). One needs to check that the last two
relations in figure 12, as well as the regular isotopy of tangle diagrams (the
second and third Reidemeister moves), hold in the chromatic algebra. The
proof of the first of these is shown in figure 14.

The last relation in figure 12 is established analogously. To prove the
second Reidemeister move, start with the diagram on the left in figure 15 and
resolve the crossings according to formulas (5.4). Applying the contraction—
deletion rule (1) in Definition 3.1 of the chromatic algebra to the edges
connecting the double points in the third term, eliminating the trivial circle
in the last term according to rule (2), and canceling the resulting terms, one
gets the diagram on the right.

/@=q*1 )O - >O +q ) =q¢ Y g+1+qg7") )*(q+1+q’1) ) +q )=q*2 )

Figure 14: ¢ is well-defined with respect to the Kauffman skein relations.
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Figure 15: The second Reidemeister move.

The remaining relation is the third Reidemeister move: one has to show
that the images of the two diagrams in figure 16 are equal in the chromatic
algebra. Note that these two diagrams differ by a 180° rotation, so whenever
a planar diagram, invariant under such a rotation, appears in the expansion
of one of them, it also appears (with the same coefficient) in the expansion
of the other one. Expanding the lower crossing of the diagram on the left
according to (5.4), one gets the expression in figure 17.

It follows from the remark above, and from the proof of the second Reide-
meister move that the first and the third terms in figure 17 cancel with the
corresponding terms in the expansion of the second diagram in figure 16.
Therefore it remains to show that the second term on the right in figure 17
equals its 180° rotation in the chromatic algebra.

The expansion of this term according to (5.4) is shown in figure 18. The
fourth and eighth terms are invariant under the 180° rotation. Omitting
these two terms, and using relations (1), (2) in the chromatic algebra to
expand the terms with more than one double point, one gets the expression
in figure 19.

This expression is again invariant under a 180° rotation, and this
concludes the proof for the third Reidemeister move and the Proof of
Theorem 5.1. O

X
X A
Figure 16: The third Reidemeister move.
W N X Y
Figure 17: Expansion of the lower crossing according to (5.4).

q? J%’—q’l JXL + JXL—q*y‘ + AXL —q AXL+ j\f‘ —-q y +¢° ?L

Figure 18: Expansion of the second term on the right in figure 17 according
to (5.4).
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(g—1+q¢71) % + j\g— + -)/S

Figure 19: Conclusion of the proof for the third Reidemeister move.

6 Relations between TL, BMW, and the chromatic algebra

In this section we investigate the relations between the SO(3) Birman-
Murakami—Wenzl, chromatic, and Temperley—Lieb algebras. The main
result is stated in Theorem 6.1. This relationship is useful in a variety
of contexts. For example, it allows one to use the Jones—Wenzl projectors in
TL?, at special values of d, to analyze the structure of the trace radical of the
BMW and chromatic algebras. This was used in [10] to find linear relations
obeyed by the chromatic polynomial of planar graphs, evaluated at Beraha
numbers. This also provides a relationship between certain string-net mod-
els and loop models, cf. [12,7]. Applying traces to these algebras, we express
the SO(3) Kauffman polynomial in terms of the chromatic polynomial, see
Corollary 6.1.

The SO(3) BMW algebra may be described in several ways. First we
explain how each strand of the BMW algebra may be viewed as a “fusion”
of two Temperley—Lieb strands, in other words defining a homomorphism
of the SO(3) BMW algebra in degree n, BMW,, to TLy,,. This description
is particularly natural when studying quantum-group algebras, where each
strand in TL and BMW correspond, respectively, to a spin-1/2 and spin-1
representation of Uy (sl2).

In fact, we define a homomorphism from the chromatic algebra
Cn — TLg,, which yields a map from the BMW algebra by pre-composing
it with the homomorphism ¢: BMW,, — C,, constructed in the previous
section. Recall that the chromatic algebra C,, is defined as the quotient of the
free algebra F,, by the ideal generated by relations (1)—(3) in Definition 3.1.

Definition 6.1. Define a homomorphism ¢: F, — TLo, on the additive
generators (graphs in a rectangle) of the free graph algebra F,, by replacing
each edge with the linear combination ¢( | ) =)(— 41X and resolving each
vertex as shown in figure 20. The factor in the definition of ¢ corresponding
to a r-valent vertex is d"=2/2, so for example it equals d for the 4-valent
vertex in figure 20. The overall factor for a graph G is the product of the
factors d"(V)=2/2 gyer all vertices V of G.

Therefore ¢(G) is a sum of 28(%) terms, where E(G) is the number of
edges of G. Note that ¢ replaces each edge with the second Jones—Wenzl
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1
N
Figure 20: Definition of the homomorphism ¢: Cg — T ng where Q = d?.

projector Py, well-known in the study of the Temperley—Lieb algebra [17].
They are idempotents: Py o Py = P,, and this identity (used in the definition
of the homomorphism ¢) may be easily checked directly, figure 21.

Various authors have considered versions of the map ¢ in the knot-
theoretic and TQFT contexts, see [39,16,19,12,35]. In [11] this was used
to give a map of the SO(3) BMW algebra to the Temperley—Lieb algebra.

Lemma 6.1. ¢ induces a well-defined homomorphism of algebras

9 — TL‘Qin, where Q = d>.

Proof. One needs to check that ¢ is well-defined with respect to relations
(1)=(3) in the chromatic algebra (Definition 3.1). To establish (1), one
applies ¢ to both sides and expands the projector at the edge e, as shown
in figure 20. The resulting relation holds due to the choices of the powers
of d corresponding to the valencies of the vertices, figure 22.

Similarly, one uses the definition to check the relations (2) and (3). O

To state the main result of this section, we also need to define a homo-
morphism ¢’: BMWskein __ T[skein (the latter algebra is defined by (2.3))
where the relation between the parameters g in the BMW algebra and A in

Figure 21: Pyo P, = P5.

X X

Figure 22: ¢ is well-defined.

-
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TL is given by ¢ = A*. This map is the “2-coloring”: it is defined on tan-
gle generators of Bl\/IVViLkei][1 by replacing each strand with the Jones—Wenzl
projector P,. One may check that ¢’ is well-defined directly from definitions
(also see [19, p. 35]), and this also follows from the commutativity of the
diagram below.

Theorem 6.1. The following diagram commutes.

= C (6.1)

tri V

BMW;kein TL%I:Lein

_ %i | ¢ l% .

BMWT[L)lanar _r . Cn Ty TLgilanar

/ try l tra
C — C —

For convenience of the reader, we recall the notations in the diagram
above. The parameter ¢ in the BMW algebras, @) in the chromatic algebra
Cn, A in TLEM and d in TLQPLanaLr are related by

g=A', d=-A*-A"? Q=q+2+q¢'=d"

The traces of various algebras are defined on their respective generators as
follows:

trg : BMWSKem . C is given by the SO(3) Kauffman polynomial, figure 12.
tr: BMWPanar . C is the pull-back of try via the isomorphism (5.3):
BMWElanar ~ Bszkein‘
try: C, — C is Q™! times the chromatic polynomial of the dual graph,
see (3.6).
trgy TL3" — C is given by the Kauffman bracket defined in (2.3).

trg : TLS}fnar — C, discussed in the section 2, is computed as d#loops

Proof of Theorem 6.1. We begin the proof by showing that the interior dia-
gram of algebra homomorphisms (without the traces) commutes. This
amounts to showing that the two maps in the diagram from BMWskein
to TLgLanar send the braiding generator to the same element. The braid-
ing generator (X) is mapped by ¢ to the element of TL shown on the
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/ = q'\ﬁj - d- + gt
Vi P

Figure 23: Proof of the commutativity of the interior diagram in theorem
6.1.

left in figure 23. (The crossings are resolved using (2.3) to get an element

of TLEM™ ) The other map, BMW®kin & BMWpRlanar __, ¢, pplanar
sends (X) to the linear combination shown on the right in figure 23. (The
middle term acquires the coefficient d since the vertex is 4-valent, see

Definition 6.1.) O

This identity in the Temperley—Lieb algebra is established in [19, p. 35].
We now consider the traces in diagram (6.1).

Lemma 6.2. Let G be a planar graph. Then for Q = d?,

t1(G) = Q' xo(G) = tra(¢(G)). (6.2)

Therefore, the following diagram commutes:

c9 . TLE, (6.3)
\Ltrx \Ltrd
C——C

Proof. The proof (involving the expansion (3.2) of the chromatic polyno-
mial) for trivalent graphs G is given in Lemma 2.5 in [10]. Using the
contraction—deletion rule (1) in Definition 3.1, any graph may be represented
as a linear combination of trivalent graphs. The statement then follows from
the fact that map ¢ and the traces in the diagram above are well-defined.

Observe that the identity in figure 23 shows that the map ¢’: BMWsken _,
TL$EM preserves the traces: the evaluation of the SO(3) Kauffman polyno-
mial of the closure of a framed tangle equals the evaluation of the Kauffman
bracket of the 2-coloring of that link. Recall that the isomorphism
BMWplanar o BN\[Wskein preserves the trace by definition. Examining dia-
gram (6.1), one observes that the remaining map i: BMWPRar _ ¢
preserves the traces as well. This concludes the proof of Theorem 6.1. [J
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We state the last observation in the proof above as a corollary. Given a
crossing (X), one calls (X) its O-resolution, and () () its 1-resolution. Given
a planar diagram D of a framed link L, use (5.3) to express it as a linear
combination of planar 4-valent graphs G;. For each ¢, let p; denote the
number of O-resolutions and n; the number of 1-resolutions that are used in
(5.3) to get the graph G; from the diagram D. Let v(G;) denote the number

of vertices of G;.

Corollary 6.1 [16]. Given a framed link L, using the notations above
the SO(3) Kauffman polynomial K may be expressed as Kr(q) = Q7>
(—1)”(Gi)qpi*”ixéi(Q), where the summation is taken over all 4-valent pla-
nar graphs G; which are the result of applying formula (5.3) at each crossing
of a planar diagram of L. Here Q) = (ql/2 + q*1/2)2, and x s denotes the
chromatic polynomial of the graph dual to G;. '

7 Properties of the chromatic inner product

We use the homomorphism ¢ to the Temperley—Lieb algebra, defined in 6.1,
to study the trace pairing structure on the chromatic algebra C,, (introduced
in (3.2)).

Lemma 7.1. The homomorphism ¢: C’gQ — TLgn is injective.

Proof. 1t is easy to see that for any graph G in the rectangle R, the terms in
the expansion ¢(G) are in 1-1 correspondence with the subsets S C E(G)
of the set of edges of G. More precisely, given such S, consider the graph
Gs whose vertex set consists of all vertices of G’ and the edge set is S. Then
the terms of ¢(G) correspond (with the coefficient depending on |S]) to the
boundary of the regular neighborhood of the graphs Gg. (For an edge e, the
two terms in the definition of ¢ in figure 20 correspond to the two possibil-
ities: e € S, e ¢ S.) For more details see the proof of Lemma 2.5 in [10].

In Lemma 4.1 we showed that (the isotopy classes of ) graphs without inner
edges in the rectangle R form a basis of C,. Suppose a linear combination
of such graphs, > «;G}, is in the kernel of ¢. Consider ¢(G;) for some i, see
figure 24 which corresponds to the graph in figure 10. Consider the “leading
term” of ¢(G;), where each edge of Gj is replaced by its two parallel copies
(the first term in the example in figure 24). In terms of the correspondence
discussed above, this term is given by S = E(G;). We claim that this term
does not arise in the expansion of any other ¢(G;),j # i.

It is clear that it does not arise as a leading term for any other graph, since
each graph is recovered as the spine of its leading term. Since the graphs G;
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Figure 24: ¢ applied to the graph in figure 10.

do not have inner edges, it also does not arise as a non-leading term of any
#(Gj), since any such term involves a “shaded turn-back” — corresponding
to a Gg which has an isolated vertex on the boundary of R, as in the second
term in figure 24. Such “shaded turn-backs” cannot be part of a leading
term for ¢(G;) since the graphs with an isolated vertex in the interior of
R are trivial in the chromatic algebra (relation (3) in Definition 3.1.) This
concludes the Proof of Lemma 7.1. (]

Corollary 7.1. Given Q > 0, the pairing C% @ C? — C, introduced in (3.2),
is a positive-definite Hermitian product provided that Q > 4. For ) equal

to Beraha numbers B,, = 2 + 2cos(2mw/(n + 1)), the pairing is positive semi-
definite.

The corollary follows from the corresponding statement for the
Temperley—Lieb algebra [17] at d = /@ and Lemmas 6.2 and 7.1.

We note the intriguing fact that the values of Q for which the Hermitian
product on CY is positive-definite coincides with the values of Q(Q >14)
for which the chromatic polynomial of planar graphs is conjectured to be
positive [3]. (Of course, @ =4 corresponds to the 4-color theorem.) At
Beraha numbers, the trace pairing descends to a positive-definite product
on the quotient of C by the trace radical, and it gives rise to the unitary
structure of the (doubled) SO(3) TQFT, see Section 3.1.

Among the elementary consequences of the corollary above, consider the
Cauchy—Schwarz inequality: given two graphs G, H in a disk with an equal
number of endpoints on the boundary of the disk, for Q >4, (G, H)? <
(G,G) - (H,H). The inner product is given by gluing two disks along their
boundary and computing the chromatic polynomial at @ > 4 of the dual
graph of the resulting graph in the 2-sphere. This may be loosely formulated
as saying that the chromatic polynomial at these values of ) of such graphs
is maximized by graphs with a reflection symmetry, a statement that does
not seem to follow immediately from the combinatorial definition of the
chromatic polynomial.
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8 Concluding remarks and questions

We mention a number of questions motivated by our results.

8.1 Algebraic properties of the chromatic polynomial

The chromatic algebra C defined in this paper provides a natural framework
for studying algebraic and combinatorial properties of the chromatic polyno-
mial. We mentioned some of the elementary consequences in Sections 3 and
4. In [10] we use this algebra to give an algebraic proof of Tutte’s golden
identity [33] and to establish chromatic polynomial relations evaluated at
Beraha numbers, whose existence was conjectured by Tutte. The chromatic
algebra should be useful for a variety of other problems as well, for example
it seems likely that it should give new insight into Birkhoff~Lewis equations
[3] and the associated Tutte’s invariants [34]. (See also [5] for more details
on this subject. The use of the Temperley—Lieb algebra in [5] appears to
be different from our approach; it would be interesting to find a connection
with our results.)

8.2 Analytic properties

The chromatic algebra and its relations with the TL and BMW algebras
should also be useful in analyzing analytic properties of the chromatic poly-
nomial. Specifically, Tutte [32] established the estimate |x7(¢ + 1)| < ¢°F,
where T is a planar triangulation and k is the number of its vertices. The
value ¢ + 1 is one of Beraha numbers, Bs, where B,, = 2 + 2 cos(27/n). Con-
sidering the map ¢: C,, — T Lo, (defined in Section 6), the Beraha numbers
correspond to the special values of d, d,, = 2 + 2 cos(w/n), where the trace
radical of the Temperley—Lieb algebra is non-trivial, and is generated by
the Jones—Wenzl projector [17]. This algebraic structure may prove useful
in determining whether there is an analogue of Tutte’s estimate for other
Beraha numbers. (This question is interesting in connection with the obser-
vation that the real roots of the chromatic polynomial of large planar trian-
gulations seem to accumulate near the points {B)}.)

In Sections 5 and 6 we established a relationship between the SO(3) BMW
and chromatic algebras. The former is useful for studying the quantum
SO(3) invariants of 3-manifolds (via their surgery presentation), while the
latter is directly related to the chromatic polynomial. It is known [23,38]
that the SO(3) quantum invariants of 3-manifolds are dense in the complex
plane. This motivates the question of whether there may be a related density
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result for the values of the chromatic polynomial of planar graphs at Beraha
numbers.

8.3 The SO(N) invariant of graphs

The SO(N) Kauffman polynomial may be viewed as an invariant of pla-
nar 4-valent graphs via the “change of basis” formula (5.3). (Similarly the
generators of the SO(N) BMW algebra may be taken to be 4-valent pla-
nar graphs, rather than tangles.) The relations among 4-valent graphs are
then the pullback of the Kauffman relations in figure 12 and of the last two
Reidemeister moves under (5.3).

In this paper we show that in the case N = 3 all of these relations follow
from the chromatic relations in Definition 3.1. We also discuss the special
case N =4 in [10, Section 4], relating BMW(4) with TL x TL. It is an
interesting question whether there is a nice combinatorial/geometric inter-
pretation of the SO(NN) invariant of graphs for other values of N involving
unlabeled graphs. (A different approach is taken in [22] in the rank 2 case
where the graph edges have different labels.)

8.4 The chromatic algebra and the SO(3) BMW algebra

In this paper we define and investigate some of the properties of the map
from the SO(3) BMW algebra to the chromatic algebra, i: BMW,, — Cy,
see Theorem 5.1. It would be interesting to establish a precise relationship
between these algebras. As indicated in Remark 5.3, we believe this homo-
morphism is injective but not surjective. (From the TQFT perspective, an
interesting question is whether these two algebras are Morita equivalent.) It
follows from Lemma 6.2 that at special values of ) = 2 + 2cos(27j/n), the
pull-back of the Jones—Wenzl projector from the Temperley—Lieb algebra
via the homomorphism ¢ is in the trace radical of the chromatic algebra. A
question important from the perspective of finding linear relations among
the values of the chromatic polynomial of planar graphs (see [10]) is whether
this pull-back of the Jones—Wenzl projector generates the entire trace radical
of the chromatic algebra.
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