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Abstract

In this paper we study the matter form of the conformal and super-
conformal ghosts action. That is, the ghost fields will be expressed
in terms of some scalar and spinor fields. Thus, we obtain a two-
dimensional covariant action in the matter form, i.e., Sg. The Poincaré-
like symmetries and various supersymmetries of this covariant action are
analyzed. The signatures 10+2 and 11+3 for the total target space of
the superstring theory also will be discussed.

1 Introduction

In the recent years, string theories can be understood by assuming the
existence of higher dimensional target spaces [1–6]. The 11-dimensional
M-theory [3] and the 12-dimensional F-theory [4] are examples of this
context. The analysis of the super p-brane scanning allows spacetimes with
non-Lorentzian signatures [5]. In other words, there are several models which
have more than one “time” coordinate [2–6]. In particular, 12-dimensional
theories and their invariances with respect to the SO(10, 2) rotations have
been investigated [2].

Since the superstring possesses gauge symmetries, namely worldsheet
reparametrization invariance, the procedure for the path integral quanti-
zation of the superstring is the Faddeev–Popov method. On the other hand,
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ghosts are quantum fields used to give a functional integral representation
of the Faddeev–Popov determinant [7]. They also have an important role in
the BRST quantization [8]. If two- or more-time world is real, we should be
able to formulate the superstring theory in the language of two- or more-time
physics without the conformal and super-conformal ghosts.

We shall express the action of the super-conformal and conformal ghosts
in the covariant form of the matter fields. Therefore, the ghost fields
have expressions in terms of the bosonic and fermionic fields. Quantum
consistency of the ghosts action in the matter form and initial form will be
shown. The matter form of the action enables us to study the symmetries of
the theory. Two of these symmetries are N = 1 and N = 2 supersymmetries.
However, in these formulations the superstring lives in the 11+3 or 10+2
dimensional spacetimes without any ghost field.

Besides the N = 2 supersymmetry, the theory is invariant with respect to
two Poincaré-like symmetries and two other supersymmetries. For each of
these symmetries there are two conserved currents. That is, each symmetry
is described by the product of two distinct groups.

This paper is organized as follows. In Section 2, by introducing some
vectors, the super-conformal and conformal ghosts and their action will
be expressed in terms of the matter fields. In Section 3, the superstring
action beyond the dimension 10 will be presented. In Section 4, Poincaré-
like symmetries, bi-supersymmetries and N = 2 supersymmetry of the new
form of the ghosts action will be studied. In Section 5, the signature
11+3 for the total target spacetime of the superstring theory will be
discussed.

2 Matter form of the ghosts action

The superstring with the worldsheet supersymmetry has the action

S = − 1
4πα′

∫
d2σ

(
Gµν(ηab∂aX

µ∂bX
ν − iψ̄µρa∂aψ

ν)
)

+ Sg, (2.1)

where Sg is sum of the conformal and super-conformal ghosts actions, i.e.,
Sg = Sscg + Scg. As we know, the spacetime corresponding to action (2.1)
has the dimension 10 with the signature 9+1. Now we proceed to study the
covariant matter form of the action Sg.
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2.1 The super-conformal ghosts

The super-conformal ghosts have the action

Sscg =
1

2πα′

∫
d2σ(β∂+γ + β̃∂−γ̃), (2.2)

where ∂± = 1/2(∂τ ± ∂σ). In this action the fields β and γ (and also β̃ and
γ̃) enter symmetrically despite their asymmetrical appearance. This is due
to the flat worldsheet.

Consider the quantities {Y P , Ỹ P , ∂+ZP , ∂−Z̃P }. We express them in
terms of the variables {∂−Xp, ∂+Xp, ∂−X̃p, ∂+X̃p} as in the following

Y P = eP
p ∂−Xp,

∂+ZP = eP
p ∂+Xp,

Ỹ P = eP
p ∂+X̃p,

∂−Z̃P = eP
p ∂−X̃p,

(2.3)

where the set {eP
p } denotes the two-dimensional vielbeins with p, P ∈ {1, 2}.

The other vielbeins (e.g., those that connect Y P to ∂+Xp and ∂±X̃p)
are zero. Equations (2.3) imply that only four coordinates of the set
{Y P , Ỹ P , ZP , Z̃P } are independent. For example, for the constant vielbeins
there are ∂+Y P = ∂+∂−ZP and ∂−Ỹ P = ∂+∂−Z̃P .

We demand action (2.2) to be

Sscg =
1

2πα′

∫
d2σ

(
ηPQ(Y P ∂+ZQ + Ỹ P ∂−Z̃Q)

)
, (2.4)

where the metric ηPQ has the Lorentzian signature, i.e., ηPQ = diag(−1, 1).
This action contains the bosonic fields and has the feature of action (2.2).
Therefore, the fields of (2.4) have the roles of the super-conformal ghosts.
Expanding action (2.4) gives two copies of action (2.2). On the other hand,
action (2.4) has all symmetries of action (2.2).

Define the two-dimensional metric Gpq as

Gpq =
∑
P,Q

(ηPQeP
p eQ

q ),

ηPQ =
∑
p,q

(GpqeP
p eQ

q ).
(2.5)
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Therefore, action (2.4) takes the form

Sscg = − 1
8πα′

∫
d2σ

(
Gpqη

ab(∂aX
p∂bX

q + ∂aX̃
p∂bX̃

q)
)

. (2.6)

This action corresponds to the manifold Mg with the coordinates {Xp, X̃p}
and the metric

Ḡ =

⎛
⎜⎝

1
2
Gpq 0

0
1
2
Gpq

⎞
⎟⎠ . (2.7)

We call Mg as the ghosts manifold. The metric Gpq provides a background
for the string which propagates in this manifold. This form of the action
is covariant with respect to the worldsheet indices {a, b} and the manifold
indices {p, q}. We shall see that there are some conditions on the fields of
action (2.6), which give the equality of the degrees of freedom of this action
with action (2.2).

In a system with the D-dimensional Poincaré symmetry ISO(D − 1, 1),
the conformal symmetry is SO(D, 2). In fact, when one considers the
conformal symmetry, the symmetry SO(1, 1) is added to the original global
symmetry. Thus, besides the usual time coordinate, the conformal symmetry
introduces another time coordinate. These imply that the ghosts manifold
is product of two identical copies of a two-dimensional spacetime. In other
words, we have a four-dimensional spacetime with the signature 2+2. We
shall see that the 1+1 interpretation for the signature of this spacetime also
is possible.

In fact, action (2.4) is auxiliary. Since actions (2.2) and (2.4) have the
same feature, we can write

β∂+γ = ηPQY P ∂+ZQ,

β̃∂−γ̃ = ηPQỸ P ∂−Z̃Q.
(2.8)

Let V P and Ṽ P be two unit vectors, i.e.,

ηPQV P V Q = ηPQṼ P Ṽ Q = 1. (2.9)

Insertion of these vectors in the left-hand side of equations (2.8) leads to the
equations

(βV )Tη(V ∂+γ) = Y Tη∂+Z,

(β̃Ṽ )Tη(Ṽ ∂−γ̃) = Ỹ Tη∂−Z̃.
(2.10)
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One solution of these equations is
βV = Y,

V ∂+γ = ∂+Z + U,

β̃Ṽ = Ỹ ,

Ṽ ∂−γ̃ = ∂−Z̃ + Ũ ,

(2.11)

where the vectors UP and ŨP are perpendicular to Y P and Ỹ P , respectively

ηPQY P UQ = ηPQỸ P ŨQ = 0. (2.12)

However, for the next purposes, we assume they are not perpendicular to
V P and Ṽ P , i.e.,

ηPQV P UQ �= 0, ηPQṼ P ŨQ �= 0. (2.13)

Other solutions for equations (2.10) are possible. For example, they can
be written in the form (V ∂+γ)Tη(βV ) = Y Tη∂+Z and (Ṽ ∂−γ̃)Tη(β̃Ṽ ) =
Ỹ Tη∂−Z̃. The solution of these equations is different from equation (2.11).
We consider only solution (2.11).

In terms of the fields of action (2.4) and also in terms of the coordinates
{Xp, X̃p}, the super-conformal ghosts have the following expressions

β = ηPQV P Y Q = vp∂−Xp,

∂+γ = ηPQV P (∂+ZQ + UQ) = vp∂+Xp + v · u,

β̃ = ηPQṼ P Ỹ Q = ṽp∂+X̃p,

∂−γ̃ = ηPQṼ P (∂−Z̃Q + ŨQ) = ṽp∂−X̃p + ṽ · ũ,

(2.14)

where the vectors vp and ṽp have the definitions

vp = ηPQeP
p V Q,

ṽp = ηPQeP
p Ṽ Q,

(2.15)

similarly for the vectors up and ũp. The inner product v · u is defined by
v · u = Gpqv

puq. According to equation (2.13), v · u and ṽ · ũ are nonzero.
Note that vp and ṽp also are unit vectors, i.e., Gpqvpvq = Gpqṽpṽq = 1.
Equations (2.14) imply that the super-conformal ghosts can be seen as linear
combinations of some scalar fields.

To understand more about mappings (2.14), let us consider the bosoniza-
tion of the super-ghosts β and γ,

β = e−φ∂−ξ, γ = eφη, ξ = eζ , η = e−ζ , (2.16)

where the bosonized super-ghosts are φ, ξ, η and ζ [9]. A similar construction
for the ghosts b and c was carried out in [10]. As we see, β depends on the
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derivative of a field, while γ is independent of any derivative. This also
is true for β and γ in equations (2.14). For the field γ, also see the first
equation of (2.31). Therefore, equations (2.14) can be interpreted as a kind
of bosonization. Thus, the fields X1 and X2 have the following relations
with the bosonized super-ghosts φ and ζ,

vp∂−Xp = e−φ+ζ∂−ζ,

v · u + vp∂+Xp = ∂+eφ−ζ .
(2.17)

Similar interpretation also holds for the left-moving fields.

According to equations (2.11), it is possible to express the fields {Xp, X̃p}
in terms of the ghost fields

∂−Xp = vpβ,

∂+Xp = vp∂+γ − up,

∂+X̃p = ṽpβ̃,

∂−X̃p = ṽp∂−γ̃ − ũp.

(2.18)

The contravariant vectors are vp = e p
P V P , ṽp = e p

P Ṽ P , up = e p
P UP and

ũp = e p
P ŨP , where the matrix e p

P is inverse of the vielbein matrix eP
p .

These matrices satisfy the relations eP
p e p

P ′ = δP
P ′ and eP

p e p′

P = δ p′
p .

The solutions of the equations of motion of action (2.6) have the general
forms Xp = Xp

R + Xp
L and X̃p = X̃p

R + X̃p
L. Half of the degrees of freedom

of Xp and X̃p correspond to the super-conformal ghosts. Now consider the
unit vectors V ′ and Ṽ ′, which are perpendicular to the vectors V and Ṽ ,
respectively. The inner products of the vectors V ′ and Ṽ ′ with the vectors
in equations (2.11) lead to the conditions

ηPQV ′P Y Q = v′
p∂−Xp = 0,

ηPQV ′P (∂+ZQ + UQ) = v′
p∂+Xp + v′ · u = 0,

ηPQṼ ′P Ỹ Q = ṽ′
p∂+X̃p = 0,

ηPQṼ ′P (∂−Z̃Q + ŨQ) = ṽ′
p∂−X̃p + ṽ′ · ũ = 0.

(2.19)

These four conditions imply that the number of the degrees of freedom of
actions (2.2) and (2.6) are equal. Since the vectors v and ṽ are perpendicular
to the vectors v′ and ṽ′, respectively, these equations also can be obtained
from equations (2.18).
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2.2 The conformal ghosts

The action of the conformal ghosts is

Scg =
1

2πα′

∫
d2σ(b∂+c + b̃∂−c̃). (2.20)

We request this action to be

Scg =
i

2πα′

∫
d2σ

(
ηPQ(ΨP

1 ∂+ΘQ
1 + ΨP

2 ∂−ΘQ
2 )

)
. (2.21)

This action has all symmetries of action (2.20). This is due to the fact that
it has two distinct copies of action (2.20).

The Grassmannian variables {ΨP
1,2, Θ

P
1,2} have the following expressions

in terms of the worldsheet fermions {ψp, θp},

ΨP
1 = eP

p ψp
−,

ΨP
2 = eP

p ψp
+,

ΘP
1 = eP

p θp
−,

ΘP
2 = eP

p θp
+.

(2.22)

Therefore, auxiliary action (2.21) can be written in terms of the spinor fields

Scg =
i

4πα′

∫
d2σ(Gpqψ̄

pρa∂aθ
q), (2.23)

where ψp =
(

ψp
−

ψp
+

)
and θp =

(
θp
−

θp
+

)
are Majorana spinors. We assumed that

the vielbeins are independent of the fields {Xp, X̃p}, and hence they do not
depend on the worldsheet coordinates τ and σ. That is, the metric Gpq is
constant. For matching the degrees of freedom of actions (2.20), (2.21) and
(2.23), see conditions (2.30).

Equality of actions (2.20) and (2.21) gives

b∂+c = iηPQΨP
1 ∂+ΘQ

1 ,

b̃∂−c̃ = iηPQΨP
2 ∂−ΘQ

2 .
(2.24)

This is due to the common feature of these actions. Consider the unit vectors
WP and W̃P ,

ηPQWP WQ = ηPQW̃P W̃Q = 1. (2.25)
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Furthermore, define the Grassmann-valued vectors ΛP and Λ̃P with the
following properties

ηPQΨP
1 ΛQ = ηPQΨP

2 Λ̃Q = 0, (2.26)

ηPQWP ΛQ �= 0, ηPQW̃P Λ̃Q �= 0. (2.27)

Thus, for example, ΛP is perpendicular to ΨP
1 , but it is not perpendicular

to WP .

Insert the unit vectors in the left-hand side of equations (2.24). Similar
to relations (2.10), (2.11) and (2.14), we obtain the mappings

b = iηPQWP ΨQ
1 = iwpψ

p
−,

∂+c = ηPQWP (∂+ΘQ
1 + ΛQ) = wp∂+θp

− + w · λ,

b̃ = iηPQW̃P ΨQ
2 = iw̃pψ

p
+,

∂−c̃ = ηPQW̃P (∂−ΘQ
2 + Λ̃Q) = w̃p∂−θp

+ + w̃ · λ̃.

(2.28)

The unit vectors wp and w̃p and the Grassmannian vectors λp and λ̃p,
similar to equation (2.15), have definitions in terms of {WP }, {W̃P }, {ΛP }
and {Λ̃P }, respectively. Equation (2.27) implies that the inner products
w · λ and w̃ · λ̃ are nonzero. Therefore, according to equations (2.28), the
conformal ghosts appear as components of some spinor fields. Equivalently,
the worldsheet fermions in terms of the conformal ghosts are

ψp
− = −iwpb,

∂+θp
− = wp∂+c − λp,

ψp
+ = −iw̃pb̃,

∂−θp
+ = w̃p∂−c̃ − λ̃p.

(2.29)

Let the unit vectors W ′ and W̃ ′ be perpendicular to the vectors W and
W̃ , respectively. Therefore, we have analog of equations (2.19), i.e.,

ηPQW ′P ΨQ
1 = w′

pψ
p
− = 0,

ηPQW ′P (∂+ΘQ
1 + ΛQ) = w′

p∂+θp
− + w′ · λ = 0,

ηPQW̃ ′P ΨQ
2 = w̃′

pψ
p
+ = 0,

ηPQW̃ ′P (∂−ΘQ
2 + Λ̃Q) = w̃′

p∂−θp
+ + w̃′ · λ̃ = 0.

(2.30)

These conditions give the same number of the degrees of freedom for actions
(2.20), (2.21) and (2.23). From equations (2.29) also we can obtain these
conditions. That is, use the unit vectors w′ and w̃′, which are perpendicular
to w and w̃, respectively.
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The physical states extracted from action (2.1) satisfy some conditions.
For example, they are BRST-invariant. If we substitute the super-conformal
ghosts from (2.14) and the conformal ghosts from (2.28), in the BRST
charge and physical states, we obtain the equivalent BRST charge and
physical states. The equivalent states under the equivalent BRST charge
are invariant. This procedure also holds for other conditions on the physical
states.

2.3 Quantum consistency

For verifying the quantization, we need the explicit forms of the fields γ, γ̃, c
and c̃. Equations (2.14) and (2.28) give them as in the following

γ = vpX
p + γ0(σ−) + v · uσ+,

γ̃ = ṽpX̃
p + γ̃0(σ+) + ṽ · ũσ−,

c = wpθ
p
− + c0(σ−) + w · λσ+,

c̃ = w̃pθ
p
+ + c̃0(σ+) + w̃ · λ̃σ−,

(2.31)

where the vectors {vp, ṽp, wp, w̃p, up, ũp, λp, λ̃p} are considered independent
of the coordinates σ− and σ+.

The functions γ0 and γ̃0 commute with all fields and c0 and c̃0 anticom-
mute with all Grassmannian fields. Thus, the canonical quantization of the
fields of bosonic actions (2.2) and (2.6) leads to the equations

[γ(τ, σ), β(τ, σ′)] = [γ̃(τ, σ), β̃(τ, σ′)] = 4πiα′δ(σ − σ′), (2.32)

[Xp(τ, σ), ∂τX
q(τ, σ′)] = [X̃p(τ, σ), ∂τ X̃

q(τ, σ′)] = 4πiα′Gpqδ(σ − σ′).
(2.33)

Using equations (2.14) and (2.31) and also the equations of motion of γ and
γ̃, quantization (2.32) leads to quantization (2.33) and viceversa.

In the same way, the canonical quantization of the fields of actions (2.20)
and (2.23) are

{c(τ, σ), b(τ, σ′)} = {c̃(τ, σ), b̃(τ, σ′)} = 4πiα′δ(σ − σ′), (2.34)

{ψp
−(τ, σ), θq

−(τ, σ′)} = {ψp
+(τ, σ), θq

+(τ, σ′)} = 4πα′Gpqδ(σ − σ′). (2.35)

According to equations (2.28) and (2.31), these quantizations are the same.
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3 Total superstring action

Let us express the worldsheet fields Xp and X̃p in terms of the new variables
xp and x̃p as in the following

Xp = Ap
qx

q + B̃p
qx̃

q,

X̃p = Bp
qx

q + Ãp
qx̃

q.
(3.1)

Apply these relations in action (2.6) and then keep the cross-term of the
new variables. Therefore, the matrices A, Ã, B and B̃ should satisfy the
conditions

ATA + BTB = 0,

ÃTÃ + B̃TB̃ = 0,

ATB̃ + BTÃ = 1. (3.2)

In other words, actions (2.6) and (2.23) take the form

Sg = − 1
4πα′

∫
d2σ

(
Gpq(ηab∂ax

p∂bx̃
q − iψ̄pρa∂aθ

q)
)

. (3.3)

Obtaining action (2.6) from the bosonic part of action (3.3) gives the
relations

AÃT + B̃BT = 0,

AB̃T + B̃AT = 1,

ÃBT + BÃT = 1. (3.4)

These equations are not independent of conditions (3.2).

However, the equations of motion extracted from action (3.3) are

∂a∂
axp = ∂a∂

ax̃p = ρa∂aψ
p = ρa∂aθ

p = 0. (3.5)

To remove the reparametrization invariance of action (3.3), we can write
it as combination of the matter form and the ghost form

Sg = − µ

4πα′

∫
d2σ

(
Gpq(ηab∂ax

p∂bx̃
q − iψ̄pρa∂aθ

q)
)

+ (1 − µ)
(

Sscg[equation (2.2)] + Scg[equation (2.20)]
)

, (3.6)

where µ is any real number. Actions in the second line do not have the
diffeomorphism invariance.



GHOSTS IN THE MATTER FORMS 739

According to action (3.3), superstring action (2.1) can be written
completely in the matter form

S = − 1
4πα′

∫
d2σ

(
Gµ̄ν̄(ηab∂ax

µ̄∂bx̃
ν̄ − iψ̄µ̄ρa∂aθ

ν̄)
)

, (3.7)

where the metric Gµ̄ν̄ is defined by

Gµ̄ν̄ =
(

Gµν 0
0 Gpq

)
. (3.8)

The coordinates xµ and x̃µ are defined by xµ = x̃µ = Xµ. We also defined
θµ = ψµ. The metrics Gµν and Gpq represent 9+1 and 1+1 signatures,
respectively. We shall see that the corresponding spacetime to action (3.7)
can have the signatures 10+2 and 11+3. Now we study some symmetries of
action (3.3).

4 Symmetries of the ghosts action in the matter form

Since the symmetries of the matter part of the total superstring action (2.1)
are known, we concentrate on the symmetries of the ghost part, i.e., Sg in
form (3.3).

4.1 The Poincaré-like symmetries

Consider the global transformations

δxp = ap
qx

q + bp,

δx̃p = ãp
qx̃

q + b̃p,

δψp = ap
qψ

q,

δθp = ãp
qθ

q,

(4.1)

where apq and ãpq are antisymmetric constant matrices. Under these
transformations, action (3.3), for ãpq = apq, is symmetric. The resulted
current is

Jpq
a =

1
4πα′ [x

p∂ax̃
q − xq∂ax̃

p + x̃p∂ax
q − x̃q∂ax

p + i(ψ̄pρaθ
q − ψ̄qρaθ

p)].

(4.2)
The equations of motion (3.5) imply that this is a conserved current

∂aJpq
a = 0. (4.3)
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For the translations b̃p and bp, the associated currents are

P p
a =

1
4πα′ ∂ax

p,

P̃ p
a =

1
4πα′ ∂ax̃

p,

(4.4)

respectively. These currents are also conserved

∂aP p
a = ∂aP̃ p

a = 0. (4.5)

For b̃p = bp, action (3.3) again remains invariant and hence we have the
conserved current

Pp
a =

1
4πα′ (∂ax

p + ∂ax̃
p). (4.6)

Another symmetry of action (3.3) is as follows

δxp = ap
qx̃

q + bp,

δx̃p = ãp
qx

q + b̃p,

δψp = ap
qθ

q,

δθp = −ãp
qψ

q.

(4.7)

In these transformations, the parameters apq and ãpq can be different.
Therefore, there are two types of group generators. The associated currents
are

jpq
a =

1
2πα′ (x

p∂ax
q − xq∂ax

p + iψ̄pρaψ
q),

j̃pq
a =

1
2πα′ (x̃

p∂ax̃
q − x̃q∂ax̃

p + iθ̄pρaθ
q).

(4.8)

Note that jpq
a corresponds to the parameter ãpq, while j̃pq

a corresponds to
apq. These currents also satisfy the conservation laws

∂ajpq
a = ∂aj̃pq

a = 0. (4.9)

The current equations for the translation parts are the same as equa-
tions (4.4)–(4.6). Since the equations (4.1) and (4.7) are similar to the usual
Poincaré transformations, we call them as the Poincaré-like transformations.



GHOSTS IN THE MATTER FORMS 741

4.2 Worldsheet supersymmetries

The matter part of action (2.1) is symmetric under the worldsheet super-
symmetry transformations

δXµ = ε̄ψµ,

δψµ = −iρa∂aX
µε,

(4.10)

where ε is an infinitesimal constant spinor. Now we study the various
supersymmetries of ghosts action (3.3).

4.2.1 Bi-supersymmetries of the worldsheet

Consider the following transformations
δxp = η̄ψp,

δx̃p = ¯̃ηθp,

δψp = −iρa∂ax
pη,

δθp = −iρa∂ax̃
pη̃,

(4.11)

where η and η̃ are anticommuting constant Majorana spinors. In fact,
these are two independent transformations of (xp, ψp; η) and (x̃p, θp; η̃). The
associated supercurrents are

Ja =
1
2
Gpqρ

bρaψ
p∂bx̃

q,

J̃a =
1
2
Gpqρ

bρaθ
p∂bx

q.

(4.12)

They correspond to the parameters η and η̃, respectively. Since there are
two supercurrents, we call this symmetry as bi-supersymmetry. For η̃ = η,
action (3.3) again remains symmetric. This leads to the current

Ja =
1
2
Gpqρ

bρa(ψp∂bx̃
q + θp∂bx

q). (4.13)

Supercurrents (4.12) and (4.13) obey the conservation laws, i.e.,

∂aJa = ∂aJ̃a = ∂aJa = 0. (4.14)

Besides transformations (4.11), action (3.3) also is invariant under the
following bi-supersymmetry transformations

δxp = λ̄θp,

δx̃p = ¯̃
λψp,

δψp = −iρa∂ax̃
pλ̃,

δθp = −iρa∂ax
pλ,

(4.15)
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where λ and λ̃ are infinitesimal constant real spinors. These transformations
contain two independent parts (xp, θp; λ) and (x̃p, ψp; λ̃). The associated
supercurrents corresponding to the parameters λ and λ̃ are

ka =
1
2
Gpqρ

bρaθ
p∂bx̃

q,

k̃a =
1
2
Gpqρ

bρaψ
p∂bx

q.

(4.16)

For λ̃ = λ, we obtain analog of current (4.13),

Ka =
1
2
Gpqρ

bρa(ψp∂bx
q + θp∂bx̃

q). (4.17)

These supercurrents satisfy the conservation equations

∂aka = ∂ak̃a = ∂aKa = 0. (4.18)

4.2.2 The N=2 supersymmetry

The SO(10, 2) covariant extension of the superstring is considered. For this,
we change the worldsheet fermions {ψp, θp} with {χp, χ̃p} as in the following

ψp = (B̃T)p
qχ

q + (ÃT)p
qχ̃

q,

θp = (AT)p
qχ

q + (BT)p
qχ̃

q.
(4.19)

The matrices in these equations are the same that appeared in equations (3.1),
(3.2) and (3.4). Now we introduce these relations in action (2.23). Therefore,
according to action (2.6), the ghosts action takes the form

Sg = − 1
8πα′

∫
d2σ

(
Gpq[ηab(∂aX

p∂bX
q + ∂aX̃

p∂bX̃
q)

− i(χ̄pρa∂aχ
q + ¯̃χp

ρa∂aχ̃
q)]

)
. (4.20)

Obtaining the fermionic part, conditions (3.2) and (3.4) have been used.

This action manifestly describes the N = 2 supersymmetry. The super-
symmetry transformations are

δXp = ε̄χp + ¯̃εχ̃p,

δX̃p = ε̄χ̃p − ¯̃εχp,

δχp = −iρa∂aX
pε + iρa∂aX̃

pε̃,

δχ̃p = −iρa∂aX
pε̃ − iρa∂aX̃

pε.

(4.21)

The worldsheet fermions χp and χ̃p form an SO(2) doublet.

In the appearance of the N = 2 supersymmetry, the fields {Xp, χp, X̃p, χ̃p}
in the natural way appeared in action (4.20). In other words, all fields in
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this action have originated from the conformal and super-conformal ghosts.
That is, they have not been introduced by hand. Obtaining worldsheet
supersymmetry with N ≥ 2, some extra fields usually are added to action
by hand.

In fact, action (4.20) shows the other matter form of the ghosts action. In
this manner, the manifold Mg represents two-dimensional spacetime with
the coordinates {Xp} or {X̃p} and the signature 1+1. This implies that the
total target space for the superstring is 10+2-dimensional spacetime with
the coordinates {Xµ, Xp} or {Xµ, X̃p}. As it was explained, this signature
has origin in the conformal symmetry. On the other hand, this space is
product of the 10-dimensional spacetime and the two-dimensional manifold
Mg. Note that one direction of development of supersymmetric theories is
consideration of 12-dimensional theories with the signature 10+2 [2].

The inverse of the fermions redefinition (4.19) is

χp = Ap
qψ

q + B̃p
qθ

q,

χ̃p = Bp
qψ

q + Ãp
qθ

q.
(4.22)

Action of the operators ∂± on equations (3.1) and then comparing the
resulted equations with (4.22) give the following pairs of the super-partners

Xp ←→ χp,

X̃p ←→ χ̃p,

xp ←→ ψp,

x̃p ←→ θp.

(4.23)

These are based on actions (3.3) and (4.20) and their equations of motion.
That is, ∂+xp (∂−xp) acts in the same way as ψp

+ (ψp
−), and so on.

Note that application of transformations (4.11) and (4.15) in equations
(3.1) and (4.22) does not produce transformations (4.21). In other words,
transformations (4.11), (4.15) and (4.21) are independent.

5 The signature 11+3 for the spacetime

Define the block diagonal metric Gmn as

Gmn =

⎛
⎜⎝

Gµν 0 0
0 1

2Gpq 0
0 0 1

2Gp′q′

⎞
⎟⎠ . (5.1)
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In fact, the metrics Gpq and Gp′q′ are equal. They are given by equation (2.5).
Therefore, action (4.20) and the matter part of action (2.1) can be combined
as in the following

S = − 1
4πα′

∫
d2σ

(
Gmn(ηab∂aZ

m∂bZ
n − iΩ̄mρa∂aΩn)

)
, (5.2)

where the generalized coordinates {Zm} and the extended worldsheet
spinors {Ωm} are defined by

Zµ = Xµ, Zp = Xp, Zp′
= X̃p′

,

Ωµ = ψµ, Ωp = χp, Ωp′
= χ̃p′

.
(5.3)

It is easy to see that this action has the N = 1 supersymmetry. The related
transformations are analog of equation (4.10), i.e.,

δZm = ε̄Ωm,

δΩm = −iρa∂aZ
mε,

(5.4)

where the spinor ε is real and constant.

As we explained, the metrics Gpq and Gp′q′ are equal. For each of the
metrics Gpq and Gp′q′ , the symmetry SO(1, 1) is added to the global Poincaré
symmetry. In other words, the conformal symmetry implies that the block
diagonal metric Gmn and the coordinates {Zm} describe 14-dimensional
spacetime with the signature 11+3. In fact, the conformal symmetry of
the system introduces the extra coordinates.

The line element of the spacetime associated to action (5.2) is

ds2 = GmndZm dZn = GµνdXµ dXν +
1
2
Gpq(dXp dXq + dX̃p dX̃q). (5.5)

On the other hand, this spacetime is product of the two manifolds M × Mg,
where M is the 9+1-dimensional spacetime and Mg is 2+2-dimensional
ghosts manifold.

Note that the N = 1 supersymmetry in 11+3 dimensions from the various
points of view has been studied. For example, see the [6].

6 Conclusions

The super-conformal and conformal ghosts action, i.e., Sg, was expressed in
the covariant matter form. The ghost fields also were expressed in terms
of the matter fields. In other words, the conformal ghosts are equivalent to
some spinor fields and the super-conformal ghosts also can be represented
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by some scalar fields. We showed that the quantization of the action Sg in
the matter form and in the ghost form are consistent as expected.

We observed that the bosonic fields of the matter form of the action can
be interpreted as additional coordinates of the spacetime. The manifold of
these extra dimensions is 1+1- or 2+2-dimensional spacetime. Therefore,
the total superstring action corresponds to a 12- or 14-dimensional spacetime
with two and three time-directions, respectively.

We studied some symmetries of Sg in the matter form. Under two
different transformations, which are similar to the Poincaré transformations,
the action is invariant. Each of these symmetries gives the various
conserved currents. Furthermore, for this action, there are two different
bi-supersymmetries. A bi-supersymmetry contains two parameters for the
transformations and hence two conserved supercurrents. In addition, we
observed that the theory has the N = 2 supersymmetry. Finally, we
obtained the total superstring action, with the N = 1 supersymmetry, in
the 11+3-dimensional spacetime.
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