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Abstract

We show how a Kähler spacetime foam in four dimensional conformal
(super)gravity may be mapped to twistor spaces carrying the D1 brane
charge of the B model topological string theory. The spacetime foam is
obtained by blowing up an arbitrary number of points in C

2 and can be
interpreted as a sum over gravitational instantons. Some twistor spaces
for blowups of C

2 are known explicitly. In these cases, we write down
a meromorphic volume form and suggest a relation to a holomorphic
superform on a corresponding super Calabi–Yau manifold.
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1 Introduction

The fate of spacetime at small length scales remains an outstanding problem
in gravitational physics. The expectation of severe fluctuations in geome-
try and topology at the Planck length has lead to a picture of spacetime
foam [1, 2]. However, it is difficult to reliably quantify Planck scale physics
using general relativity or superstring theory. In particular, the semiclassical
approximation which underpins much of our knowledge of quantum gravity
is unlikely to be valid at such small scales.

It is therefore rather impressive that the full perturbative partition func-
tion of Kähler gravity [3], a topological gravity theory in six dimensions, has
recently been shown to be expressible as a sum over blowups of an asymp-
totically fixed toric Calabi–Yau manifold [4]. This explicit realization of
spacetime foam was possible because Kähler gravity is the spacetime theory
of topological A model string theory [5]. The topological A model on toric
Calabi–Yau manifolds is under good computational control [6, 7].

Combining the A model picture with two other recent developments in
topological string theory suggests an approach to spacetime foam in a four
dimensional theory of gravity. First, it has been conjectured that N = 4
conformal supergravity in four dimensions has a dual description as the
topological B model string theory on CP

3|4 [8, 9]. These beautiful works
have combined the richness of string theory with the mathematical structure
of twistor theory [10, 11]. In conformal gravities and supergravities, the
Einstein–Hilbert action is replaced by

SCG ∝
∫

dΩCabcdC
abcd, (1.1)

where Cabcd is the Weyl tensor. This action is formally similar to the Yang–
Mills action. Like the Yang–Mills action, it is conformally invariant and
power-counting renormalizable. Despite these attractive features, such theo-
ries are generally not thought to provide adequate theories of gravity because
the action SCG has a four-derivative kinetic term and consequently suffers
from unitarity problems [12]. In a Euclidean context, this is manifested as
the inner product not being positive definite. However, a duality with topo-
logical string theory may help to resolve this issue or at least understand it
better.

Secondly, it has been conjectured that there exists an S-duality in topo-
logical string theory that relates the A model and B model on a given Calabi–
Yau manifold [13, 14]. The spacetime foam we mentioned above is due to the
worldsheet instantons of the A model. Worldsheet instantons are S-dual to
D1 branes, so one therefore expects that the dual B model spacetime foam
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will be described as a gas of D1 branes. In the context of twistor string the-
ory, a D1 brane wraps a CP

1 in CP
3|4. Under the twistor correspondence,

each CP
1 in CP

3|4 corresponds to a point in R
4 = C

2. A simple operation
that can be performed at a given point is a blowup, that is, replacing the
point with a finite CP

1. This leads to the suggestion [13] that spacetime
foam in conformal supergravity is described as a sum over blowups, with a
twistorial description given as a gas of D1 branes in the topological B model.
This idea is consistent with the fact that [9] the perturbative states of the B
model are given by the complex structure deformations of the target space.
When the target space is a twistor space, these deformations are mapped to
fluctuations of the metric, i.e., perturbative states of gravity. Considering
D1 branes then means extending this correspondence to a nonperturbative
sector. The objective of this work is to start to flesh out this correspondence.

There is a further mathematical fact that supports the notion of spacetime
foam in conformal gravity as a sum over blowups of C

2. This comes from
considering gravitational instantons in conformal gravity. Again like the
Yang-Mills action, the action SCG is minimised by self-dual or anti-self-dual
instantons with

Cabcd = ±1
2
εab

efCefcd. (1.2)

A metric with a Weyl tensor satisfying (1.2) is called conformally (anti)-self-
dual. A manifold is called conformally (anti)-self-dual if it admits such a
metric. The twistor correspondence [10, 11] states that there is a one-to-one
correspondence between conformally (anti)-self-dual manifolds and a certain
class of three complex-dimensional manifolds with a real structure.

Given a suitable normalization, the action evaluated for a gravitational
instanton M is a topological charge. The charge is the Hirzebruch signature
of the four dimensional manifold

SCG[M ] ∝ 1
96π2

∫

dΩεabefCabcdCef
cd = τ = b+

2 − b−
2 , (1.3)

where b±
2 are the second Betti numbers of the manifold.

Blowing up a point of a four-manifold M is topologically equivalent to
performing a connected sum with CP

2. Partially because of this fact, and
following much of the mathematical literature, we shall work with anti-self-
dual rather than self-dual manifolds. This choice is related to a choice of
orientation.1 Thus we write

M �→ M ′ = M#CP
2. (1.4)

1
CP

2 and CP
2 are trivially homeomorphic, but the homeomorphism is not orientation

preserving.
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We then have that performing the connected sum with CP
2 decreases the

signature by one
τ(M ′) = τ(M) − 1. (1.5)

A particular case of this is M ′ = C
2#CP

2 which has τ(M ′) = −1. Further-
more this M ′ is a conformally anti-self-dual manifold and therefore could
be thought of as a “minimal” gravitational instanton. In general M ′ is not
conformally anti-self-dual. There are however various deep results in the
theory of anti-self-dual manifolds concerning direct sums with CP

2 [15–18].
Amongst these is the statement that

M = C
2#CP

2

n
︷ ︸︸ ︷

# · · ·# CP
2, (1.6)

is conformally anti-self-dual for any n. These particular manifolds have
various technically pleasant properties. With some assumptions about the
symmetry of the configurations of points of C

2 which are blown up, explicit
asymptotically flat anti-self-dual metrics are known, together with their
twistor spaces [19, 20]. These twistor spaces turn out to be bimeromor-
phic to projective varieties [19, 21] and the anti-self-dual metrics turn out to
be Kähler [20].

The upshot of these mathematical remarks is that the sum over blowups
can be thought of as a gas of C

2#CP
2 gravitational instantons. We thus

reach the appealing picture that an instanton gas in conformal supergravity
could correspond to the D1 brane gas in twistor string theory.

The idea of the vacuum of conformal gravity as a gas of gravitation instan-
tons was explored in [22] following observations in [23]. That work consid-
ered the physics of instantons other than blowups of C

2. Specifically, the
paper studied the instantons K3 and T 4, as well as the manifold S2 × S2

which solves the Euclidean equations of motion, although it is not confor-
mally anti-self-dual and therefore not a minimum of the action. These other
instantons should also have an interpretation in twistor string theory that
would be interesting to understand.

In Section 2, we review the twistor correspondence between conformally
anti-self-dual four-manifolds and complex 3-folds. We also review an argu-
ment of LeBrun that constructs a natural super Calabi–Yau manifold from
a twistor space and comment on the topology of twistor spaces.

In Section 3, we recall some properties of the twistor spaces of Kähler anti-
self-dual manifolds. We use these properties to show that Kähler blowups in
four dimensions are mapped via the Penrose transform to a D1 brane charge
in twistor space.
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In Section 4, we recall an explicit construction of twistor spaces for
C#CP

2# · · ·#CP
2, also due to LeBrun. We discuss various aspects of the

geometry and topology of these spaces. Following the prescription developed
in Section 3, we write down a meromorphic 3-form that may be integrated to
give a D1 brane charge. The form is singular because the canonical bundle
of the twistor space is nontrivial. We go on to consider a super Calabi–Yau
extension of the twistor spaces and write down a global (3|4)-form. By inte-
grating out the fermionic directions, we recover the meromorphic form on
the manifold.

Section 5 contains our conclusions and a discussion. The appendices
contain technical details of some of the computations done in the text, as
well as a discussion of geometric transitions in the twistor space.

2 Twistor correspondence and super Calabi–Yau manifolds

2.1 Twistor spaces

Let us briefly review Penrose’s construction of a complex three-manifold
(Z, J) from a four dimensional conformally anti-self-dual Riemannian
manifold (M, [g]) [10, 11]. The manifold Z is called the twistor space of
M .

The Hodge * operation acting on 2-forms on M defines a linear map
Λ2T ∗M → Λ2T ∗M such that ∗2 = 1. The eigenspaces corresponding to
eigenvalues ±1 are the self-dual and anti-self-dual 2-forms on M , respec-
tively. The consequent split Λ2 = Λ+ ⊕ Λ− corresponds to the factorization
of the rotation group on the tangent space SO(4) ∼= SO(3) × SO(3). We
therefore have globally defined vector bundles Λ± of rank 3 with structure
group SO(3). The Riemannian metric on M induces a metric on the fibres,
so we can consider the bundle having the unit sphere in Λ+ as fibre. The
total space of this S2 bundle is the twistor space Z = S(Λ+) as a Riemannian
six-manifold.

It is convenient to have a different interpretation for the fibres. A nor-
malised self-dual 2-form can be identified, using the metric, with an endomor-
phism J : TM → TM that is skew, J∗ = −J , and further satisfies J2 = −1.
A point z ∈ Z on the fibre of x ∈ M is then an almost complex structure Jx

on TxM . Thus the S2 bundle of self-dual 2-forms is also the bundle of com-
plex structures over M . The tangent space of Z splits into TZ = TF ⊕ TM ,
where F is the fibre. We can put an almost complex structure J on TzZ by
firstly defining it to be Jx on TxM and then on the fibre taking the unique
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complex structure on S2 ∼= CP
1 (up to a sign, chosen to be compatible with

the orientation). The central result is that this almost complex structure is
integrable when the self-dual part of the Weyl tensor on M vanishes, C+ = 0.
The twistor space of an anti-self-dual manifold is therefore a complex 3-fold.
This statement and its converse is given in the following theorem.

Theorem 2.1 [10, 11]. The almost complex twistor space (Z, J) of (M, [g])
is a complex 3-manifold if and only if C+ = 0. Conversely, a complex
three-manifold arises by this construction if and only if it admits an anti-
holomorphic involution σ : Z → Z without fixed points and a foliation by
σ-invariant rational curves CP

1, each of which has normal bundle O(1) ⊕
O(1).

The σ-invariant curves in the twistor space Z, called the real curves,
correspond to points in the four-manifold M . Two simple examples of
twistor spaces are as follows. The twistor space of S4 with the conformal
equivalence class of the round metric is CP

3. The twistor space of CP
2

with the Fubini–Study metric is a flag manifold that may be described
as the hypersurface v · w = 0 with v, w ∈ C

3 homogeneous coordinates on
CP

2 × CP
2.

The twistor space of R
4 = C

2 is obtained by removing a rational curve
from CP

3, corresponding to removing a point from S4 and conformally
decompactifying. The resulting space is written CP

′3. We will not always
indicate the removal of the rational curve explicitly.

The construction of Z gives enough information to compute its Betti
numbers using theorems on sphere bundles ([24], II, § 11). By definition,
Z is an orientable S2 bundle over M , with associated vector bundle Λ+

over M . On an Sn-bundle, there is always a global “angular” n-form ψ
whose restriction to each fibre generates the cohomology of the fibre. The
form ψ is not in general closed, the obstruction being given by the Euler class
e(Λ+) (see for example [25] for an introduction to characteristic classes). Λ+

has rank 3 and therefore has an orientation-reversing automorphism, given
by x → −x on the fibres, under which the Euler class changes sign. The
Euler class must therefore vanish. The angular form is then a cohomology
class that generates the cohomology of the fibres. The existence of such a
cohomology class for an orientable sphere bundle is precisely the condition
under which the Leray–Hirsch theorem states that the cohomology of the
bundle factorizes

H∗(Z) ∼= H∗(M) × H∗(S2). (2.1)

It is then immediate to derive

b2(Z) = b2(M) + 1 and b3(Z) = 2b1(M). (2.2)
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In particular, for the manifolds, we are mainly interested in

M = C
2#CP

2

n
︷ ︸︸ ︷

# · · ·# CP
2, (2.3)

we have b2(Z) = n + 1 and b3(Z) = 0.

We have defined Z as the sphere bundle of unit self-dual 2-forms or as the
bundle of complex structures. There is a third useful description: when the
manifold M is spin, there are well-defined spin bundles Σ±, which are rank
2 smooth complex bundles. We have the identifications Λ1 = Σ+ ⊗ Σ− and
Λ± = Σ± ⊗S Σ±, where ⊗S denotes symmetrized tensor product. In this
case Z can also be defined as P(Σ+), the projectivization of the spin bundle.
This description is useful locally even when the manifold M is not spin.

2.2 Twistorial super Calabi–Yau manifolds

In the context of the B model topological string theory, one must make
the twistor space into a super Calabi–Yau manifold in order for the string
theory to be free of anomalies [8]. The B model needs a nonvanishing global
holomorphic volume form. Such a form does not exist for twistor spaces
because the canonical line bundle K = Ω3 is nontrivial. To overcome this
problem in the case of CP

3 [8], which has K = O(−4), one can consider a
fermionic rank 4 complex vector bundle

E = O(1) ⊕ O(1) ⊕ O(1) ⊕ O(1), (2.4)

over the twistor space CP
3. The total space of this bundle is in fact the

super Calabi–Yau CP
3|4. The super Calabi–Yau property follows from the

fact that the “Berezinian line bundle”

B = K ⊗ Λ4E, (2.5)

is trivial because Λ4E = O(4). The Berezinian line bundle is the general-
ization of the canonical bundle to include the fermionic coordinates.

Lebrun [26] has presented a natural generalization of this construction
to any twistor space. The construction has two prominent features: first,
that given any twistor space Z, it produces a super Calabi–Yau manifold by
appending a fermionic rank 4 vector bundle E. Secondly, when restricted to
any real curve in Z, the bundle becomes O(1) ⊕ O(1) ⊕ O(1) ⊕ O(1) over
CP

1. This second point will probably be important for the local degrees of
freedom in four dimensions to remain those of N = 4 conformal supergravity
[9]. We give a proof of the second point in Appendix A.
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First note that any twistor space is spin [27]. Therefore, the inverse
square root of the canonical bundle, K−1/2, is well defined. The rank 4
vector bundle will be given by the 1-jets

E = J1(K−1/2). (2.6)

Loosely, J1(L) for some line bundle L has as fibre at each point the equiva-
lence classes of sections of L determined by their value and first derivatives
at that point. More precisely, there is a short exact sequence

0 −→ Ω1 ⊗ K−1/2 −→ J1(K−1/2) −→ K−1/2 −→ 0. (2.7)

This sequence does not split for twistor spaces. In Appendix A, we show how
the short exact sequence gives the transition functions for the jet bundle.
The only result we need is that this sequence implies that

Λ4E = K−1/2 ⊗ Λ3(Ω1 ⊗ K−1/2). (2.8)

We define the Berezinian line bundle B as before in (2.5) but now with E
given by (2.6). However, from (2.8), we now have that

B = K ⊗ K−1/2 ⊗ Λ3
(

Ω1 ⊗ K−1/2
)

= K ⊗ K−1/2 ⊗ K−3/2 ⊗ K

= 1, (2.9)

so the bundle is trivial and the total space is super Calabi–Yau.

Although we shall not use the details of the above argument here, the
possibility of a super Calabi–Yau construction for general twistor spaces is
important for the duality between conformal gravity and B model topological
strings to be tenable.

3 Twistor spaces of Kähler manifolds and D1 brane charge

The complex geometry of the twistor space Z encodes all the information
about the conformal geometry of the underlying four-manifold M . We
consider in this section the additional structure enjoyed by the twistor space
when M is a Kähler manifold [20]. A two complex dimensional Kähler metric
is anti-self-dual if and only if it is scalar flat [17]. The extra structure will be
of importance to us shortly because spacetime foam with sufficient symmetry
admits a Kähler structure that is compatible with anti-self-duality.

Notice first of all that Z, being a sphere bundle, does not come with a
zero section. In general, there is thus no canonical way of embedding M as
a submanifold in Z. However, when there is a Kähler form, this provides
precisely a nowhere vanishing section of Λ+(M), and thus a section of the
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twistor fibration S(Λ+). This section gives us a complex submanifold of Z
diffeomorphic to M . More precisely:

Theorem 3.1 [28]. Let π : Z → M be the twistor fibration of an anti-self-
dual four-manifold (M, [g]). Suppose Z contains a complex hypersurface D
that is the image of a section of π. Let J be the complex structure on M
determined by D. Then there is a metric h ∈ [g] which is Kähler with respect
to J if and only if the line bundle of the divisor [D] + σ[D] is isomorphic to
K

−1/2
Z .

We can recover the Kähler form from the twistor data in the following way.
From the previous theorem, a section s ∈ H0(Z, K−1/2) has a simple zero
on D ∪ D̄, with D̄ = σD. Taking a cover of Z given by {Z1 = Z\D, Z2 =
Z\D̄}, s is holomorphic and nonzero on Z1 ∩ Z2 and so r12 = s−2 defines a
cohomology class r ∈ H1(Z, K). We now recall how the Penrose transform
[8, 20] maps r to a self-dual closed 2-form of type (1, 1) for the complex
structure defined by D. The Penrose transform involves a contour integral
along the twistor lines Fx

∼= CP
1, which are the fibres of the twistor fibration

above each point x ∈ M . Let λa be homogeneous coordinates on the CP
1

fibre viewed as P(Σ+) and use standard spinor indices so that va ∈ Σ+, vȧ ∈
Σ−. The spinor indices are raised and lowered with εab and εȧḃ. A 1-form
on M , for example, is written as φaȧ. Since K|F = O(−4), then sx = s|Fx ∈
H0(Fx,O(2)), and one can write sx = ωab(x)λaλb. Notice therefore that
rx ∈ H1(Fx,O(−4)). The Penrose transform associates to rx a self-dual
2-form via a contour integral on Fx:

kab(x) =
∮

Γ⊂Fx

λc dλcλaλbrx =
∮

Γ⊂Fx

λc dλcλaλb

(ωef (x)λeλf )2
=

ωab(x)
(det ω(x))3/2 .

(3.1)

It can be proven that k is the Kähler form of a scalar-flat anti-self-dual
metric on M [20].

To see that this form is of type (1, 1) on M , notice [11] that for each point
λ ∈ Fx, there is an isomorphism T ∗

xM � Σ− given by vaȧ �→ φȧ = λav
aȧ.

Because Σ− is a complex vector space, this map induces a complex structure
on T ∗M that depends on λ up to multiplication by a number. With this
complex structure, the 1-forms eȧ = λb dxbȧ are by definition of type (1, 0).
We can decompose a 1-form in its components of type (1, 0) and (0, 1) using
the projectors Πb

a = iλ̄bλa, Π̄b
a = iλbλ̄a, assuming λ is normalized so that

λaλ̄a = −i. Then we have dxaȧ = λ̄aeȧ + λaēȧ. Inserting this relation into
the expression (3.1) for the Kähler form, k ∝ ωab dxaȧ dxbḃεȧḃ, we see that
the terms of type (2, 0) and (0, 2) are proportional to ωabλ

aλb. These terms
vanish exactly at {sx = 0} = (D ∪ D̄) ∩ Fx. However, this is precisely where
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the residue of the contour integral (3.1) lies and hence where the form is
evaluated. It follows that the Kähler form is of type (1, 1) in the complex
structure determined by D (or D̄), as it should be.

The main observation we make is that we can now write a natural mero-
morphic 3-form on Z corresponding to s−2. Locally, in a patch where the
twistor fibration can be trivialized, it is given by

Ω = s−2λc dλcλaλb dxaȧ dxbḃεȧḃ. (3.2)

This 3-form will have quadratic singularities on a D ∪ D̄. The previous
discussion then shows that integrating along a contour in a fibre gives the
Kähler form,

∮

Γ⊂Fx

Ω = k(x). (3.3)

It follows that we can recover the Kähler moduli of the four-manifold by
integrating Ω on suitably chosen 3-cycles in Z

∫

Σ(2)
k =

∫

Σ(3)
Ω. (3.4)

This relationship is exciting because it relates a measure of four dimensional
spacetime foam to an integral in six dimensions that detects D1 brane charge.
Such a relationship is what we had anticipated in the introduction. It might
seem contradictory that in (3.3), a (1, 1)-form in four dimensions is related
through a contour integral to a (3, 0)-form in six dimensions. However, this
is what happens as we will now illustrate for the case of CP

3.

In Section 4, we will explicitly construct the meromorphic 3-form for a
class of twistor spaces which are bimeromorphically algebraic. Let us now, as
an example, spell out this construction for the case of CP

3 (strictly CP
′3).

The corresponding four-manifold is just C
2. The divisors D and D̄ will

intersect on a real line which is the line that should be removed from CP
3

to get the twistor space for C
2 rather than S4. In fact, divisors on CP

3

are hyperplane sections and they always intersect at a line. We use here
the notation of [8] so that CP

3 has homogeneous coordinates {µȧ, λ
a}. The

fibre over a point x of C
2 is then

µȧ = xaȧλ
a, (3.5)

and removing the point at infinity means that λa 
= (0, 0). It is easy to see
that the 3-form (3.2) becomes

Ω = s−2λa dλa ∧ dµȧ ∧ dµȧ. (3.6)

Without the prefactor s−2, this is the natural 3-form on CP
3 with values

in O(4). The prefactor turns it into an honest (scale-invariant) 3-form but
with singularities. Another way to obtain a well-defined form is to add
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fermionic directions [8]. We shall discuss the relationship between these
singular forms and the superforms later. The meaning of the singularity has
been discussed above; for each choice of a section s, we get a Kähler form
on C

2. The involution acts as σ : λa �→ λ̄a. An example of a section we
could take is s = δabλ

aλb. We see that D = {λ1 = iλ2}, D̄ = {λ1 = −iλ2}
and D ∩ D̄ = {λa = 0} which is the line at infinity that we removed in these
coordinates. The Kähler form computed from s is then

k = δabεȧḃ dxaȧ ∧ dxbḃ = dx11 ∧ dx12 + dx21 ∧ dx22 = e1̇ ∧ ē2̇ − e2̇ ∧ ē1̇,
(3.7)

where we used the normalization λaλ̄a = −i and defined eȧ = λb dxbȧ, as
discussed above. We see that (3.7) is indeed a (1, 1)-form and gives a self-
dual Kähler form on C

2. Of course, C
2 does not have nontrivial 2-cycles

about which we can integrate the Kähler form. This corresponds to the
absence of D1 brane charge in CP

3.

It is remarkable that the twistor correspondence allows us to associate a
meromorphic form in three complex dimensions to an anti-self-dual Kähler
manifold M in four real dimensions. This appears to set up a correspondence
between a physical theory on M that depends on the Kähler moduli and
a theory on Z that depends on the complex moduli. This is reminiscent
of mirror symmetry, but with a change in dimensions involved. On the
complex side of the story, we are embedding the theory into the topological
B model on a supermanifold extension of Z while on the Kähler side, we are
embedding the theory into (super)conformal gravity.

The fact that we would like to identify the integral of the (3, 0)-form
around a 3-cycle as D1 brane charge is the statement that [29] in the presence
of D1 branes, or in a space obtained from the backreaction of D1 branes, we
have

∫

Σ(3)
Ω = gsN, (3.8)

where N is the number of D1 branes linked by Σ(3). In the topological string
context N is of course an integer. Comparing with (3.4) then suggests a
tantalizing quantization of the Kähler moduli in the four dimensional theory.
This seems very similar to the quantization of the Kähler moduli that was
found in the six dimensional spacetime foam studied in [4].

We noted below equation (2.3) that for the twistor spaces that we are
interested in, describing spacetime foam, we have b3(Z) = 0. Thus the only
way for the closed 3-form Ω to admit a nonzero period is if it is singular. Such
a singularity is related to the nontriviality of the canonical bundle. More
concretely, we have that dΩ will be a 4-form with delta function support on
the divisor D ∪ D̄. One might have expected support on a 2-cycle rather
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than a 4-cycle, corresponding to the location of a brane. This is not possible
however as the singular locus of a meromorphic 3-form will always be a
complex codimension-one submanifold. Thus, we should think of the twistor
space as already incorporating the backreaction of the D1 branes.

In the following section, we shall study explicitly known twistor spaces
for C

2 blown up at n points using the framework we have just described.
Explicit asymptotically flat anti-self-dual Kähler metrics and the corre-
sponding twistor spaces are known in the case when the n blown-up points
are collinear [19]. They are also known to exist if the configuration of points
is sufficiently close to collinear [20]. Therefore, the spacetime foam in con-
formal (super)gravity has a “Kähler sector” and it is this sector which we
are studying.

4 Twistor spaces for blowups

4.1 Complex geometry and topology of the twistor spaces

Lebrun has explicitly constructed twistor spaces for Kähler anti-self-dual
metrics on M = C

2#CP
2# · · ·#CP

2 [19, 20]. The spaces are not the twistor
spaces of the most general conformally anti-self-dual metric on M but are
rather special points in the moduli space of anti-self-dual metrics at which all
the blown-up points are collinear. These have the remarkable property that
the corresponding twistor spaces are bimeromorphically algebraic. That is,
we may start with a singular algebraic 3-fold and obtain the twistor space
by performing blowups and blowdowns. These spaces will allow a concrete
realization of the ideas discussed in previous sections and will further allow
us to make a connection with super Calabi–Yau manifolds.

The construction starts by considering a singular 3-fold ˜Z. Take CP
1 ×

CP
1 with homogeneous coordinates [z0, z1] and [ζ0, ζ1]. One then considers

the total space of a projectivized bundle over CP
1 × CP

1

B ≡ P [O(n − 1, 1) ⊕ O(1, n − 1) ⊕ O] , (4.1)

with coordinates for the fibres x ∈ O(n − 1, 1), y ∈ O(1, n − 1) and t ∈ O.
Note that B is a four complex dimensional manifold obtained from C

7 via
the following three identifications

[z0, z1] ∼ λ[z0, z1],

[ζ0, ζ1] ∼ µ[ζ0, ζ1],

[x, y, t] ∼ ν[λn−1µx, λµn−1y, t]. (4.2)
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Now consider the singular 3-fold given by a hypersurface

˜Z ⊂ B, (4.3)

defined by

F ≡ xy − t2
n
∏

j=1

P j = 0. (4.4)

In this expression, the P j are n polynomials in (z0, z1, ζ0, ζ1) which we now
define. Note that the manifold CP

1 × CP
1 admits an anti-holomorphic invo-

lution σ given by

σ ([z0, z1], [ζ0, ζ1]) �−→
(

[ζ̄0, ζ̄1], [z̄0, z̄1]
)

. (4.5)

In order to obtain later the twistor space for the noncompact manifold M ,
we should remove from CP

1 × CP
1 the line S ⊂ CP

1 × CP
1 given by the

fixed points of σ. This will correspond to removing the point at infinity in
four dimensions. Consider n σ-invariant curves in CP

1 × CP
1 − S, which we

denote {Ci}n
i=1. These curves are specified as the zeros of n polynomials

P i ∈ Γ
(

CP
1 × CP

1,O(1, 1)
)

. (4.6)

Explicitly these are

P i = ai
mnζmzn, with ai = ai†. (4.7)

We assume that the curves are nondegenerate and generic, implying that
they all mutually intersect at precisely two points. The curves are illustrated
in figure 1.

The 3-fold ˜Z is described topologically as follows. Away from the curves
P i = 0 in CP

1 × CP
1, the manifold is a CP

1 fibration over CP
1 × CP

1.
Above the union of the curves Xn = ∪n

i=1C
i, the fibration degenerates to

two spheres joined at a point, which may be written S2 ∨ S2. The degenera-
tion is regular except for the points where two curves intersect. Each pair

Figure 1: 2-cycles C1, C2 and C3 mutually intersecting at two points.
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of curves intersect at two points, so there will be a total of n(n − 1) singular
points. The fibration is shown in figure 2.

We can make a simple observation on the topology of this singular space.
Note that S2 ∨ S2 is formed by collapsing an S1 in CP

1 = S2. Therefore,
every closed loop in Xn bounds a disc, D2, with an S1 fibration that collapses
on the boundary of the disc. This gives a homology S3 in the full space. So
we have

b3( ˜Z) = b1(Xn). (4.8)

It is easy to calculate b1(Xn) using the Mayer–Vietoris sequence. The com-
putation is given in Appendix B. The result is

b1(Xn) = b3( ˜Z) = (n − 1)2. (4.9)

To obtain the twistor space, we must resolve the singularities of Z̃. This
can be done in two ways, which give the same result: by a sequence of
blowups and blowdowns or by taking small resolutions. In the text, we
explain the second method, more familiar to physicists, and discuss the
equivalence with the first method in Appendix D.

Under the assumption of genericity that we are making, the curves Ci have
only isolated intersections. We can then choose local coordinates {w1, w2}
for CP

1 × CP
1 centred at one of the intersections and such that the two

curves are given by the equations w1 = 0, w2 = 0, respectively. The equa-
tion for the 3-fold then locally reads xy = w1w2. This has a conifold singu-
larity, and it is well known that it can be resolved in such a way that the
singular point is replaced by a CP

1. The resolved space is (locally) the total
space of a bundle O(−1) ⊕ O(−1) → CP

1. If this bundle has coordinates
{u, v, [Z1, Z2]}, one defines a map

(x, y, w1, w2) = (uZ1, vZ2, uZ2, vZ1). (4.10)

Figure 2: Two curves, C1 and C2, in CP
1 × CP

1 with their singular fibra-
tion. The shaded region in the base corresponds to an S3 in the full space.
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The map is an isomorphism away from the zero section u = v = 0 that is
mapped to the singular point. The two intersecting curves are C1 = {x =
y = w1 = 0} and C2 = {x = y = w2 = 0}. In terms of the new coordinates,
one has C1 = {u = Z2 = 0}, C2 = {v = Z1 = 0} and therefore they have no
intersection in the resolved space. Figure 3 shows the disconnection of the
cycles after the small resolution.

The fact that the cycles Ci above which the S2 fibre degenerates are no
longer connected implies that the resolved space satisfies

b3(Z) = 0, (4.11)

in agreement with our observation below equation (2.3). In Appendix C, we
give a more rigorous direct calculation of the Betti numbers of the twistor
space to further find

b2(Z) = n + 1, (4.12)
again in agreement with the general considerations in Section 2.1.

One might wonder what happens if we deform the nodal singularities
rather than taking small resolutions. These two desingularization are related
through geometric transitions that are of general interest in string theory.
The deformed space however is not a twistor space. In the course of calcu-
lating the Betti numbers of Z in Appendix C, we consider deformation of
the singularities as well as small resolutions.

There is one final technical step in the construction of the twistor space.
The singular space ˜Z includes the divisors

Ex = {x = t = 0} and Ey = {y = t = 0}, (4.13)

that are not affected by the resolutions we have just described. Each of
these may be identified via projection to the base with CP

1 × CP
1, and their

Figure 3: The resolution disconnects the cycles of figure 1. The figure is a
little misleading as the separation is in the resolved CP

1 rather than in the
{z, ζ} coordinates.
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normal bundles are O(−1, 1 − n) and O(1 − n, −1), respectively. They may
therefore be blown down to give curves CP

1 with normal bundle O(1 − n) ⊕
O(1 − n). Performing these two blowdowns gives the desired twistor space
Z of M .

4.2 The meromorphic volume form

In this subsection, we will write down the explicit meromorphic 3-form for
the twistor spaces Z that is associated to the four dimensional Kähler form
in (3.2). In order to do this, we have to recall first the structure of the
twistor lines [19] and secondly the fundamental divisor D in Z [20]. We
will work in terms of the coordinates {x, y, t, z0, z1, ζ0, ζ1} on C

7 which are
subject to the three C

∗ actions (4.2) and the hypersurface condition F = 0
(4.4). Often we will work in a patch with, say, z1 
= 0 and ζ1 
= 0. In this
case, we will use coordinates z = z0/z1 and ζ = ζ0/ζ1.

The generic twistor line is obtained by taking a real curve C on CP
1 ×

CP
1, distinct from all the curves Ci that we considered previously. The

defining equation for C is a real polynomial of degree (1, 1)

H(z, ζ) = bmnζmzn with b = b†. (4.14)

Now, restriction of P to C is a real polynomial of degree 2n with zeros at
the points where C intersects the Cis. We can write P |C = fσ∗(f) for some
f of degree n. It turns out that the twistor lines are given by [19]

{H(z, ζ) = 0, x = teiαf, y = te−iασ∗(f)}, (4.15)

with α fixed for a given twistor line. If the curve C happens to pass through
an intersection Ci ∩ Cj , we take its proper transform in the resolution of the
singular space ˜Z. The (proper transforms of the) curves Ci themselves are
also twistor lines. The equations (4.15) describe a 4-real parameter family
of curves with three parameters from H and 1 from α. There are also some
other twistor lines that pass through t = 0 and are given by {x, y, t = 0,
ζ = z̄}. Notice that these lines intersect the blown-down divisors Ex and Ey

of (4.13).

The divisor D turns out to be given as follows. Start with the divisor D̃
in Z̃ [20]

D̃ = {z = c}, (4.16)

in terms of the local coordinate z. Except for a finite number of values of c, D̃
will be disjoint from the singularities of Z̃ and therefore is unaffected by the
resolution. Thus our spaces are almost foliated by these divisors. This last
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property is closely related to that of being bimeromorphically algebraic [30].
The divisor D is the image of D̃ under the projection

b : Z̃ −→ Z, (4.17)

given by the blowdowns of the divisors Ex and Ey (4.13). To see the topology
of D [20], note that it inherits from Z the S2 fibration of figure 2 over the
{z = c} plane that degenerates over the n points where {z = c} intersects
the curves Ci. The collapse of an S1 in the fibration results in D being given
topologically as C

2 blown up at n points. Thus, D is homeomorphic to M
as expected.

From the expression for D̃ and the action of σ (4.5), we have that

D ∪ D̄ = b({z = c} ∪ {ζ = c̄}). (4.18)

One can easily see now that D is indeed a section of the twistor fibration.
When z is fixed, the equations for the twistor lines (4.15) fix all the other
coordinates and hence D intersects each twistor line at precisely one point.

Now let s be a holomorphic section of K
−1/2
Z with divisor D ∪ D̄ as in

Section 3. We construct a meromorphic 3-form ΩZ by multiplying s−2, which
is a meromorphic section of KZ , by a section of Ω3

Z ⊗ K−1
Z . The latter is

manifestly a trivial line bundle and so it has a unique global section, up
to a scale. In order to exhibit this form explicitly, it is more convenient to
work in ˜Z than Z because we have global coordinates on ˜Z. We should bear
in mind however that ˜Z is not the true twistor space. Our strategy is to
construct a meromorphic 3-form ΩZ̃ such that

Ω
˜Z

= b∗ΩZ , (4.19)

where as before b : ˜Z → Z. With a slight abuse of notation, we write the
section s using coordinates on ˜Z

s = (z0 − cz1)(ζ0 − c̄ζ1). (4.20)

We may take z = z0/z1 to be a coordinate on the twistor fibre, as z is
transverse to D. Then take ζ = ζ0/ζ1 and t as coordinates on D. We need a
scale-invariant meromorphic 3-form with quadratic poles along D̃ ∪ ¯̃D. An
expression satisfying these requirements is

ΩZ̃ =
dz ∧ dζ ∧ dt

t(z − c)2(ζ − c̄)2
. (4.21)

In the next section, we will explain how this form can be obtained using the
method of Poincaré residue. This method will also give an expression for the
form in other coordinate charts. It might appear worrysome that the form
(4.21) has a singularity at t = 0. In fact it is to be expected: if ΩZ is to be
singular on D ∪ D̄, its pull-back will be singular on b−1(D) = D̃ ∪ ¯̃D ∪ {t = 0}.
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This can be seen explicitly by studying the neighbourhood of the blown-down
divisor using a coordinate change similar to that used in Appendix D. Even
without doing a computation, one can argue that a meromorphic 3-form
must have singularities along a divisor, i.e., a codimension 1 subvariety, but
the locus {t = 0} is blown-down by b and so is not a divisor in Z. Therefore,
{t = 0} cannot be a pole of ΩZ .

4.3 A holomorphic superform

In this subsection, we make an informed guess at the holomorphic volume
form on a super Calabi–Yau manifold constructed from the twistor spaces
for M = C

2 # CP
2 # · · ·# CP

2 that we described in the previous subsec-
tions. This superform will have the property that when we integrate out the
fermionic directions, we obtain the meromorphic volume form that we have
just described.

The first step is to construct a holomorphic volume form Ω3|4 on a super-
manifold extension of the singular space ˜Z. Recall that the bosonic part
of this space was given as the hypersurface F = 0 in the 4-fold B (4.4).
The supermanifold extension of ˜Z will be given shortly as a hypersurface
F = 0 in a supermanifold extension of B. From now on, we shall use
ZS , ˜ZS and BS to refer to the supermanifold extensions of the respective
manifolds.

There is a well-known way of constructing holomorphic volume forms
on hypersurfaces from a singular holomorphic form in the ambient space,
called the Poincaré residue map [31]. In our context, this map takes a
section of Ω4|4(BS ,F), that is (4|4)-forms on BS with a simple pole along
F = 0, to a section of Ω3|4( ˜ZS). Thus, we begin by writing down a section
of Ω4|4(BS ,F).

Recall that B is constructed from three C
∗ actions on C

7 (4.2). We
can work in terms of coordinates {zi} of C

7. More concretely, in terms of
the coordinates introduced earlier, we will have {zi} = {x, y, t, z0, z1, ζ0, ζ1}.
If we let k denote a vector generating any of the three C

∗ actions, then a
4-form ΩB defined on B should only have legs pointing transversally to the
orbits, that is ιkΩB = 0. Further, the form must be a sum of terms that
have the same overall scaling under the C

∗ actions (4.2). Starting from the
holomorphic volume form on C

7:

Ω7 = dz1 ∧ · · · ∧ dz7, (4.22)
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and given that we also want a pole along F = 0, the natural form to write
down is

ΩB =
ιkλ

ιkµιkνΩ7

F . (4.23)

In this expression, the various ιk terms denote contraction with the genera-
tors of the three C

∗ actions (4.2). The numerator turns out to be the
following 4-form:

ιkλ
ιkµιkνΩ7 = (x dy dt − y dx dt + t dx dy)(εijz

i dzj)(εklζ
k dζ l). (4.24)

However, the form (4.23) is not a 4-form on B because it is not invariant
under the rescalings (4.2)

ΩB → λ2µ2νΩB (4.25)

Therefore, in the spirit of [8], we will form a supermanifold BS by adding a
four dimensional fermionic vector bundle E with local coordinates
dη1, . . . , dη4 to B. The only property we require at this point is that the
determinant line bundle Λ4E has the opposite scaling to (4.25). It follows
that the form

ΩBS
= ΩB dη1 dη2 dη3 dη4 (4.26)

is well defined on the supermanifold BS and is a section of Ω4|4(BS ,F).

The next step is to construct from ΩBS
a holomorphic volume form on the

singular space ˜ZS that is given by F = 0 in BS (4.4). The Poincaré residue
map gives this form to be

Ω
˜ZS

=
ΩBS

dF . (4.27)

More precisely, one writes

ΩBS
=

dF
F ∧ η, (4.28)

and defines
Ω

˜ZS
≡ η|

˜ZS
. (4.29)

It is clear that the residue is a well-defined form at all points where dF 
= 0,
but it can have singularities at F = dF = 0. In the present context, the
singularities will be at the singular points of Z̃S .

At this point we need to discuss the expression for F . The most näive
thing we could do is to simply take F = F , with F given in (4.4). However,
this turns out to be somewhat unsatisfactory. The reason we are trying to
construct the holomorphic volume form is that we would like to integrate the
form over a (3|4)-cycle in the supermanifold to obtain a D1 brane charge.
This is the supermanifold generalization of (3.8). Using F = F in (4.27)
would give a form whose only fermionic dependence is dη1 dη2 dη3 dη4. How-
ever, upon Berezinian integration, this form will always integrate to zero.
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To get a nonzero answer, we need to integrate η1η2η3η4 dη1 dη2 dη3 dη4. The
simplest way to obtain such a term and restrict to F = 0 on the bosonic
manifold is to take

F ≡ F + Gη1η2η3η4. (4.30)

Similar expressions arose in the hypersurfaces of supermanifolds considered
by [32]. Note that if we do not do the fermionic integrations, then the D1
brane charge would not be a number but would be a section of a nontrivial
bundle. This would then make it difficult to compare brane charge on
different manifolds or to speak about the number of D1 branes.

In (4.30), G must be such that the scaling of Gη1η2η3η4 under the C
∗

actions is equal to the scaling of F . We further know from the definition of
Berezinian integration that η1η2η3η4 must scale inversely to dη1 dη2 dη3 dη4.
Putting these facts together requires that G scales as

G ∼ F dη1 dη2 dη3 dη4 ∼ F 2

dz1 · · · dz7 . (4.31)

Guided by our findings of the previous subsection, note that a simple expres-
sion with the correct scaling is

G =
F

ts2 . (4.32)

That is, we take the holomorphic volume form to be

Ω
˜ZS

=
ιkλ

ιkµιkνΩ7 dη1 dη2 dη3 dη4

d[F + (F/ts2)η1η2η3η4]
. (4.33)

It is not clear to us that this construction is unique. However, it does
appear to combine the objects that are given in a simple and natural way
to obtain a well-defined form that, as we shall see shortly, trivializes the
Berezinian line bundle. However, the proof of the pudding is in the eating
and we shall see now that upon Berezinian integration this superform reduces
to our previously obtained meromorphic volume form on ˜Z.

We work in the coordinate patch z1 
= 0, ζ1 
= 0 and y 
= 0. Next, let us
move dx to the denominator in (4.33). This gives

Ω
˜ZS

∝ z1ζ1 dz0 dζ0 dt dη1 dη2 dη3 dη4

1 + (1/ts2)η1η2η3η4 . (4.34)

The overall normalization is not fixed uniquely, so we will not keep track of
it. If we expand the fermionic components of this superform, we find

Ω
˜ZS

= z1ζ1 dz0 dζ0 dt dη1 dη2 dη3 dη4 + Ω
˜Z
η1η2η3η4 dη1 dη2 dη3 dη4. (4.35)
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The first term in this expression is a global holomorphic superform, entirely
analogous to that introduced in [8], that trivializes the Berezinian line bun-
dle and makes the supermanifold a super Calabi–Yau manifold. The second
term will recover the form Ω

˜Z
of (4.21) after Berezinian integration. One can

also work in other coordinate patches, e.g. when t 
= 0, and obtain expres-
sions similar to (4.21) but with dt/t replaced by dx/x or dy/y.

4.4 Integrating the 3-form

The form Ω
˜Z

we have constructed lives on the singular manifold ˜Z and has
poles at the singularities where dF = 0. As we described in Section 4, the
singularities of ˜Z are removed by taking small resolutions (4.10). After the
resolution, the poles in the 3-form disappear. The easiest way to see this
is to use local coordinates. The suitable coordinate change is that given in
equation (4.10). As noted before, the singularities of F = 0 are all locally of
the conifold type xy − w1w2 = 0 and the 3-form given by the residue map
is locally

dx dw1 dw2

x
, (4.36)

when x 
= 0 and similarly in the other patches. After the resolution the form
is given by

dZ du dv, (4.37)

and so is manifestly smooth. Notice that a small resolution does not intro-
duce exceptional divisors, so the canonical bundle does not change and the
pull-back of the form will not have additional zeros or poles.

In this section, we will integrate Ω
˜Z

around a contour in the twistor lines
as we described in Section 3. The contour will not pass through any of the
singular points of Ω

˜Z
, so the result we get will be the same as if we had

integrated ΩZ . However, the integrand will appear to have poles that do
not exist in ΩZ . All these poles will turn out to have zero residue.

Let us apply (3.3) to our meromorphic 3-from in the patch t 
= 0 so that t
may be scaled to be a constant. The expression for the Kähler form becomes

k =
∮

Γ

dz ∧ dζ ∧ dx

x(z − c)2(ζ − c̄)2
, (4.38)

where Γ is a curve in a twistor line (4.15). Using z to parameterize the line,
we can see that ζ is given by

ζ = −Az + B

z + Ā
, with A ∈ C, B ∈ R, (4.39)
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where without loss of generality we have scaled H(z, ζ) in (4.15) so that
b00 = 1. Also from (4.15), we have

dx

x
= idα +

df

f
. (4.40)

Note that we are using {α, A, Ā, B} as coordinates on D. These may be
held fixed as we do the z integral.

The function f may be factorized to give

f =
n
∏

i=1

fi =
n
∏

i=1

Mi(z − Γi). (4.41)

The values of Mi and Γi are found by requiring fσ∗(f) = P |C . We find

Γi =
B + 2Re(b̄iA) − di +

√
X

2(bi − A)
, (4.42)

where have scaled (4.7) to describe Ci by

zζ + biz + b̄iζ + di = 0, with bi ∈ C, di ∈ R, (4.43)

and

X = B2 + d2
i − 4(B + di)Re(b̄iA) − 2diB + 2Re(b̄i

2
A2) + 4di|A|2

+ 4B|bi|2 − 2|A|2|bi|2. (4.44)

In fact, z = Γi in C is a point of intersection of C with Ci because fi = 0
on Ci. The remaining coefficient in (4.41) is given as

M2
i =

2|A|2 + di − B − 2Re(b̄iA) +
√

X

2(|A|2 − B)
. (4.45)

Note that X is real and hence that M2
i will be real and positive if X is

positive. This is the case that we consider. Further note that, despite
appearances to the contrary, Mi does not have a pole at |A|2 = B because
the numerator also vanishes at this point. We may now write the second
term in (4.40) as

df

f
=

n
∑

i=1

dMi

Mi
−

n
∑

i=1

dΓi

z − Γi
. (4.46)

We see that (4.46) introduces new poles into the z integral in (4.38).
One might worry that this would allow us to obtain different results for
the Kähler form by integrating around differing contours, contradicting the
setup we developed in Section 3. However, it turns out that the residues
of these new poles is precisely zero, so in fact all contours around z = c
give the same answer. This provides a rather nice consistency check with
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the fact that in the resolved space Z, the 3-form ΩZ should only have poles
on D ∪ D̄.

Let us perform the integration. The parts of the integral (4.38) involving
α and Mi give a succinct result

1
2πi

∮

Γ

dz ∧ dζ

(z − c)2(ζ − c̄)2
∧
[

i dα +
n
∑

i=1

dMi

Mi

]

= −d

[

|A|2 − B

(B + 2Re(cA) + |c|2)2

]

∧
[

i dα +
n
∑

i=1

dMi

Mi

]

. (4.47)

Note that this contribution is manifestly closed. The explicit expression for
dMi/Mi is rather large and unilluminating. The remaining terms may also
be integrated

− 1
2πi

∮

Γ

dz ∧ dζ

(z − c)2(ζ − c̄)2
∧

n
∑

i=1

dΓi

z − Γi
(4.48)

=
n
∑

i=1

(

d

[

c + Ā

B + 2Re(cA) + |c|2

]

∧ dΓi

(c − Γi)2

− d

[

|A|2 − B

(B + 2Re(cA) + |c|2)2

]

∧ dΓi

c − Γi

)

.

Once again, we see explicitly that the form is closed, as it should be.
Similarly to before, the actual expression for dΓi appears to be compli-
cated and unhelpful. The poles in (4.47) at Mi = 0 are an artifact of the
coordinates we are using. From (4.41), we have that Mi = 0 implies that
f = 0 and hence from (4.15) that x = y = 0. This is a singular point on ˜Z
and (4.38) is not valid at this point. On the other hand, the poles in (4.48)
at c = Γi turn out to be exactly what we want. It is to these poles which
we now turn.

The poles at c = Γi for each i = 1 · · ·n have a geometric interpretation as
follows. We noted above that z = Γi on C is the location of an intersection
between C and Ci. Generically, these points will not lie on the hypersurface
D given by z = c. We are using the coefficients {A, Ā, B} that define the
curve C as coordinates on D because they are fixed for a given twistor line.
The point on D corresponding to a given {A, Ā, B} is the unique point where
D intersects C(A, Ā, B). Thus c = Γi means that we are at a point on D
that also intersects Ci. In the discussion following (4.16), we noted that at
these points the circle fibration in D collapses. These n points were then
related to the n blown-up CP

1s in D. The relationship between C, Ci and
D is illustrated in figure 4.
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Figure 4: Generically D = {z = c} does not go through the intersection
point of C and Ci. It does so when c = Γi.

To summarize the preceding paragraph: the Kähler form that we obtain
has poles associated with the n blown-up points of the original self-dual
manifold M which we started with. This is good because the explicit Kähler
form for these manifolds has been written down by Lebrun [19] and has pre-
cisely this property. In principle, it should be possible to find an explicit
change of variables between the 2-form we found in (4.47) and (4.48) above
and the form given in [19]. However, this does not look particularly straight-
forward. We consider the presence of the correct poles to support the inter-
pretation of the 3-form (4.21) as the meromorphic 3-form corresponding to
the Kähler form on M via the Penrose transform.

It follows from (3.4) that when we integrate ΩZ around cycles in Z given
by a CP

1 in D and a contour in the twistor line above each point of D, we
will obtain the integral of k around a 2-cycle in M . There are n such cycles
because we have blown-up C

2 at n points. This provides a specific realization
of the map between Kähler moduli for spacetime foam and D1 brane charge.

5 Conclusions and discussion

We have seen that the Penrose transform provides a natural map between the
Kähler moduli of Kähler anti-self-dual gravitational instantons in conformal
supergravity and the D1 brane charge on the corresponding twistor spaces.
This provides quantitative support for the idea that placing D1 branes in
CP

3 corresponds to blowing-up points in four dimensions. Such a corre-
spondence had been anticipated by combining three ingredients: the recent
conjectures of S-duality in topological string theory [13, 14], the development
of twistor string theory for CP

3 [8] and the understanding of spacetime foam
for the A model topological string theory on toric Calabi–Yau manifolds [4].
The hope is that this relationship may shed light upon spacetime foam in
four dimensions or upon the role of D1 brane instantons in topological string
theory.
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One interesting possibility that follows from the correspondence between
Kähler moduli and D1 brane charge is that the quantization of the number
of D1 branes should translate into a quantization of the Kähler moduli of
the four dimensional quantum foam. This is a very natural expectation [4]
and it would be interesting to understand any such quantization at a deeper
level.

The appearance of the Kähler condition itself is also interesting. A generic
anti-self-dual gravitational instanton metric is not Kähler. The correspon-
dence suggests that the “Kähler sector” of spacetime foam is particularly
amenable to study using twistor string theory. Perhaps an exact treatment
of this sector is possible?

The twistor space Z is not a Calabi–Yau manifold but may always be
extended to a super Calabi–Yau manifold in a natural way. This extension
implies the existence of a holomorphic (3|4)-form on the super Calabi–Yau.
We have suggested that the meromorphic 3-form on Z whose Penrose trans-
form gives the Kähler form could be obtained by integrating the (3|4)-form
over the fermionic directions. We showed explicitly how this could work
for the twistor spaces corresponding to blowups of C

2. In this picture,
the D1 brane charge is detected by integrating the holomorphic (3|4)-form
over a (3|4)-cycle in the super Calabi–Yau. This notion does not depend
on the Kähler structure of the four dimensional manifold. By using the
superforms, it should be possible to extend the correspondence between
spacetime foam and D1 brane charge to general anti-self-dual gravitational
instantons.

An alternative construction of the twistor spaces for blowups that does
not emphasize the Kähler property is [16]. In that work, the connected sum
of an anti-self-dual manifold M and, say, CP

2 was formed as follows. One
performs a real blowup of a point in M and a point in CP

2. A real blowup
replaces a point with an RP

3. One then glues the two copies of RP
3 together

to obtain the connected sum. In twistor space, the real blowup corresponds
to a complex blowup along the CP

1s corresponding to the two points. The
two exceptional divisors are then glued together and under certain conditions
the resulting singular space may be smoothed to give a new twistor space.
In this case, the corresponding four dimensional manifold M#CP

2 is again
anti-self-dual. Realizing this construction within topological string theory
could be one way to extend the correspondence we have been studying to
general blowups.

Finally, it would be interesting to understand the four dimensional
interpretation of the D(−1) branes in the topological B model on twistor
space [13].
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Appendix A Jet bundles

In this appendix, we give some technical details on the geometry of 1-jet
bundles, J1(L) [33]. Let L be a line bundle over a complex manifold X.
There is an exact sequence

0 −→ Ω1 ⊗ L
j−→ J1(L)

p−→ L −→ 0. (A.1)

This tells us that J1(L) is an extension of L. Locally the sequence is split,
which means that given a cover of X by Ui such that all the bundles involved
are trivial on the Ui and their intersections, there are maps hi : Li → J1(Li)
such that p ◦ hi = Id. Together with the injection j, this gives local isomor-
phisms u−1

i : ([Ω1 ⊗ L] ⊕ L)|i → J1(Li), (a, b) �→ j(a) + hi(b). The inverse
map is ui(s) = (j−1(s − hi ◦ p(s)), p(s)). Then

ui ◦ u−1
j (a, b) = (a + j−1(hj(b) − hi(b)), b). (A.2)

This shows that the class of the extension, which can be thought of as
the obstruction to a global splitting of the sequence (A.1), is defined by
a 1-cocycle {hij}, hij = j−1(hj − hi), with values in Hom(L,Ω1 ⊗ L) ∼= Ω1.
This cocycle is intrinsically defined as follows: tensoring the sequence (A.1)
with L∗, one obtains

0 −→ Ω1 −→ J1(L) ⊗ L∗ −→ C −→ 0, (A.3)

where C is the trivial line bundle. Associated to this sequence, there is
a long exact cohomology sequence with, in particular, a connecting map
δ : H0(C) → H1(Ω1). The trivial line bundle has a global section which is
just the constant function 1; its image under δ is the class of the extension.
In local coordinates, if gij are the transition functions of L, it may be shown
that [33]

hij = d ln gij , (A.4)
and therefore the extension class is just c1(L). In particular, we see that
in the case of twistor spaces, where we take L to be K−1/2, the first Chern
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class does not vanish and therefore the sequence is not split, as claimed in
the text.

We can now give an explicit description of J1(L) in terms of its tran-
sition functions Gij . Given local trivializations φi : Li → Ui × C, and ψi :
Ω1

i → Ui × C
3, one has Φi = ([ψi ⊗ φi] ⊕ φi) ◦ ui : J1(Li) → Ui × (C3 ⊕ C)

as trivializations for J1(L). Then

Gij = ΦiΦ−1
j : (v, s) �−→ (gΩ

ijg
L
ij(v) + (ψihij)gL

ij(s), g
L
ij(s)), (A.5)

where gL
ij and gΩ

ij denote the transition functions for L and Ω1, respectively.

It is useful to observe that J1(Ln) ∼= J1(L) ⊗ Ln−1. This can be seen by
comparing two exact sequences: one obtained from (A.1) by taking Ln as
the line bundle and the other by tensoring (A.1) with Ln−1.

The case we are interested in is L = K
−1/2
Z for a twistor space Z. We

would like to compute the restriction of J1(L) to a twistor line C ∼= CP
1.

First, using the adjunction formula, one can see that K|C ∼= O(−4), so
L|C ∼= O(2). The observation made before gives J1(O(2)) ∼= J1(O(1)) ⊗
O(1). We also need the fact that Ω1

Z |C ∼= Ω1
C ⊕ N∗

C|Z
∼= O(−2) ⊕ O(−1) ⊕

O(−1). Restricting the exact sequence (A.1) to C, one obtains

0 −→ O(−1) ⊕ O ⊕ O −→ J1(O(1)) −→ O(1) −→ 0. (A.6)

The transition function for O(1) is gij = z. Using (A.5) and noting that
the extension of (A.6) only involves the O(−1) summand in the first
term – corresponding to 1-forms on C, the other summands correspond to
the normal bundle of C – we can write the nontrivial part of the transition
matrix for J1(O(1)) as

Gij =

⎛

⎝

1
z

1
z2

0 z

⎞

⎠, (A.7)

corresponding to a rank 2 vector bundle E over C ∼= P
1. As is well known,

every such bundle is isomorphic to a direct sum E = O(k1) ⊕ O(k2). From
(A.7), we have that k1 + k2 = c1(E) = c1(det E) = 1 − 1 = 0. Now consider
E ⊗ O(−1) ∼= O(k1 − 1) ⊕ O(k2 − 1), which has transition matrix Gijz

−1.
If this bundle has a global section, given in the two charts of CP

1 by vectors
(a1(z), a2(z)) and (b1(z̃), b2(z̃)), one has

(

a1(z)

a2(z)

)

=

⎛

⎝

1
z2

1
z3

0 1

⎞

⎠

(

b1(z̃)

b2(z̃)

)

. (A.8)

Matching the power series in z, z̃, one can see the only solution is b1 = b2 = 0.
Therefore, E ⊗ O(−1) has no global sections, which implies that k1, k2 < 1,
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and therefore k1 = k2 = 0. Thus, we have that J1(O(1)) = ⊕4
i=1O which

gives the result stated in the text

J1(L)|C =
4
⊕

i=1

O(1). (A.9)

Appendix B Calculation of b3( ˜Z)

In this appendix, we compute the first Betti number of Xn+1 = ∪n+1
i=1 Ci,

where the Cis are 2-cycles that all mutually intersect at two points. An
illustration was given in figure 1 in the text.

Without changing the Betti numbers, we may homotopically stretch the
intersection points so that they become discs: Ci ∩ Cj = D2 � D2. We may
now calculate easily using part of the Mayer–Vietoris sequence

· · · −→ H1(X1 ∩ X2) −→ H1(X1) ⊕ H1(X2) → H1(X) −→
−→ H0(X1 ∩ X2) −→ H0(X1) ⊕ H0(X2) −→ H0(X) −→ 0. (B.1)

In particular, we take X1 = ∪n
i=1C

i and X2 = Cn+1. The sequence (B.1)
becomes

0 −→ H1(Xn) ⊕ 0 −→ H1(Xn+1) −→ ⊕2n
j=1Z −→ Z ⊕ Z −→ Z −→ 0.

(B.2)

The exactness of this sequence then implies that

H1(Xn+1) = H1(Xn)
2n−1
⊕

j=1

Z. (B.3)

Taking b1 = dimH1 of (B.3) and using induction together with the fact that
b1(X1) = 0, one obtains

b1(Xn) = b3( ˜Z) = (n − 1)2. (B.4)

Appendix C Geometric transitions and topology of the
twistor space

This appendix calculates directly the Betti numbers of the twistor space
Z. In the course of the calculation, we shall also consider deformations
of the singular space ˜Z that are related to the twistor space by geometric
transitions.
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The logic we follow is to start with a singular projective variety ˜Z. The
singularities are given by nodal points. We will deform this space to a
nonsingular variety ˜Zdef.. It is straightforward to calculate the Betti num-
bers of this deformed variety and then perform geometric transitions at the
deformed singular points to obtain a small resolution of the initial singular
space ˜Zres.. The advantage of doing this is that we can now read off the Betti
numbers of the resolved space, which would have been harder to calculate
directly. Finally, the twistor space Z itself is given by blowing down two
divisors in the resolved space. Schematically:

˜Z
deform−−−−→ ˜Zdef.

transition−−−−−−→ ˜Zres.
blowdown−−−−−−→ Z. (C.1)

The deformed space is given by

xy = t2

⎡

⎣

n
∏

j=1

P j + εPn,n

⎤

⎦, (C.2)

where ε is a small parameter and Pn,n is a generic polynomial with homo-
geneity n in zm and ζm. The right hand side of the equation for the deformed
space (C.2) will not have double roots and the resulting space will be regular.

The deformation will replace the singular points with finite S3s. The
strategy is now as follows. We will first calculate b3( ˜Zdef) and b2( ˜Zdef). The
geometric transition then degenerates these cycles and replaces them with
the CP

1s that are generated by the small resolution. There is a relationship
between the Betti numbers before and after the geometric transition [34,
Theorem 2.11],

b3( ˜Zres.) = b3( ˜Zdef.) − 2r,

b2( ˜Zres.) = b2( ˜Zdef.) + n(n − 1) − r, (C.3)

where n(n − 1) is the number of nodes of the singular space and where
the degenerating 3-cycles span an r dimensional subset of H3( ˜Zdef.). More
precisely

r = b3( ˜Zdef.) − b3( ˜Z). (C.4)

The result (C.3) is intuitively reasonable [34]. For the first line in (C.3),
we can think that for every 3-cycle we degenerate, we lose another one by
Poincaré duality. For the second line, we should think about how the r
3-cycles that degenerate give homology relations between the new 2-cycles.
A 2-cycle is created at each of the n(n − 1) nodes. However, these can be
the boundaries of three-chains that were 3-cycles before the transition.



TWISTOR STRING THEORY 211

Note that the formulae in (C.3) do not apply to the well-known conifold
transition because in that case the manifolds involved are noncompact and
Poincaré duality is different.

We can get b3( ˜Zdef.) using the same method as in the singular case. The
same arguments as in Appendix B imply that

b3( ˜Zdef.) = b1(Xn
def.), (C.5)

where Xn
def. is the zero space of the deformed polynomial in (C.2). The

deformation has smoothed out the points of intersection, so Xn
def. is now

just a Riemann surface. This is illustrated in figure C.1. We can calculate
b1(Xn

def.) in a similar fashion to before, using the Mayer–Vietoris sequence or
by applying the adjunction formula to the degree (n, n) polynomial. Alter-
natively, we can easily see directly that Xn

def. is a Riemann surface with
genus (n − 1)2. Therefore, we have

b3( ˜Zdef.) = b1(Xn
def.) = 2(n − 1)2. (C.6)

C.1 Calculation of b2( ˜Zdef.)

In order to get b2( ˜Zdef.), we calculate the Euler character of the deformed
space.

Recall the following two properties of the Euler character

χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B),

χ(A × B) = χ(A)χ(B). (C.7)

We will write
˜Zdef. = A ∪ B, (C.8)

Figure C.1: The Riemann surface resulting from smoothing the intersections
in figure 1.
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with A being the degenerate fibration over Xn
def.

A = Xn
def. × (S2 ∨ S2), (C.9)

and B the nondegenerate CP
1 fibration over the remainder of CP

1 × CP
1,

see figure 1,

B = ˜Zdef.\[Xn
def. × (S2 ∨ S2)] = CP

1 × [CP
1 × CP

1\Xn
def.], (C.10)

where again S2 ∨ S2 denotes two spheres joined at a point.

Therefore, we have
χ(A) = 3χ(Xn

def.), (C.11)
and

χ(B) = 2χ(CP
1 × CP

1\Xn
def.) = 2 [4 − χ(Xn

def.)] . (C.12)
Putting these two results together and using the fact that A ∩ B = ∅, we
have that

χ( ˜Zdef.) = 8 + χ(Xn
def.) = 10 − b1(Xn

def.). (C.13)

First, note that

b1(Z) = b1( ˜Zdef.) = b1( ˜Zres.) = 0, (C.14)

and similarly for b5 by Poincaré duality. Note that because all the relevant
spaces are now nonsingular, we may apply Poincaré duality without com-
plications. The first Betti number of the twistor space Z vanishes because
Z is a CP

1 bundle over a simply connected four-manifold M . It therefore
follows from Leray’s theorem [24] that b1(Z) = 0. The other two spaces are
related to Z by blowups, blowdowns and geometric transitions which do not
change the first Betti number.

Finally, using the fact that b3( ˜Z) = b1(Xn) and Poincaré duality, it follows
from (C.13) that

b2( ˜Zdef.) = 4. (C.15)

C.2 Betti numbers of the resolved space

Now we can calculate b3( ˜Zres.) and b2( ˜Zres.) from (C.3) and (C.4) to find

b3( ˜Zres.) = 2(n − 1)2 − 2(n − 1)2 = 0, (C.16)

and
b2( ˜Zres.) = 4 + n(n − 1) − (n − 1)2 = n + 3. (C.17)

The last step is to go from ˜Zres. to Z by performing two blowdowns. The
two surfaces x = t = 0 and y = t = 0 in ˜Z give two copies of CP

1 × CP
1.

These may be blown down [19] to give two CP
1s as we described in the
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text. The only effect of this blowdown is to reduce the second Betti number
by two

b2(Z) = b2( ˜Zres.) − 2. (C.18)
Therefore, we obtain

b3(Z) = 0, b2(Z) = n + 1. (C.19)

It is immediately seen that this result is consistent with the cases n = 0
and n = 1, where the twistor spaces are CP

3 and the flag manifold F3(C),
respectively. It is also consistent with the general result given in Section 2.1.

Appendix D Small resolution versus blowup

In this appendix, we show how a small resolution can be obtained by means
of blowups. Since all the considerations are local, we consider, as in the
text, the singular conifold in C

4

V = {z1z2 − z3z4 = 0}. (D.1)

The small resolution is, as we have seen, the total space of a bundle

X = O(−1)[u] ⊕ O(−1)[v] −→ CP
1[Z1, Z2], (D.2)

where we have put in square brackets the coordinates for the respective
spaces.

First, we want to show that the blowup of X along the CP
1 given by the

zero section M = {u = v = 0} can be identified with the total space of a line
bundle:

X̃ = O(−1,−1)[y] −→ CP
1[Y1, Y2] × CP

1[Z1, Z2]. (D.3)

We give the blowup map π: X̃ → X as follows:

{Y1 
= 0},

{

u = y(1), v =
Y2

Y1
y(1), Z = Z

}

{Y2 
= 0},

{

u =
Y1

Y2
y(2), v = y(2), Z = Z

}

. (D.4)

One can see that the map is well defined, is invertible if u 
= 0 or v 
= 0, and
the inverse image of a point on M is a CP

1 parametrized by Y1, Y2. This is
enough to prove that X̃ is the blowup of X along M .

Secondly, we show that X̃ can also be interpreted as the proper transform
of the singular conifold V under the blowup of C

4 at the origin. The latter
is defined as

C̃
4 = {(zi) ∈ C

4, [li] ∈ CP
3 | zilj = zjli}.
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We cover the blowup with charts Ui = {li 
= 0} and use local coordinates
x(i) defined by

x
(i)
i = zi, x

(i)
j =

lj
li

, j 
= i.

The exceptional divisor E � CP
3 is given in Ui by {x

(i)
i = 0}. The proper

transform of V is now obtained by looking at its equation in local coordi-
nates:

U1 : x
(1)
2 = x

(1)
3 x

(1)
4 ,

U2 : x
(2)
1 = x

(2)
3 x

(2)
4 ,

U3 : x
(3)
4 = x

(3)
1 x

(3)
2 ,

U4 : x
(4)
3 = x

(4)
1 x

(4)
2 . (D.5)

One can check that Ṽ ∩ E = {zi = 0, l1l2 − l3l4 = 0}, which exhibits the
CP

1 × CP
1 (take l1 = Z1Y1, l2 = Z2Y2, l3 = Z1Y2, l4 = Z2Y1). The remaining

coordinate parametrizing Ṽ is x
(i)
i , and using the equations (D.5) one can

see that it has the right transformation properties to be a coordinate on the
fibre of the O(−1,−1) bundle. Thus Ṽ = X̃, and we see that we have two
routes from V to the small resolution X:

V
small res.−−−−−−→ X

blowdown←−−−−−− X̃ = Ṽ
proper xfm.←−−−−−−− V. (D.6)

Starting from X̃, one can also obtain a different space X ′, isomorphic
to X, by blowing down the other CP

1, parametrized by Z. The transition
between X and X ′ is called a flop.

Notice that if, in the context of Section 4 in the text, one sees the conifold
as a fibration over the z3, z4 plane which degenerates at C1 = {z3 = 0} and
C2 = {z4 = 0}, taking the proper transforms of the Ci, one finds that

C̃1 ∩ E = {[li] = [0, 0, 0, 1]} = {[Z] = [0, 1], [Y ] = [1, 0]}
C̃2 ∩ E = {[li] = [0, 0, 1, 0]} = {[Z] = [1, 0], [Y ] = [0, 1]}.

Therefore, the two curves remain disjoint in the resolution, regardless of
which of the two CP

1 is blown down.
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