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Abstract

We study the genus expansion of Barannikov–Kontsevich solutions of
the WDVV equation. In terms of the related graph calculus, we give
a definition of descendants at one point and prove that this definition
satisfies the topological recursion relations in genera 0, 1, and 2, string
and dilaton equations, and the pull-back formula.

1 Introduction

1.1 WDVV equation

Consider a formal power series F (T1, . . . , Tn) and a constant non-
degenerate scalar product ηij on the space of variables T1, . . . , Tn. The
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WDVV equation for (F, η) is

∂3F

∂Ta∂Tb∂Ti
ηij

∂3F

∂Tj∂Tc∂Td
=

∂3F

∂Ta∂Tc∂Ti
ηij

∂3F

∂Tj∂Tb∂Td
.

In other words, one can say that Cij
k = ηlk · ∂3F/∂Ti∂Tj∂Tl are the structure

constants of an associative commutative algebra.

Solutions of the WDVV equation appear in many natural ways, see [5,15]
and references therein. We are interested in two classes of solutions: genus
zero Gromov–Witten (GW) invariants [10] and Barannikov–Kontsevich
(BK) construction [3].

The first result that we present in this paper is a very strange property
of BK solutions of the WDVV equation. If (F, η) is a BK solution of the
WDVV equation, then in satisfies the additional equation:

ηkl
∂3F

∂Tk∂Tl∂Ti
ηij

∂3F

∂Tj∂Tm∂Tn
ηmn = const. (1.1)

1.2 Genus expansion

Genus zero GW invariants appear naturally to be a part of a bigger formal
power series. We can consider GW invariants of higher genera and we can
combine them with ψ-classes (descendants). Due to the splitting axiom [10],
any relation among natural strata in the cohomology ring of Mg,n gives a
differential equation for GW invariants.

A genus expansion of BK construction (without descendants) was con-
structed in [14] in terms of tensor expressions associated to graphs. In this
paper, we give a partial definition of descendants in terms of graphs. In GW
theory, our definition corresponds to ψ-classes at one point.

It is enough to allow ψ-classes at one point in order to fomulate a number
of differential equations coming from geometry of the moduli space of curves
and therefore universal for GW invariants: topological recursion relations
in genera 0, 1, and 2, string and dilaton equations, pull-back formula. We
check all these equations for our definition.

There are also Belorousski–Pandharipande relation [4] and topological
recursion relation in genus 3 [2,8]. The first one is checked for our definition
in [18], and the second one is not yet checked.
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1.3 Further details

In this paper, we work in purely algebraic terms. We start with a vector
space H equipped with a structure of so-called cyclic Hodge dGBV algebra
(cH-algebra) and we obtain a power series as a contruction of some tensor
expressions on this space. Then, we describe a technique that allows one to
obtain differential equations for this power series.

Thus, one of the possible ways to understand this paper is the following.
We just offer a formal game with graphs. This game allows one to obtain
differential equations, which by a miracle coinside with the equations coming
from geometry of the moduli space of curves. In particular, one can use
this as a powerful tool allowing to make conjectures on the structure of
topological recursion relations in higher genera (cf. [1, 2]).

However, all our constructions have strong motivation in geometry, see
[14, Introduction]. In particular, the definition of descendants that we give
below comes very natural from the theory of Zwiebach invariants developed
in [14]. Moreover, using Zwiebach invariants one can define the complete
potential that include all descendants. But study of the complete potential
is not yet finished, so we hope to discuss this elsewhere.

2 Construction of the potential

2.1 Tensor expressions in terms of graphs

We explain a way to encode some tensor expressions over an arbitrary vector
space in terms of graphs.

Consider an arbitrary graph (we allow graphs to have leaves). We asso-
ciate a symmetric n-form to each vertex of degree n, a symmetric bivector
to each egde, and a vector to each leaf. Then, we can substitute the tensor
product of all vectors in leaves and bivectors in edges into the product of
n-forms in vertices, distributing the components of tensors in the same way
as the corresponding edges and leaves are attached to vertices in the graph.
This way we get a number.

Let us study an example:
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We assign a 5-form x to the left vertex of this graph and a 3-form y to the
right vertex. Then, the number that we get from this graph is x(a, b, c, v, w) ·
y(v, w, d).

Note that vectors, bivectors, and n-forms used in this construction can
depend on some variables. Then what we get is not a number, but a
function.

2.2 cH-algebras

We recall the definition of cH-algebras [14]. A supercommutative associa-
tive C-algebra H is called cH-algebra, if there are two odd linear operators
Q, G− : H → H and an integral

∫
: H → C satisfying the following axioms:

(1) Q2 = G2
− = QG− + G−Q = 0;

(2) H = H0 ⊕ H4, where QH0 = G−H0 = 0 and H4 is represented as a
direct sum of subspaces of dimension 4 generated by eα, Qeα, G−eα,
QG−eα for some vectors e ∈ H4, i.e., H4 =

⊕
α 〈eα, Qeα, G−eα,

QG−eα〉 (Hodge decomposition);
(3) Q is an operator of the first order, it satisfies the Leibniz rule: Q(ab) =

Q(a)b + (−1)ãaQ(b) (here and below we denote by ã the parity of
a ∈ H);

(4) G− is an operator of the second order, it satisfies the 7-term relation:
G−(abc) = G−(ab)c + (−1)b̃(ã+1)bG−(ac) + (−1)ãaG−(bc)
− G−(a)bc − (−1)ãaG−(b)c − (−1)ã+b̃abG−(c).

(5) G− satisfies the property called 1/12-axiom: str(G− ◦ a ·) = (1/12)str
(G−(a) ·) (here a · and G−(a) · are the operators of multiplication by
a and G−(a), respectively).

We define an operator G+ : H → H. We put G+H0 = 0; on each subspace
〈eα, Qeα, G−eα, QG−eα〉, we define G+ as G+eα = G+G−eα = 0, G+Qeα =
eα, and G+QG−eα = G−eα. We see that [G−, G+] = 0; Π4 = [Q, G+] is the
projection to H4 along H0; Π0 = Id − Π4 is the projection to H0 along H4.

An integral on H is an even linear function
∫

: H → C. We require∫
Q(a)b = (−1)ã+1 ∫

aQ(b),
∫

G−(a)b = (−1)ã
∫

aG−(b), and
∫

G+(a)b =
(−1)ã

∫
aG+(b). These properties imply that

∫
G−G+(a)b =

∫
aG−

G+(b),
∫

Π4(a)b =
∫

aΠ4(b), and
∫

Π0(a)b =
∫

aΠ0(b).

We can define a scalar product on H: (a, b) =
∫

ab. We suppose that this
scalar product is non-degenerate. Using scalar product, we may turn an
operator A : H → H into bivector that we denote by [A].
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In calculations below, we always use an additional assumption that either
the underlying cH-algebra has finite dimension or all tensor expressions that
we consider converge.

2.3 References on cH-algebras

This structure has appeared first in [3] as an axiomatic description of the
properties of the holomorphic polyvector fields on Calabi-Yau manifolds.
Another example of cH-algebras was found in [17]. In both cases, the authors
consider only genus zero case, so they did not include 1/12-axiom. The full
structure of cH-algebra has appeared in [14] as an attempt to construct the
simplest possible example of Zwiebach invariants.

A detailed discussion of the role of this structure in the theory of Frobenius
manifolds one can find in [15, 16]. Also the structure of cH-algebra can be
obtained as a natural nonlinear generalization of the algebraic structures
studied in [11–13].

2.4 Usage of graphs with cH-algebras

Consider a cH-algebra H. There are some standard tensors over H, which
we associate to elements of graphs below. Here, we introduce the notations
for these tensors.

We always assign the form

(a1, . . . , an) 	−→
∫

a1 · · · an

to a vertex of degree n.

There is a collection of bivectors that will arise below at edges: [G−G+],
[Π0], [Id], [QG+], [G+Q], [G+], and [G−]. In pictures, edges with these
bivectors will be denoted by

respectively. Note that an empty edge corresponding to the bivector [Id]
can usually be contracted (if it is not a loop).

The vectors that we will put at leaves depend on some variables. Let
{e1, . . . , es} be a homogeneous basis of H0. To each vector ei, we associate
formal variables Tn,i, n = 0, 1, 2, . . . , of the same parity as ei. Then, we will
put at a leaf either the vector E0 =

∑
eiT0,i (denoted by an empty leaf) or
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the vector En =
∑

eiTn,i, n = 1, 2, . . . (then the leaf will be marked by an
arrow, the number, n, will be easily reconstructed from the context).

2.5 Remark on signs

Note that H is a Z2-graded space. In order to get proper signs in our
formulas, we always do the following. Suppose we consider a graph of genus
g. We can choose g edges in such a way that the graph being cut at these
edge turns into a tree. To each of these edges, we have already assigned a
bivector [A] for some operator A : H → H. Now we have to put the bivector
[JA] instead of the bivector [A], where J is an operator defined by the
formula J : a 	→ (−1)ãa. Obviously, the result (the number associated to a
graph after this procedure) does not depend on the choice of these g edges.

For example, consider the following graph:

An empty loop corresponds to the bivector [Id]. An empty leaf corresponds
to the vector E0. A trivalent vertex corresponds to the 3-form given by the
formula (a, b, c) 	→

∫
abc.

If we do not insert J , then what we get is just the trace of the operator
a 	→ E0 · a. But what we really need is the supertrace of this operator. So,
this just will affect on some signs in our calculations.

2.6 (g,n)-Vertices

In our construction, we consider graphs, whose edges are either marked by
[G−G+] or by [Id]. In the second case, such edges must be loops. All other
possible bivectors on edges listed above will appear only in calculations.

Consider a vertex of such graph. We can split germs of edges attached to
this vertex in three groups: 2g germs of loops marked by [Id] (the number
is even since each loop provide two germs), k germs of edges marked by
[G−G+] and m germs of leaves. We say that such vertex is (g, k + l)-vertex.

Let us study several examples:
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The unique vertex of the first graph is (1, 4)-vertex. The vertices of the
second graph are (2, 2)-, (0, 3)-, and (0, 4)-vertex (listed from left to the
right).

2.7 BK solution of WDVV and its genus expansion

Let F sm
0 = F sm

0 (T0,1, . . . , T0,s) be the sum over all trees whose leaves are
empty (i.e., marked by E0) and all vertices are (0, 3)-vertices. We weight
each tree by the inverse order of its group of automorphisms. In other words,
we consider trivalent graphs with leaves marked by E0 and edges marked by
[G−G+]:

Let ηij be the scalar product of the cH-algebra restricted to H0.

Theorem 2.1. (F sm
0 , η) is a solution of the WDVV equation [3,14].

Theorem 2.2. (F sm
0 , η) satisfy equation (1.1).

Note that we formulate all equations here and below as if all variables Tn,i

are even. It is enough for us since any equation that we prove will first be
reformulated in terms of graphs, where all sings are arranged automatically.

Let F sm
g = F sm

g (T0,1, . . . , T0,s) be the sum over all graphs of genus whose
leaves are empty and all vertices are (0, 3)-vertices. Each graph is weighted
by the inverse order of its group of automorphisms. For example,

The formal power series F sm =
∑

g≥0 F sm
g is a natural genus expansion

of F sm
0 on the small phase space. In GW theory, it corresponds to GW

invariants in arbitrary genus but without ψ-classes.

Theorem 2.3. (F sm
1 , F sm

0 , η) satisfy Getzler elliptic relation [7,14].
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2.8 Descendants at one point

Now we can describe the formal power series F that corresponds in GW
theory to the generating function of GW invariants combined with ψ-classes
taken only at one point. This formal power series must depend linearly on
the variables Tn,i, where n ≥ 1 corresponds to the number of ψ-classes taken
at one point. So, F is the sum over graphs satisfying several conditions:

(1) There is exactly one (g′, m)-vertex v0 with 3g′ − 3 + m ≥ 0.
(2) All other vertices are (0, 3)-vertices.
(3) There is exactly one leaf with arrow.
(4) This leaf is marked by En, n = 3g′ − 3 + m.
(5) This leaf is attached to v0.
(6) All other leaves are empty (i.e., marked by E0).

We weight such graph by the inverse order of its group of automorphisms
and by (1/12)g.

At the first glance, this definition could seem to be a little bit strange.
But it is very natural from the point of view of Zwiebach invariants [14].
Moreover, as we see below, it is the unique possible definition that satisfies
all requirements coming from Gromov–Witten theory.

We can represent F as
∑

g≥0,n≥1 Fg,n where Fg,n is the sum of graphs of
total genus g with the special leaf marked by En. Some examples:

There are some equations for F sm + F that reflect geometry of the moduli
space of curves. By Fg,0 we denote F sm

g , by Fg we denote
∑

n≥0 Fg,n.

Theorem 2.4. String and dilaton equations. If e1 is the unit of the
underlying cH-algebra, then

∂Fg

∂T0,1
=

s∑

i=1

∞∑

n=0

Tn+1,i
∂Fg

∂Tn,i
+ δg,0

T0,iηijT0,j

2
; (2.1)
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∂Fg,1

∂T1,1
=

s∑

i=1

T0,i
∂Fg,0

∂T0,i
+ (2g − 2)Fg,0 + δg,1

str(Π0)
24

. (2.2)

Theorem 2.5. Topological recursion relations.

∂3F0,n+1

∂Tn+1,a∂T0,b∂T0,c
=

∂2F0,n

∂Tn,a∂T0,i
ηij

∂3F0,0

∂T0,j∂T0,b∂T0,c
; (2.3)

∂F1,n+1

∂Tn+1,a
=

∂2F0,n

∂Tn,a∂T0,i
ηij

∂F1,0

∂T0,j
+

1
24

∂3F0,n

∂Tn,a∂T0,i∂T0,j
ηij ; (2.4)

∂F2,n+2

∂Tn+2,a
=

∂2F0,n+1

∂Tn+1,a∂T0,i
ηij

∂F2,0

∂T0,j
+

∂2F0,n

∂Tn,a∂T0,i
ηij

∂F2,1

∂T1,j

− ∂2F0,n

∂Tn,a∂T0,i
ηij

∂2F0,0

∂T0,j∂T0,i′
ηi′j′

∂F2,0

∂T0,j′

+
7
10

∂3F0,n

∂Tn,a∂T0,i∂T0,i′
ηij

∂F1,0

∂T0,j
ηi′j′

∂F1,0

∂T0,j′

+
1
10

∂3F0,n

∂Tn,a∂T0,i∂T0,i′
ηijηi′j′

∂2F1,0

∂T0,j∂T0,j′

− 1
240

∂2F1,n

∂Tn,a∂T0,i
ηij

∂3F0,0

∂T0,j∂T0,i′∂T0,j′
ηi′j′

+
13
240

∂4F0,n

∂Tn,a∂T0,i∂T0,j∂T0,i′
ηijηi′j′

∂F1,0

∂T0,j′

+
1

960
∂5F0,n

∂Tn,a∂T0,i∂T0,j∂T0,i′∂T0,j′
ηijηi′j′ . (2.5)

We also discuss below the analog of the pull-back formula in terms of
graphs.

2.9 KdV hierarchy

Consider the one-dimentional cH-algebra generated by the unit e1, with
Q = G− = 0 and

∫
e1 = 1. Then all graphs contributing to F sm + F have

exactly one vertex. It is easy to see that in this case

F sm + F =
T 3

0,1

6
+

∞∑

n=1

Tn,1T
n+2
0,1

(n + 2)!
+

∞∑

g=1

∞∑

n=0

T3g+n−2,1T
n
0,1

g! · 24g · n!
.

This is exactly the part of the string solution of the KdV hierarchy corre-
sponding to the intersection numbers of ψ-classes at one point [9, 20].
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2.10 Organization of the paper

The rest of the paper is organized like as follows. First, we prove string and
dilaton equations. They are almost obvious and do not require any com-
plicated technique. Then we discuss some technical lemmas closed to Till-
mann’s theorem in [19], and we apply this new technique to the analog of
the pull-back formula in terms of graphs. Then, using the pull-back formula
and an argument shared in [14], we prove topological recursion relations.

And finally we prove the new relation for F0,0, which has no relation to
the definition of descendants.

3 String and dilaton equations

Proof of the string equation. In terms of graph calculus, ∂Fg,n/∂T0,1 is the
sum over the same graphs as Fg,n, but one of simple (empty) leaves is marked
not by E0 but by e1. We must also recalculate the coefficiets of graphs taking
into account that now the this leaf is preserved by automorphisms of graphs.

In the simplest case we obtain

Since e1 is the unit of algebra, this expression is equal to T0,iηijT0,j/2. It is
exactly the last term in the string equation (2.1)

Now consider a generic graph. Let the leaf marked by e1 be attached to a
(0, 3)-vertex. There are two possible local pictures (in addition to the case
studied above):

In the first picture, this piece of graph can be substituted by the vec-
tor G−G+(E0 · e1) = G−G+(E0) = 0. In the second picture, this piece of
graph can be substituted by the bivector [G−G+ ◦ e1 · ◦G−G+] = [G−G+G−
G+] = 0 (e1· is the operator of multiplication by e1). Therefore, in both cases
such graphs contribute zero.

So, the leaf marked by e1 can be attached only to the same vertex as the
leaf marked by arrow. In particular, if n = 0, the unique non-zero contribu-
tion to ∂Fg,n/∂T0,1 is the simplest case studied above. Then, since e1 is the
unit of the algebra, we can erase it. Thus, we obtain a graph, contributing



DEFINITION OF DESCENDANTS AT ONE POINT 361

to Fg,n−1. Moreover, one can easily see that we obtain this graph with the
proper combinatorial coefficient. �

Proof of the dilaton equation. First, we note that

This gives the exceptional summand in the dilaton equation (2.2)

In all other cases, ∂Fg,1/∂T1,1 is represented as a sum over the same graphs
as Fg,1, but the leaf with arrow is marked by e1. Since e1 is the unit of the
algebra, we can erase the leaf with arrow, and we obtain a graph contributing
to Fg,0. Since the arrow could be attached to an arbitrary vertex of a graph
contributing to Fg,0, we get each such graph with the additional coefficient
equal to the number of its vertices. This is equal to 2g − 2 + l, where l is
the number of leaves. The right hand side of dilaton equation is exactly the
operator of multiplication of each graph by this coefficient. �

4 Two technical lemmas

In this section, we present some technical lemmas. The first one is very
closed to the theorem of Tillmann [19]. Note, that graphs in this section
have a little bit deifferent meaning, then in all other parts of this paper. All
graph here will appear later in calculations as parts of bigger graphs. So,
empty leaves in graphs of the first lemma do not marked by any vectors, but
a graph with one (resp., two) empty leaves is considered as a special vector
(resp., bivector) itself.

Lemma 4.1. The vectors and bivectors defined by the pictures below are
equal to zero:

Lemma 4.2. For any vectors A0, A1, . . . , Ak, k ≥ 2, we have:
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Proof of both lemmas. Both lemmas easily follows from the properties of
G−. For instance,

The first equality is a redrawing, the second equality is the special case of
the 7-term relation, and the third equality is again a redrawing.

Another example. Consider the special case of the 7-term relation:

The last summands in both sides of this equation coinside. Thus, we obtain
the first statement of Lemma 4.2 for k = 2.

The other 3 statements of Lemma 4.1 and statements of Lemma 4.2 for
an arbitrary k are proved by the very similar one-string calculations. �

5 Pull-back of descendants

5.1 Pull-back formula on the moduli space of curves

We consider the moduli space of curves Mg,r+1. We denote by π : Mg,r+1 →
Mg,r the projection forgetting the last marked point. Then there is a for-
mula relating ψ-classes on Mg,r+1 and pull-backs of ψ-classes on Mg,r. We
have:

ψn
1 = π∗ψn

1 + D · ψn−1
1 . (5.1)

Here, we denote by D the cohomology class of the divisor in Mg,r+1, whose
generic point is represented by a two-component curve such that one com-
ponent has genus 0 and contains the first and the last marked points and
the other component has genus g and contains all other marked points.

5.2 Pull-back formula in terms of graphs

We give an interpretation of equation (5.1) in terms of graphs. The left
hand side of equation (5.1) is obvious: we consider the sum of graphs with r
empty leaves contributing to Fg,n. Since we do not distinguish the (r + 1)th
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leaf on the left hand side, we must multiply the combinatorial coefficient of
each graph by r.

Now, we describe the right hand side of equation (5.1). The first summand
is obtained by the procedure studied in [14]. We take a graph with r − 1
empty leaves contributing to Fg,n. Then, we make one change in this graph
in all possible ways. We change either an edge marked by thick black point
or a leaf using the rules:

In order to obtain the second summand, we take a graph with r − 1 empty
leaves contributing to Fg,n−1 and substitute En−1 with Π0(EnE0). In the
case n = 1, we do only one change but in all possible ways. Graphically, the
rules are

5.3 Example in genus 1

We consider projection π : M1,2 → M1,1. The pull-back formula for the
class ψ1 is ψ1 = π∗ψ1 + D. Its interpretation in terms of graphs:

Let us prove this formula. It follows from

The first equality is a corollary of Π0 = Id − QG+ − G+Q and the Leibniz
rule for Q (see [14, 18], where this standard step is dicussed in all details),
the second equality is a corollary of 1/12-axiom.
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5.4 Example in genus 2

We consider projection π : M2,2 → M2,1. The interpretation of the formula
ψ4

1 = π∗ψ4
1 + D · ψ3

1 in terms of graphs is

Let us prove this formula. From Lemma 4.1, it follows that the first
summand in the right hand side is equal to zero. Then the pull-back folrmula
follows from

Here, the first equality is a corollary of Π0 = Id − QG+ − G+Q and the
Leibniz rule for Q, the second equality is a corollary of Lemma 4.1.

5.5 Proof of the pull-back formula

Theorem 5.1. Descendants in our construction satisfy the pull-back
formula.

Proof. First of all, return to the description of the pull-back formula given in
Section 5.2. The summand corresponding to π∗ψn

1 splits into sum A′ + A′′,
where A′ includes graphs obtained by change at an edge or at an empty leaf,
and A′′ includes graphs obtained by change at the leaf with arrow.

Consider the summand corresponding to D · ψn−1
1 . Since Π0 = Id − G+

Q − QG+, we can represent each graph in this summand as a sum of three
graphs. Then we collect the graphs with Id, −QG+, and −G+Q, and denote
their sums by B′, B′′, and B′′′.

We redraw the graphs in B′ contructing the edge marked by [Id].
Obviously, the sum A′ + B′ consists of exactly the same graphs as the left
hand side of the pull-back formula, and one can easily check that the com-
binatorial coefficients at the same graphs coinside. So, we must prove that
A′′ + B′′ + B′′′ = 0.

Note that −G+Q(EnE0) = 0 (apply the Leibniz rule and note that QEi =
0, i ≥ 0). Therefore, B′′′ = 0.
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Consider graphs in A′′. If such graph has a (g, n)-vertex with g ≥ 2, then
it is equal to zero (Lemma 4.1). Consider graphs in B′′. Using the Leibniz
rule for Q, we turn each graph into the sum of graphs of the same type, but
with −[G+] instead of −[QG+], and with [G−] instead of one of [G−G+].
There are several possible cases:

(1) Edges with −[G+] and [G−] are attached to different vertices. Using
the 7-term relation and 1/12-axiom one can show that the sum of all
these graphs is equal to zero.

(2) Edges with −[G+] and [G−] are attached to the same (g, n)-vertex,
g ≥ 2. Each such graph is equal to zero (Lemma 4.1).

(3) Edges with −[G+] and [G−] are attached to the same (1, n)-vertex.
Each such graph is equal to zero (apply Lemma 4.2 two times).

(4) Edges with −[G+] and [G−] are attached to the same (0, n)-vertex
and [G−] is on the loop. Applying the 1/12-axiom and Lemma 4.2, we
obtain exactly the graphs in A′′ that have a (1, n − 2)-vertex.

(5) Edges with −[G+] and [G−] are attached to the same (0, n)-vertex
and [G−] is not on the loop. Applying the 7-term relation, we obtain
exactly the graphs in A′′ that have a (0, n + 1)-vertex.

One can easily check that the coefficients of graphs in A′′ and of the same
graphs obtained in B′′ are opposite. So, A′′ + B′′ = 0. �

6 Topological recursion relations

Proof of Theorem 2.5. In GW theory, the topological recursion relations
appear in the following way. Suppose we have a relation in cohomology of
Mg,k expressing ψm

1 in terms of boundary strata. Using the splitting axiom,
we can understand this relation as a differential equation for the GW poten-
tial proven when all parameters are set to zero. Then we can consider the
pull-backs of this relation under the projections π : Mg,k+n → Mg,k. This
will give a differential equation for the GW potential proven for arbitrary
parameters. But this differential equation differs from the initial one; we
must add several terms related to the pull-back formula (5.1). This way we
get the first summand in (2.4) and the first three summands in (2.5). How-
ever, the point is that in GW theory we are to check a TRR-type relation
only once, in the cohomology of Mg,k with the smalest possible k.

The advantage of our graph calculus is that in order to prove a topological
recursion relation, we can follow the same way as in GW theory. Indeed,
it was shown in [14] that π∗ keeps equalities in graphs. In this paper, we
proved the pull-back formula in terms of graphs (Theorem 5.1). So, it is
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sufficient to prove the topological recursion relations when all parameters
are set to zero. The difference between GW theory and graph calculus is
the following. In GW theory a TRR for ψk

1 implies the same TRR for ψk+1
1 .

In graph calculus, there is no analogue of multiplication in cohomology, so
we must check the simplest case of each TRR for all powers of ψ-class.

So, calculations below complete the proof of Theorem 2.5. �

6.1 Simple cases

In genus 0 and genus 1 we just check that

(for genus 1, the coefficients 1/24 and 1/2 are the weights determined by
our rules, the coefficient 1/12 comes from equation (2.4)). Obviously, this
is true.

In genus 2, if the power of ψ-class is ≥ 4, we just check that

(the coefficients 1/(8 · 122), 1/48, 1/8 are the weights determined by our
rules, the coefficients −1/120 and 1/120 come from equation (2.5)). Since
all pictures are equal, we are just to check that 1/8 · 122 = −1/120 · 1/48 +
1/120 · 1/8. Obviously, this is true.

6.2 Genus 2 expression for ψ2
1

For convenience, we rewrite the corresponding equation as an expression for
ψ2

1 in boundary strata of M2,1 [6]:

(6.1)

In these pictures, a vertex marked by 1 corresponds to a genus 1 curve, a
simple vertex corresponds to a genus 0 curve, an edge corresponds to a point
of intersection, and a leaf corresponds to the marked point. We note that
these pictures have completely different meaning than all other pictures in
this paper.

To each stratum we associate a differential monomial in F sm + F , and
below we list the constant term of this monomials in terms of our usual
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graphs:

Using the standard argument in [14,18], we express all these graphs in terms
of the following 5 pictures:

It is rather hard but straightforward calculation. The result is:

If we substitute these expressions in equation (6.1), then we obtain ψ2
1 =

(1/8)Q1 + (1/48)Q3. We see that it is exactly our definition of ψ2
1!

6.3 Genus 2 expression for ψ3
1

For convenience, we rewrite the corresponding equation as an expression for
ψ2

1 in boundary strata of M2,1:

(6.2)
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We list the constant terms of the differential monomials of these strata:

Using the standard argument in [14,18], we express all these graphs in terms
of the following 2 pictures:

We have:

If we substitute these expressions in equation (6.2), then we obtain ψ3
1 =

(1/48)P1. It is exactly our definition of ψ3
1.

7 New relation

Proof of Theorem 2.2. First, let us rewrite equation (1.1) as

ηi′j′
∂4F0,0

∂T0,a∂T0,i′∂T0,j′∂T0,i
ηij

∂3F0,0

∂T0,j∂T0,i′′∂T0,j′′
ηi′′j′′ = 0

We see that this equation is of the same type as equations studied above, so
it is enough to prove it when all parameters are set to zero. In terms of our
graphs, we must prove that

(6.3)

Using (twice) Π0 = Id − QG+ − G+Q and the Leibniz rule for Q, one can
show that
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The 7-term relation for G− implies that

Therefore, the left hand side of equation (6.3) is equal to

Using Π0 = Id − QG+ − G+Q and the Leibniz rule for Q, we have:

From Lemma 4.2 is follows that this difference is equal to zero. �
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